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1 Surface Integrals

1.1 Surface Integrals

1.1.1 Parameterized Surfaces

The surfaces can be described in a lot of ways. They can be consider

as being graphics of real valued functions of two variables, this is can

be considered as being sets of points (x,y,z) such that z = f(x,y) and

(x,y) ∈ D where D is the domain of f. They can be defined as levels

sets of valued real functions of three variables. But these definitions

are not very good since a lot of surfaces can not be defined as graphic

of functions of real valued functions of two variables. For instance, the

spherical surface x2 + y2 + z2 = 1 is not the graphic of a function of two

variables. Therefore the first definition of surface is not very good. But
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the second definition is not also very good, since equations of the form

f(x,y,z) = 0 have solutions sets that are not surfaces. For instance, if we

consider f such that f(x,y,z) = x2 +y2 +z2 the level set of f of value 1 is

the spherical surface centered at (0,0,0) and radius 1, but the level set of

f of value 0 is only the set N0(f) = {(0,0,0)}. And, finally the definition

of surface should allow to generalize the definition of surface of Rn,when

n > 3. Therefore, we will present another definition of surface.

Definition 1.1.1. {Parametrized Surface} Let D be a region of R2 such

that
◦
D 6= ∅ that is a connected set of R

2. A set S of points R
3 is a

parameterized surface of R3 if and only if S = r(D) where r : D ⊂R
2 7→R

3

is an injective continuous application on
◦
D, such that r−1 is an injective

application on r(
◦
D). And we say that r is a parametrization of S.

Definition 1.1.2. {Regular parametrization of a parameterized surface

} Let D be a set of R2 with
◦
D 6= ∅ and let S be a parameterized surface

by the application r defined on D. One says that a parametrization r of

S is a regular if and only if r is of class C1 on
◦
D and such that for any

point P = r(u,v) with (u,v) ∈ ◦
D of S , ∂r

∂u(u,v)× ∂r
∂v (u,v) 6= 0. And we say

that S is a regular surface if S = r(D) with r a regular parametrization

of S and with D a set with non empty interior, or if S = ∪n
i=1Si with
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Si = r(Di) with Di a connected set with non empty interior and r regular

parametrization of Si and Si ∩Sj = ∅ and the tangent plane is defined on

each point of S.

Observation 1.1.1. The regular curves are curves that don’t have cor-

ners. A regular surface is a surface such that at each of point of the

surface is defined the tangent plane. In a simple language the regular

surfaces are the surfaces that don’t have edges and don’t have corners.

Definition 1.1.3. We say that a surface S is a piecewise regular surface

( or piecewise smooth surface) if and only if it can be divide on a finite

number of regular surfaces, this is S = ∪n
i=1Si and Si ∩Sj = ∅ for i 6= j and

Si for i = 1, · · · ,n is a regular surface. We can say that planes, quadratic

surfaces are regular surfaces. But cubes, prisms and parallelepiped are

piecewise regular surfaces. In a easy way a surface is piecewise regular if

it can be divided on pieces such that on each piece is a regular surface.

I use these definition because I don’t want to use a lot of mathematics.

Observation 1.1.2. The condition ∂ri

∂u (u0,v0) × ∂ri

∂v (u0,v0) 6= 0 for each

(u0,v0) ∈ Di is called the regularity condition of ri at the point (u0,v0).

The points (x,y,z) of the surface S such that doesn’t exist a parametriza-

tion r such that r(u0,v0)) = (x,y,z) and ∂r
∂u

(u0,v0) × ∂r
∂v

(u0,v0) 6= 0 are
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called singular points of S. But we must have some care, a bad choice of

a parametrization of a surface S can send us to the situation that at some

points of the surface the conditions of the regularity can not be verified,

even being the surface regular.

Example 1.1.1. The spherical surface S is a regular surface since S =

S1 ∪S2 and S1 = r1(D1) and S2 = r2(D2) where r1 and r2 are such that

r1(x,y) = (x,y,
√

1 −x2 −y2) for all (x,y) ∈ D1 with D1 = {(x,y) ∈ R
2 :

x2 +y2 < 1} and we have r2(x,y) = ( 2x
1+x2+y2 , 2y

1+x2+y2 , −1+x2+y2

1+x2+y2 ) that are

regular parameterizations of S1 and S2 respectively, with D2 = {(x,y) ∈

R
2 : x2 +y2 ≤ 1}, and S1 ∩S2 = ∅, and the tangent plane to each point of

the surface S is well defined.

Example 1.1.2. Consider the surface S such that S = r(R2) where r

is defined by r(u,v) = (x(u,v),y(u,v), z(u,v)) = (u,u,v) with (u,v) ∈ R
2.

Let (x,y,z) ∈ S. Let write (x,y,z) = (u,u,v). Hence y = x and z ∈ R and

therefore S is formed by the points (x,y,z) such that y = x, this is the

surface S is the vertical plane y = x.
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x

y

z

O

y = x∧z = 0

S

Figure 1.1: The surface S is the plane y = x
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x

z

O

D

Figure 1.2: Domain of r

We must note that the application r that takes the set D = R
2, the plane

Oxz, on the plane R
3 of equation y = x is a regular parametrization of

the plane. Evidently S = r(D) and the set D = R
2 is a connected set with

nonempty interior. We must say that a connected set of R2 is connected

if and only if is connected by arcs, this means if any two points of the

set can be joined by a line inside the set. We must note that r such that
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r(u,v) = (u,u,v),∀(u,v) ∈ R
2 is a continuous injective function on R

2

and that the inverse r−1 is such that r−1(x,y,z) = (x,z),∀(x,y,z) ∈ S is

continuous on S since r−1(x,y,z) = (x,z) is continuous on R
3.

Example 1.1.3. Let D = [0,2π[×]0,π[ and let consider the application r :

D ⊂R
2 7→R

3 defined by r(θ,φ) = (acos(θ)sen(φ),asen(θ)sen(φ),acos(φ))

with (θ,φ) ∈ D.

Then






































x = acos(θ)sen(φ))

y = asen(θ)sen(φ)

z = acos(φ),0 ≤ θ < 2π,0 < φ < π.

The parametric equations of the sphere x2 +y2 +z2 = 1 are the spherical

coordinates with ρ = a.

Im of θ = 0

z

x

y

Then the parametrization r such that

r(θ,φ) = (acos(θ)sen(φ),asen(θ)sen(φ),acos(φ)),(θ,φ) ∈ [0,2π[×]0,π[
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maps the region D = [0,2π[×]0,π[ on the sphere of radius a centered at

(0,0,0) without the poles.

θ

φ

O

D

2π
π

θ = 0

π

Figure 1.3: Domain of r

We most note also that the function r is a regular parametrization of the

sphere S without the poles, since r is a function of class C1 on
◦
D and

since we have for (u,v) ∈ ◦
D,
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~∂r
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∂φ(θ,φ) ==

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k

−asen(θ)sen(φ) acos(θ)sen(φ) 0

acos(θ)cos(φ) asen(θ)cos(φ) −asen(φ))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= sen(φ)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k

−asen(θ) acos(θ) 0

acos(θ)cos(φ) asen(θ)cos(φ) −asen(φ))

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣
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∣

∣

= sen(φ)
(

−a2 cos(θ)sen(φ)~i−a2sen(θ)sen(φ)~j
)

−

−a2sen(φ)cos(φ)~k.

From now on, we will use the following notation:

N(θ,φ) = ∂r
∂θ (θ,φ) × ∂r

∂φ(θ,φ)

= −a2sen(φ)(cos(θ)sen(φ),sen(θ)sen(φ),cos(φ)).

So, the parametrization r is a regular parametrization of the sphere with-

out the poles.

Example 1.1.4. Let consider the set D = [0,2π[×] − ∞,+∞[ and let r

be the application that to the point (θ,z) ∈ D associates the point r(θ,z) =

(acos(θ),asen(θ), z). Then the cylindrical surface S formed by the points

(x,y,z) ∈ R
3 such that x2 + y2 = a2 verifies the equality S = r(D).
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Figure 1.4: Domain of r

We present on figure 1.5 a graphical representation of the cylinder x2 +

y2 = a2.

−0.5
0.5 1−0.5

0.5

−2

2

Figure 1.5: The cylinder x2 + y2 = a2
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We must note that r is an application of class C1 on
◦
D.

And, we have ∂r
∂θ(θ,z) = (−asen(θ),acos(θ),0) and ∂r

∂θ (θ,z) = (0,0,1).

And, therefore we write that

~∂r
∂θ (θ,z) × ~∂r

∂z (θ,z) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

~i ~j ~k

−asen(θ) acos(θ) 0

0 0 1

∣

∣
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∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= acos(θ)~i+ asen(θ)~j + 0~k.

We conclude that

∂r

∂θ
(θ,z) × ∂r

∂θ
(θ,z) = (acos(θ),asen(θ),0) 6= (0,0,0),∀(θ,z) ∈ ◦

D .

So, we can say that S = r(D) is a regular surface.

Example 1.1.5. Let D ⊂ R
2 be an open connected set with non empty

interior. Let f : D 7→ R be a real valued function of two variables of

class C1 on D. Then S = f(D) is a regular parameterized surface,

since S = r(D) with r(x,y) = (x,y,f(x,y)),(x,y) ∈ D and since f is

of class C1 on D then r is a function of class on C1 on D, and, we

have ∂r
∂x

(x,y) × ∂r
∂y

(x,y) 6= 0. Indeed, we have ∂r
∂x

(x,y) = (1,0, ∂f
∂x

(x,y)) e
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∂r
∂y

(x,y) = (0,1, ∂f
∂y

(x,y)), hence
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∣

∣

∣
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= −∂f
∂x

(x,y)~i− ∂f
∂y

(x,y)~j −1~k.

So ∂r
∂x(x,y) × ∂r

∂y (x,y) 6= 0.

Observation 1.1.3. We must say that a lot of surfaces are nothing but

graphics of real functions. For instance the surface S defined by the equa-

tion x = y2 is the graphic of the function f(y,z) = x(y,z) = y2. Therefore

is natural to define the parametrization of S as being r(y,z) = (y2,y,z)

and D = R
2. For instance the paraboloid z = x2 + y2 is the graphic of

the function f such that f(x,y) = x2 + y2,∀(x,y) ∈ R
2. Therefore it is

natural to consider the parametrization r such that r(x,y) = (x,y,x2 +

y2),∀(x,y) ∈ R
2 and we must consider the domain D of this parametriza-

tion as being D = R
2. A lot of times the surfaces are nothing but pa-

rameterized regular surfaces when deleted from them the edges or the
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corner points. For instance the conic surface, S formed by the points

(x,y,z) ∈ R
3 such that z =

√

x2 + y2 and (x,y,z) 6= (0,0,0) is a param-

eterized regular surface, since considering the parametrization r(x,y) =

(x,y,
√

x2 + y2),(x,y) ∈ R
2 \ (0,0) we obtain a regular parametrization of

S \ {(0,0,0)}.

But we must say that we could also obtain the parametrization of this sur-

face by considering as parameters of the parametrization the coordinates r

and θ of polar coordinates it is only necessary to make the composition of

r with p where r(x,y) = (x,y,
√

x2 + y2),(x,y) ∈R
2 \{(0,0)} and p(r,θ) =

(r cos(θ), rsen(θ)),(r,θ) ∈]0,+∞[×[0,×2π[ obtaining the parametrization

r1 = r ◦p with D1 =]0,+∞[×[0,2π[. And all, the parameterizations of the

form r(x,y) = (x,y,f(x,y)),(x,y) ∈ D, or of the form r(y,z) = (f(y,z),y,z),(y,z) ∈

D or of the form r(x,z) = (x,f(x,z), z),(x,z) ∈ D can conduct us to other

parameterizations more easy to work using the polares coordinates on the

convenient planes if the domain D is a circle, or a circular sector cir-

cular,etc. In the calculation of a surface integral sometimes are used

parameterizations that are nothing but the parametrization of the vec-

tor position of a point of the surface using cylindrical coordinates (for

the case of cylindrical surfaces) ore using spherical coordinates for the

spherical surfaces.
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Now we will present the definition of coordinates curves of a surface S of

R
3.

1.1.2 Parameterized Coordinate Curve of a Surface at a

Point of the Surface

Definition 1.1.4. {Definition of coordinate curve of a surface}

Let S be a regular parameterized surface such that S = r(D) with r a regu-

lar parametrization of S defined by r(u,v) = (x(u,v),y(u,v), z(u,v)),(u,v) ∈

D where D is connected set with non empty interior. Let (u0,v0) ∈
◦
D.

The curve Cv that is described by the position vector r(u0,v) when v takes

values on an interval Iv such that (u0,v) ∈ D,∀v ∈ Iv is called the v co-

ordinate at (u0,v0) The curve Cu where u takes values on an interval Iu

such that the position vector r(u,v0) belongs to D,∀u ∈ Iu is called the

coordinate curve u at (u0,v0).
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u
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Figure 1.6: Coordinate Curves
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Observation 1.1.4. Let S be a regular parameterized surface such that
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S = r(D) with r(u,v) = (x(u,v),y(u,v), z(u,v)),(u,v) ∈ D where D is

an open connected set with non empty interior. We will consider the

following notation

Tu(u0,v0) = (
∂x

∂u
(u0,v0),

∂y

∂u
(u0,v0),

∂z

∂u
(u0,v0))

Tv(u0,v0) = (
∂x

∂v
(u0,v0),

∂y

∂v
(u0,v0),

∂z

∂v
(u0,v0))

with Tv(u0,v0) the tangent vector to the curve Cv at the point v = v0

parametrized by r(u0,v),v ∈ Iv and Tu(u0,v0) the tangent vector Cu at

the point u = u0 parameterized by r(u,v0),u ∈ Iu. Hence Tu(u0,v0) =

∂r
∂u(u0,v0) e Tv(u0,v0) = ∂r

∂v (u0,v0) are tangent vectors to the surface S

at the point r(u0,v0) and therefore the normal vector to S at the point

r(u0,v0) is

N(u0,u0) =
∂r

∂u
(u0,v0) × ∂r

∂v
(u0,v0).

Sometimes throughout the text we will use also the notation N(u0,v0) =

Tu(u0,v0) ×Tv(u0,v0).
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