^{1}

^{2}

^{*}

^{3}

In this paper, a different method for de-noising of ECG signals using wavelets is presented. In this strategy, we will try to design the best wavelet for de-nosing. Genetic algorithm tests wide range of quadrature filter banks and the best of them will be chosen that minimize the Signal-to-Noise Ratio (SNR). Furthermore, the wavelet function and scaling function related to these filters are reported as the best wavelet for de-noising. Simulation results for de-noising of a noisy ECG signal show that using obtained wavelet by proposed method improves the SNR of about 2.5 dB.

There are many methods to de-noise a signal. De-noising is so important in signal processing, particularly for biomedical signals. Discrete Wavelet Transform (DWT) is currently used in a wide variety of signal processing applications, such as audio and video compression, removal of noise in audio, and the simulation of wireless antenna distribution. The wavelet transforms have good properties such as the time-frequency localization, energy compaction and sub-band coding. Wavelet transform is one of the most powerful mathematical tools for digital signal processing [

Genetic algorithm (GA) is an optimization technique based on the “survival of the fittest” [

When the voltage of the ECG waveform is at least larger than 75% of the peak value of the ECG in the comparator stage (digital-comparator) [

The ECG signal is a reference signal for pulse wave delay using photoplethysmo- graphic signal and Laser-Doppler (LD) measurements. The basis of the registration is the selfmixing in the diode lasers cavities [

In this paper, the best coefficients of filters will be obtained using genetic algorithm. GA searches several coefficients and thresholds to reach the best output SNR. The paper is organized as follows: in Section 2, de-noising using wavelet implementation is presented. In Section 3, genetic algorithm is introduced and then the proposed method is developed. Simulation results are presented in Section 4. Finally conclusion is given in Section 5.

The process of removing the noise,

In this section after a brief summary of genetic algorithm, the concept of multi-resolution analysis and the efficient realization of the discrete wavelet transform based on multi-rate filter banks are presented. Then, the proposed method is discussed.

Genetic Algorithm is used to introduce computer-based problems solving systems, which use computational models of evolutionary processes. Different algorithms have been proposed in literature, such as: GAs, evolutionary programming, evolution strategies, classifier systems, and genetic programming. Via processes of selection, mutation and reproduction, these algorithms present a common conceptual base. The genetic algorithms are based on reproduction, fitness, crossover and mutation. The standard procedure of genetic algorithms is as follow:

1) Candidate solutions to a problem have been started with a randomly generated population of n 1-bit strings.

2) Fitness function f(x) of each string in the population is calculated.

3) Until n new strings have been created, the following steps have to repeat:

a) From the current population, a pair of parent strings is selected where probability of selection being an increasing function of fitness.

b) In order to form two new strings, cross over the pair at a random point with the crossover probability.

c) With the mutation probability, the two new strings obtained from previous step mutate at each locus. Then they place the resulting strings in the new population.

4) The current population has to replace with the new population.

5) Go to step 2.

The main concept of wavelet transform based on multi-resolution analysis are presented in this section. This framework has been developed by Meyer, Mallat and Daubechies mainly, for the orthonormal cases [

If the output signal be a delayed version of the input signal, perfect reconstruction is obtained. PR conditions for the filter bank that is shown in

Condition (1) says that the output signal contains no aliasing, but amplitude distortions may be occurred. If both (1) and (2) are satisfied, the amplitude distortions are also vanishing. There are many proper filter’s coefficients to satisfy in (1), but condition (2) is only complied approximately. Proposed method is based on using Genetic Algorithm (GA) to reach the best filter coefficients. In other words, best wavelet function that results minimum SNR after de-noising. So, some parameters are arbitrary in design

procedure. A proper set of conditions used vastly in wavelet design are:

Note that the

One chooses the coefficients of a PR two-channel filter bank in such a way that the wavelets and scaling functions associated with these filters have the desired properties. For constructing wavelets, we use two equations called two-scale relations [

where,

If

From (3), (4), (5),

In order to achieving smooth wavelets with continuous derivatives, three zeros in z = −1 are considered. Then, Equation (12) can be written as:

As seen from Equation (9),

In this work, a 3-level wavelet decomposition is implemented. The FIR filters have 8- coefficients. Then, thresholding and reconstruction are performed on sub-bands to obtain the de-noised signal. The strategy is as follows: Fur coefficients of

We consider a smooth and noiseless ECG signal as a reference to calculate SNR. A Gaussian White Noise (GWN) is added to this pure signal to make a noisy ECG with a defined SNR. Then, the proposed algorithm is applied on this noisy signal and results are compared with other wavelets de-noising from a SNR point of view. Obtained filter coefficients define a wavelet function and a scaling function, which also will report. Simulation results are presented in

Wavelet name | Input SNR (dB) | Output SNR (dB) | Improve (dB) |
---|---|---|---|

Bior3.3 | 36.7 | 46.57 | 9.87 |

Db. 4 | 36.7 | 46.19 | 9.49 |

Sym. 4 | 36.7 | 46.26 | 9.56 |

Proposed method | 36.7 | 48.7 | 12 |

shows the wavelet function and scaling function constructed from 8-coefficcient filters found by Genetic Algorithm, respectively.

A new algorithm for de-noising of ECG signals is presented. The method is based on making a specific wavelet function for minimizing the SNR. By using genetic algorithms, the coefficients of wavelet filter bank alter smoothly until the best SNR for output signal achieved. We used this method and de-noised a noisy ECG signal with 3-level wavelet structure that used 8-coefficient-filters and the results were improved in comparison by typical wavelets such as Daubechies 4, Symlet4 and Bior 3.3.

Kaviri, V.M., Sa- baghi, M. and Marjani, S. (2016) De-Noising of ECG Signals by Design of an Optimized Wavelet. Circuits and Systems, 7, 3746-3755. http://dx.doi.org/10.4236/cs.2016.711314