^{1}

^{2}

Recent theoretical work on electron beam heating of magneto-active motional Plasma is presented. Power transfer from beam (plasma heating) and generated electric fields for different physical situations of linear and nonlinear beam-plasma interaction, are studied. Based on previous works [1] [2], we shall study the effects of dusts and plasma motion ( ) on plasma heating. Besides, the case of an inhomogeneity of beam velocity ( ) is also considered. Taking into consideration nonlinear process, dust, plasma motion, and beam velocity inhomogeneity, are found to play a crucial role via power absorbed by the beam and the generated electric field in the system.

Electron beam-plasma interaction presents a great interest for many applications in areas like development of new methods in amplification and generation of electromagnetic waves, acceleration of charged particles in plasma (Plasma Accelerator). Besides, the electron beam-plasma system showed great importance via plasma generation, design of microwave tubes waveguides, explanation of natural phenomena that occur in space and solar plasmas, material studies, compact torus formation, generation of x-ray and microwave, and others.

The recent development in the electron beam technology has shown the capability of generating powerful electron energy sources, making the electron beam very useful to controlled thermonuclear fusion research or in general, to plasma heating. Besides, the electron beam provides a free energy source for a rich variety of nonlinear process to evolve in a plasma. Accordingly, It is not surprising to find up till now a long list of studies and research on beam-plasma interaction and applications, which was also reviewed by many authors, (e.g., see [

Multiple harmonic generation by laser/beam-plasma interaction has been widely investigated [

Currently, high-order harmonic generation (HHG) is considered as one of the more efficient technique for producing coherent short-wavelength radiation in a broad spectral range [

From the point of view of beam-plasma interaction, the impact of dust on plasma is an important explosed field of research. It is increasingly being studied these days due to their applications in a wide range of fields. The presence of relatively highly charged and massive dust grains in a plasma can modify or influence the collective phenomena of the plasma. The possible dust modes may explain the extremely low-frequency fluctuations, new channels for the parametric coupling of other waves, generation of wakefields, etc., in dusty plasma. The impurities coming off from the walls of fusion device can create a dusty plasma at the edge of the discharge. These particles can enhance power loss due to radiation and dilution of fuel as well as can cool down the hot ion by charge-exchange process [

The subject of this paper is to study and investigate the electron beam heating of magneto-active motional dusty plasma under discuss different effects or parameters.

Section 2 explores the interaction of electron beam with a homogeneous magnetized non-motional plasma and plasma heating. Section 3 studies linear, non-motional (

The electron beam is considered to be injected into plasma under the effect of static magnetic field

where E is the electric field generated in the system.

The equations of motion, and the continuity equation for electron beam, which travels along the magnetic field are:

while the equation of motion, and the continuity equation for cold inhomogeneous plasma electrons in the static magnetic field are given by:

where,

For non motional plasma

Solving the above system of equations we can derive the following expressions for the perturbed densities:

where,

Using relations (6) and (7) in Poisson’s equation

we obtain the following wave equation for the electric field:

where,

Introducing the electric field form:

Then we can write the final solution of (9) in the simple form:

Set (11) into (1), the energy absorbed absorbed by the beam reads:

Relation (12) is investigated for different cases of magnetic field: zero, weak and strong magnetic fields.

For dusty plasma, we use the system of Equations (2)-(5) with

Solving the above system of equations we can derive the following expressions for the dust perturbed density:

where,

Using relations (7) and (8), (15) in Poisson’s equation:

we obtain the following wave equation for the perturbed electric field:

where,

The energy absorbed in this case reads:

, (18)

In linear regime, if

It is clear that, existence of dust leads to less energy absorption by the plasma.

The generated electric field under the effect of dusty and clean plasma is shown in

In nonlinear regime, the equation of motion, and the continuity equation for electron beam, which travels along the magnetic field are:

The equation of motion, and the continuity equation for homogeneous plasma electrons in a static magnetic field perpendicular to the plasma are given by:

The dusty nonlinear equations of motion, and continuity are:

Solving the above system of equations we can derive the following expressions for the nonlinear perturbed densities:

where,

Using relations (25)-(27), and considering the nonlinear form of Poisson’s Equation (16), we obtain the following wave equation for the nonlinear generated electric field:

where,

Accordingly, we obtain the energy absorption from the beam as:

, (29)

From (18) and (29) we conclude that:

Ratio (30) shows that, for nonlinear interaction the existence of dust leads to less energy absorption by the plasma as in the linear regime.

Generally speaking, nonlinearity plays a crucial role in the amplification of the electric field generated due to beam-plasma interaction, for different situations, compared to linear case.

For motional plasma, for the electron beam, we use the above system of Equations (2), (3 and (6). On the other hand, the equation of motion, and the continuity equation for homogeneous plasma electrons in a static magnetic field perpendicular to the plasma are given by:

Accordingly, we obtain the following expressions for the perturbed plasma density

Using relations (6) and (34) in Poisson’s Equation (8), we obtain the following wave equation for the electric field in motional plasma

where,

In this case the energy absorbed is:

From this relation and non-motional relation (12) we conclude that:

Ratio (37) shows that, the existence of plasma motion leads to less energy absorption from the beam, as indicated in

Let us consider the case of an electron beam moves with inhomogeneous velocity, i.e.,

motion (2) and continuity. Accordingly, we obtain the perturbed beam velocity and density as:

where,

, (40)

Using mathematical tools used in previous sections, we obtain,

The Electron Beam Heating of Magneto-Active Motional Dusty Plasma is investigated.

Generally speaking, nonlinear process, dust, plasma motion, and beam velocity inhomogeneity, are found to play a crucial role via power absorbed by the beam and the generated electric field in the system.

It is shown that strong magnetic field generates an intense electric field compared to zero, and weak magnetic fields (

The energy absorbed from the beam in clean (S) and dusty (S_{d}) plasma (

Considering nonlinear interaction, ratio (30) shows that dust leads to less energy absorption by the plasma as in the linear regime.

compared with linear stage. This is due to the fact that the electric field intensity at double harmonics is stronger than that of the basic frequency (

As application, the generation of second harmonics through a nonlinear mechanism driven by bunching at the fundamental has sparked interest as a path toward enhancing and extending the usefulness of an x-ray free-electron laser (FEL) facility [

In the motional plasma, the interaction between the electron beam and plasma will occur and induce electrons to exchange energy with plasma waves. The self-magnetic field of the motional electrons is a key parameter of this interaction.

Ratio (37) shows that, the existence of plasma motion leads to less energy absorption of the beam, as indicated in

An interesting result is shown in

beam, and positively affects the plasma heating, and may create a type of plasma acceleration.

In due course, we are going to investigate the effects of an inhomogeneous relativistic electron beam (REB) interaction with dusty, motional inhomogeneous plasma placed in an oscillating magnetic field.

Khalil, Sh.M. and AL Alotaibi, B.M. (2016) Linear and Nonlinear Electron Beam Heating of Magnetized, Motional, and Dusty Plasma. Journal of Mo- dern Physics, 7, 1889-1900. http://dx.doi.org/10.4236/jmp.2016.714167