^{1}

^{*}

^{2}

In industrial drives, electric motors are extensively utilized to impart motion control and induction motors are the most familiar drive at present due to its extensive performance characteristic similar with that of DC drives. Precise control of drives is the main attribute in industries to optimize the performance and to increase its production rate. In motion control, the major considerations are the torque and speed ripples. Design of controllers has become increasingly complex to such systems for better management of energy and raw materials to attain optimal performance. Meager parameter appraisal results are unsuitab le , lead ing to unstable operation. The rapi d intensification of digital computer revolutionizes to practice precise control and allows implementation of advanced control strategy to extremely multifaceted systems. To solve complex control problems, model predictive control is an authoritative scheme, which exploits an explicit model of the process to be controlled. This paper presents a predictive control strategy by a neural network predictive controller based single phase induction motor drive to minimize the speed and torque ripples. The proposed method exhibits better performance than the conventional controller and validity of the proposed method is verified by the simulation results using MATLAB software.

In recent years, automatic controls are indispensable to the process industries in order to minimize complexity of plants control, to maximize the production rate and to meet sharper specification of product quality [

Conventional control is still being used due to its simple structure, high consistency and works well for linear processes with small change in process parameters [

The main concept of the MPC is based on the calculation of the future system behavior to compute optimal manipulated variables. The control variable is the converter output voltage, in the form of a continuous duty cycle. Several MPC methods are used in real time applications [

The controllers such as hysteresis based current controllers [

As SPIM comprise unsymmetrical windings, consequences unbalanced impedances, which lead unequal currents. Since the vector control strategies are based on a balanced drive system involving symmetrical motors, it is difficult to fix the phase difference between windings current of 90 degree in SPIM and may require complex implementation to eliminate the unbalanced operation [

The essential parameters to the implement of vector-control have been measured precisely and obtained on the conduct of no-load and blocked-rotor tests to the symmetrical machines. Were as in unsymmetrical machines, they produce negative and positive torque during their operation, which makes complication in parameter estimation and leads unbalanced operation [

Hysteresis controllers with PWM generation increases the complexity, transformations are required to get the abc frame optimum reference current which complicate the control algorithm and cannot controls the torque directly to get fast torque response [

Selection of the inverter states entails the position information of stator flux linkage and direct axis (d-axis) to define the required sector. Correct inverter states selection are essential, that should be used based on the stator flux and torque errors which requires high computational time and composite control logic [

Due to outstanding technical developments in control areas and its control simplicity than mechanical drives IM are extensively utilized in range from fractional to few kilo Watts [

where, ω_{r} is the angular speed of the rotor and ρ is the derivation operator. u_{ds}, u_{qs}, i_{ds}, i_{qs}, i_{dr} and i_{qr} respectively are stator voltage, stator and rotor currents in the d-q axis. ψ_{dr} and ψ_{qr} are the d-q axis rotor fluxes. r_{ds}, r_{qs} and r_{r} are the stator resistances in the d-q axis and rotor resistance respectively.

L_{ds} = (L_{lds} + L_{dm}), L_{qs} = (L_{lqs} + L_{qm}) and L_{r} are the self inductances of stator in the d-q axis and self inductance of rotor.

L_{dm}, L_{qm}, L_{lds} and L_{lqs} respectively are the magnetizing inductances and stator leakage inductances in the d-q axis.

The load torque and electromagnetic torque are given by

The drive attains steady state speed, when T_{L} = T_{m} α T_{el}, where, P, J, B, T_{el}, T_{m} and T_{L} respectively are the number of poles, moment of inertia, friction, electromagnetic torque, mechanical torque at shaft and the load torque.

Non linear performance is general nature in almost all the systems, design of closed loop control arrangement is always preferred in process industries for superior management of energy and raw materials in order to maximize its manufacture rate [_{p} = 15.411 and τ_{i} = 0.13128 based on Cohen and Coon setting; where, K_{p} is the proportional gain and τ_{i} is the integral time.

Attaining quality with increasing awareness of environmental responsibility imposes far strict demands on control and that can be met by traditional techniques alone. Apart from PI control, a completely different controller design paradigm such as model based control is used, these control algorithms utilizes an explicit plant model to predict future behavior of the plant and creates control signals based on the present error. Implementation of MPC needs linearization because it uses linear models [

There are two steps involved in the implementation of NNPC; the first step depends strongly on the identification of system model to train the neural network (NN) to represent the forward dynamics of the plant [

The second step is controller design, NM predicts the systems response over a specified time horizon and are used by a numerical optimization function to determine control signal to minimizes the performance criterion over the given horizon [

where,

N_{1}, and N_{2} are define the horizons over which the tracking error,

N_{u} is the control increments to be evaluated,

v' is the tentative control signal,

y_{r} is the desired response,

y_{m} is the network model response.

The “σ” value determines the contribution that the sum of the squares of the control increments has on the performance index.

To validate the proposed NNPC scheme, a simulation using MATLAB has been created for a SPIM with 0.25 hp, 220 V, 50 Hz, 4 pole motor for servo and regulatory problems, the parameters are given in

Motor Parameters | Numerical Value |
---|---|

R_{sm} | 2.02 Ω |

4.12 Ω | |

L_{sm} | 8.88 e^{−}^{3} H |

6.72 e^{−}^{3} H | |

R_{sa} | 7.14 Ω; |

L_{sa} | 10.2 e^{−}^{3} H |

L_{m} | 0.21264 H |

J | 0.0416 kg∙m^{2} |

Turns Ratio | 1.25 |

The open loop response of the proposed SPIM at no load is shown in

cause of its inverse characteristic nature

1300 rpm as mid value in the linear region, from which it is possible to amend ±140 rpm (1440 rpm and 1160 rpm) being considered as future change in set point. Unlike PI controllers, the NNPC can able to operate well in the non linear regions up to some extent, here the proposed controller works well for the speed ranges between 1120 rpm and 1440 rpm at full load.

A well designed controller must follow the set point changes for future inputs, this is referred as servo problems in control system terminology. If the controller does not operate satisfactorily for set point changes then there is no use of such controllers, a simple ON-OFF controller can perform the same work. Further the cost involved is very high. So, it is required to simulate and to verify the servo response of the process with the proposed controller. If the proposed controller performs satisfactorily then only the designed controller is implemented in real time process otherwise the design is to be modified. The servo response of conventional PI controller and NNPC are shown in

The transient part is not much important for industrial drives because it will quickly reach steady state, in most cases the load is linked after the drive attains steady speed. Further the motor operates in the stable region when the motor torque is equals to load torque. Otherwise the motor goes to unstable region results drastic speed changes and failure of operation. So it is requisite to analyze the steady state behavior of the drive, the steady state responses for set speeds of 1300 rpm, 1440 rpm and 1120 rpm respectively at full load are shown in Figures 4(a)-(c), In all the cases it is seen that the

NNPC response is closer to the set speed of the motor compared to PI controller response, the steady state response for different set speed proves that the proposed controller provides better performance than the conventional PI controller.

Industrial processes are subjected to recurrent supply voltage and load variations, these are referred as load changes in the control system terminology. Consequences frequent variations in the drives speed, which affect both drives performance and product quality. From this it is obligatory to check whether the designed controller can suppress the load disturbances effectively or not and we call it has regulatory problems. Normally the controllers are checked with 2% to 5% of load disturbances, the maximum allowable load changes are up to 5% of the final value. Regulatory responses for 5% rising and decreasing load torques (at 2 seconds) are shown respectively in

The electromagnetic torque corresponding to the afore said set speeds given in servo

problem are shown in

The steady state torque at 1300 rpm, 1440 rpm and 1120 rpm of set speeds are respectively shown in Figures 7(a)-(c).

There is ripple in speed, from Figures 4(a)-(c) it is seen that the proposed NNPC have low speed ripples than PI controller. From Figures 7(a)-(c) it is known that the proposed NNPC exhibit low torque ripples than the PI controller. From

In this research, neural network predictive controller has been designed and it uses neural model of the nonlinear plant for identification. The NM uses previous inputs and previous plant outputs for prediction of future values of the plant response. Based on the predicted plant output of the NM, the future error is estimated and the controller output is modified according to this predicted future error. Due to this action the error is suppressed prior to its actual appearance in the process that is why its performance is superior to the other controllers. This network has been trained offline in

Set Speed (rpm) | % Speed Ripples | Torque Average | ||
---|---|---|---|---|

NNPC | PI Control | NNPC | PI Control | |

1120 | 0.026 | 0.133 | 0.349 | 0.7485 |

1300 | 0.1 | 0.273 | 0.481 | 1.2575 |

1440 | 0.211 | 0.35 | 0.04 | 0.15 |

batch mode, using the data collected from the plant which is to be controlled. The designed controller calculates the control input that will optimize the plant performance over the specified future time horizon.

In this work, speed control of SPIM using PI controller and NNPC control technique has been analyzed using a MATLAB environment with a computer of 2.27 GHz core i3 processor with 2.00 GB RAM memory and compared. In the servo and regulatory performances, both techniques provide a fast speed dynamic performance, but in steady state the NNPC has lower speed ripples and is very close to the set value compared to conventional controller. Further, the electric torque has lower ripple in the NNPC compared to PI controller. From the simulation results, it is obtained that NNPC provides a comparative performance than the conventional controller.

Saravanan, S. and Geetha, K. (2016) Single Phase Induction Motor Drive with Restrained Speed and Torque Ripples Using Neural Network Predictive Controller. Circuits and Systems, 7, 3670-3684. http://dx.doi.org/10.4236/cs.2016.711309