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1.1. Introduction 

Geophysical methods are based on the study of the propagation of different physical fields 
inside the Earth. The most important geophysical fields are gravity, magnetic, electromag-
netic and seismic wave fields. The observations of these fields first depend on the physical 
properties of the rock. Traditional geophysical data analysis methods include the establish-
ment of different geological models and observational data. Numerical modeling of geo-
physical data for a given model parameter is often referred to as a forward problem (see 
Figure 1). The solution to the forward problem enables us to predict geophysical data from 
specific geological structures. 

The ultimate goal of geophysical observations is to determine geological structures from 
geophysical data. Due to the complex internal structure of the earth, this is a very difficult 
problem. Usually we use a more or less simple model to approximate the real geology and 
try to determine the model parameters from the data. We call this problem an inverse prob-
lem (see Figure 1). The success of geophysical interpretation depends on whether or not we 
can approximate the true geological structure through a reasonable model and effectively 
solve the corresponding inverse problems. 

1.2. Formulation of Forward and Inverse Problems 

When studying geophysical methods, we should also consider that certain sources can gen-
erate geophysical fields. So the general forward and inverse problems can be described as 
follows: 

 

Figure 1. The traditional definition of the forward and inverse problems. 
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FORWARD PROBLEM: 

Model {model parameters m , sources s} → data d : 

( )sA=d m ,                              (1.1) 

where sA  is the forward problem operator depending on a source s. 

INVERSE PROBLEM: 

{data d , sources s}→model {model parameters m } 

( )1
sA−=m d                                (1.2) 

or {data d } → model and sources {model parameters m , sources s}: 

( ) ( )1, A−=m s d                             (1.3) 

where 1
sA−  and 1A−  are inverse problem operators. 

We will call the question (1.2) and the inverse model problem. Note that this problem (1.2) 
applies to electromagnetic field or acoustic field propagation and is often referred to as in-
verse scattering problem. 

In some geophysical applications, the inverse problem is only formulated with respect to 
the sources of the observed field: 

{data d } → {sources s} 

( )1A−=s d                              (1.4) 

The problem (1.4) is called the inverse source problem. In this case, it is assumed that the 
model parameters (physical properties of the medium) are known. Typical examples of this 
problem are the gravity inverse problem and seismological inverse problem. In the first case, 
the density distribution of the rock is the source of the gravity field. In the second case, the 
goal is to estimate the location and type of seismic source from the observed seismic field. 

In the solution of any inverse problem, there are three important questions arising: 

1) Does the solution exist? 

2) Is it unique? 
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3) Is it stable? 

The problem of the existence of the solution is related to the mathematical formula of the 
inverse problem. From the physical point of view, there should be some solution because we 
study the real geological structure inside the Earth. However, from a mathematical point of 
view, there may be no suitable numerical model to fit our observed data on a given set of 
models. 

The uniqueness of the solution can be illustrated by the following formula. Suppose we 
have two different models, 1m  and 2m , and two different sources, 1s  and 2s , that pro-
duce the same data 0d : 

( ) ( )1 1 0 2 2 0, , , .A s A s= =m d m d  

In this case, it is impossible to distinguish two models, 1 2,m m , from the given data. That 
is why uniqueness issues are important for inversion. 

The last problem of solution stability is also a key issue in inversion theory. In fact, geo-
physical data always contaminated by some noise δd . The problem is whether the differ-
ence in the response of different modes is greater than noise level. For example, let two dif-
ferent models 1 2,m m , and two different sources, 1 2,s s , generate two different data sets, 

1 2,d d , which can be represented as follows: 

( ) ( )1 1 1 2 2 2, , , .A s A s= =m d m d  

Assume that the two models and the source are different obviously, while the data differ-
ence is within the noise level ε : 

1 2 1 2, ,C s s s Cδ δ= − > = − >m m m  

1 2 , ,Cδ ε ε= − < d d d  

where symbol ⋅  denotes some norm, or measure of difference between two models, 
sources and data sets.  

In this case, it is also impossible to distinguish the two models from the observed data. 

Taking into account the importance of these three issues to the inversion problem solution, 
Hadamard, a renowned French mathematician, said that if all three issues mentioned above 
have a positive answers, then a mathematical problem can be expressed correctly. In other 
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words, the mathematical problem is considered to be well-posed, if its solution does exist, is 
unique and is stable. 

One problem is according to Hadamard (1902) ill-posed if the solution did not exist, or it 
was not unique, or it was not a continuous function of the data (that is, if the small perturba-
tion of the data corresponds to any large perturbation of the solution). Hadamard considered 
that ill-posed mathematical problems were not physically and/or mathematically meaning-
ful. 

However, it turns out that most mathematical physics and geophysics problems (actually 
most natural science problems) are ill-posed. Fortunately, it was found later that Hada-
mard’s view was wrong: the ill-posed problems are both physically and mathematically 
meaningful and could be solved. 

In the middle of last Century Andrei N. Tikhonov developed the foundations of the theory 
of ill-posed problem solutions. He introduced a regularization method to approximate an 
ill-posed problem by a number of well-posed problems. 

1.3. Existence and Uniqueness of Inversion Problem  
Solutions 

1.3.1. Existence of the Solution 

We can write an operator equation in a general form for the forward modeling: 

( ) ,A=d m                                (1.5) 

where denotes different kind of geophysical data, and m  denotes corresponding model 
parameters. 

There are two aspects to the existence of the inverse problem solution. One is the physical 
existence of observed data generated by the distribution of certain physical parameters, and 
the other is the existence of the mathematical solution of operator Equation (1.5). There is 
no doubt about the physical existence of the inverse problem solution. However, the exis-
tence of mathematical existence is questionable. To better understand this phenomenon, 
please note that the measured geophysical data d  always contains the error δd : 

δ δ= +d d d                               (1.6) 

The question is whether it is possible to find a model m  that can accurately generates 
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the observed noisy data δd : 

( )Aδ δ=d m                              (1.7) 

The answer is that sometimes we cannot find such a model and it is easy to understand 
why. Indeed, one should keep in mind that noise has nothing to do with true model parame-
ters, and it can produce reasons that have nothing in common with the geophysical field eq-
uations described above. Therefore, noise cannot be described by the same operator Equa-
tion (1.5) as theoretical geophysical data. For this reason, we should not expect that we can 
always find a physical model that matches actual observational data exactly. But why should 
we try to find such a model? 

The solution to an inverse problem is usually a class that simplifies the model. Therefore, 
the problem must be a quasi-solution to the inverse problem, that is, a solution that best fits 
the observations from a selected model class. Therefore, we get a practical existence: the 
solution to the inverse problem exists if there is δm  such that 

( )Aδ δ δ− ≤d m  

where δ  is the measurement error, and ⋅  denotes some measure of difference between 
the theoretical (predicted) data ( )A δm  and observed noisy data δd . It is important to un-
derstand that we should not even try to get an exact solution of the inverse problem. It has 
no practical meaning for noisy data. So we should think about some approximate method to 
the inversion based on searching for a model that could fit the observed data within the giv-
en accuracy δ . This simple idea is the cornerstone of regularization theory. 

1.3.2. Uniqueness of the Solution 

Another important issue we mentioned earlier is the uniqueness of the solution. Again, nat-
ural mothers do not seem to like simple solutions: In general, the solutions to the geophysi-
cal inverse problems are not unique. 

When analyzing non-uniqueness problems, the above two types of inverse problems 
should be distinguished: the inverse model (or inverse scattering) problem and the inverse 
source problem. The advantage of the inverse scattering problem is that many different lo-
cations of the source can be selected to illuminate the medium being inspected. Each source 
location will generate a different data set as a rule, reducing the ambiguity of inverse solu-
tion (Blok and Oristaglio, 1995). 
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The inverse source problem is more ambiguous because there is usually a source distribu-
tion that produces zero external fields. This type of source is called a nonradiating source. A 
detailed analysis of the analytical performance of nonradiating source was given in a classic 
paper by Bleistein and Cohen (1976). 

1.3.3. Instability of the Solution 

Another key issue of inversion theory is instability. This problem reflects the difference in 
the noise level of the two observed data sets, and the distribution of the corresponding mod-
el parameters may be completely different. 

A demonstration of instability can be provided for practically all geophysical inversion 
problems (see, for example, Lavrent’ev et al., 1986). That is why any reasonable algorithm 
for an inverse problem solution must be able to take this effect into account. 
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