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block [10,11] and superimposed code[12-14]. The aim of 
them is same, that is, to give birth to a cover-free set as 
MAC scheduling codes, which is the key to QoS guaran-
tee. Of course, the sets generated by different strategies 
are distinct even if they are feed with same parameters. 

Due to the existence of combinatorial designs, the car-
dinal of the cover-free set is no less than the node num-
ber of network [5]. Therefore, the problem of how to se- 
lect an appropriate subset comes into being, for every no- 
de has to be uniquely associated with one element of the 
cover-free set. In other word, if the node number of a 
network is N, and the cardinal of the set is M, then there 

are 
M

N

 
 
 

 optional subsets which can be assigned as the 

MAC scheduling tragedy of network. Obviously, random 
selection is not a considerate policy, although it is ado- 
pted by all of the topology-transparent MAC scheduling 
protocols nowadays. Which subset can provide the best 
throughput guarantee? Further, can the selected subset be 
optimized further? This paper tries to answer the ques-
tions. 

We propose the definition of the redundant slot of the 
cover-free set, and prove that the redundant slot has neg-
ative influence on throughput guarantee. Further, we pro- 
ve that any subset of a cover-free set is still a cover-free 
set after any of its redundant slots is squashed out. There- 
fore, the more minimal throughput and the less maximal 
delay can be guaranteed. Our algorithm therefore picks 
the subset which has the maximal number of redundant 
slots, squashes all redundant slots of the subset, and then 
designates it as node scheduling strategy of network. 
Therefore, for any topology-transparent node scheduling 
strategy, both the increased minimal throughput and de-
creased maximal transmission delay can be gotten by just 
using our algorithm as an extra accessory. 
 

2. Network Model 
 

Wireless network is modeled by a directed graph G = (V, 
E), where V is the set of nodes and E is the set of directed 
links. If node w is within the transmission range of node 
u, then a directed edge connecting these two nodes is 
denoted by (u, w) E , with u being a neighbor of w. The 
degree of a node w, i.e., ( ) | { | ( , ) , , } |D w u u w E u w V    
is defined as the number of its neighbors. We assume 
that the maximum nodal degree Dmax, i.e., max ( )w V D w , 
remains constant when network operates. Of course, Dmax  
> 0 is necessary for keeping connectivity. 

In this paper, we assume that the transmission channel 
is error-free and a reception failure is caused only by 
packet collisions. A packet transmitted from a neighbor 

of a node, is successfully received by the node only if no 
packet is transmitted from other neighbor nodes simul-
taneously. All nodes are homogeneous. We also assume 
that the transceiver at each node is half-duplex. As a re-
sult, a node cannot transmit and receive concurrently. 

Time is assumed to be synchronized over the network. 
Furthermore, time is slotted and slots are grouped into 
time frame. For example, a time frame consists of four 
time slots in Figure 1. In other word, a frame F = {S1, 
S2, …, Sb} consists of b consecutive slots. A slot assign-
ment is given by a set ( )S w F  for every node w, 
where S(w) consists of time slots in which node w has 
the transmitting right in a frame. 

 
3. Redundant Slot and QoS Guarantee 

3.1. Redundant Slot 
 

Definition 1. Assume [k] = {0, 1, …, k-1}, a set A = {A0, 
A1, …, AM-1} of subsets of the [T] is a (s, M, T) cover-free 
set if for any proper subset I of [M] such that |I| = s (|I| is 
the cardinal of set I), and any integer [ ]j M I  , we 

have { } { }j iA A   . s is called the intensity of the co- 
ver-free set. 

Cover-free set is equivalent with the d-disjunct matrix 
[15] and the superimposed code.  

A (s, M, T) cover-free set A can be represented by a T 
× M matrix A where 

1
0 1, 0 1

0
j

ij
j

if i A
A i T j M

if i A

       
 

The matrix is referred as the scheduling matrix. For 
convenience, the jth column vector and the ith row vec-
tor of the scheduling matrix A are denoted as A*j and  
Ai* respectively. Besides, for a T × M scheduling matrix, 
ATj is the MSB (Most Significant Bit) of A*j and A0j is the 
LSB (Least Significant Bit) of A*j. 

Definition 2. For two vectors X = (x1, x2, …, xm)T  
and Y = (y1, y2, …, ym)T, the sum of X and Y is 

1 1 2 2( , ,..., )T
m mX Y x y x y x y     . If X + Y = X, then 

Y is covered by X. 
Obviously, for the scheduling matrix of a (s, M, T) 

cover-free set, any column vector is not covered by any 
other s column vectors. 

Lemma 1. Any L ( s L M  ) elements in a (s, M, T) 

 

 

Figure 1. An example of MAC scheduling code. 
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cover-free set form a (s, L, T) cover-free set. 
Proof: For the scheduling matrix of a (s, M, T) cov-

er-free set, any one column vector will not be covered by 
any other s column vectors. So it will not be covered by 
any other L column vectors since L < s. Therefore, it is a 
(s, L, T) cover-free family. 

Definition 3. Assume the scheduling matrix of a (s, M, 
T) cover-free set is denoted as A, for some integer i 
( 0 1i T   ) and any integer j (0 1)j M   , if Aij = 0 
or Aij = 1, then i is a redundant slot of A. 

Theorem 1. Assume the scheduling matrix of a (s, M, 
T) cover-free set is denoted as A, a ( 1)T M   matrix 
which is generated by removing (deleting, or squashing) 
redundant slot of A is a (s, M, T-1) cover-free set. 

Proof: For any s + 1 column vectors of A, without loss 
of generality, assume them to be A*0, A*1, …, A*s. Ob-
viously, A*s is not covered by A*0 + A*1 + … + A*(s-1) . In 
other word, there exist at least one integer k 
( 0 1k T   ), which satisfies 

[ 1]
( 1) ( { } {0})ks ki

i s
A A true

 
    . Therefore, k is not a 

redundant slot of A. 
Assume a ( 1)T M   matrix B is generated by 

squashing any one redundant slot of A, and A*0, A*1, …, 
A*s are turned into B*0, B*1, …, B*s correspondingly. 
Since k is not a redundant slot of A, Ak* is still kept in B. 
Thus, B*s is not covered by B*0 + B*1 + … + B*(s-1). Con-
sidering the generality of choosing A*0, A*1, …, and A*s, 
the set of all column vectors in B is a (s, M, T-1) cov-
er-free set. 

Redundant slot results in less throughput guarantee. 
Assume the scheduling matrix of a (s, M, T) cover-free 
set to be A and i is one of its redundant slot. If 

0 1
{ } {0}ij

j M
A

  
 , none of nodes will transmit at slot i. 

On the other hand, if 0 1
{ } {1}ij

j M
A

  
 , all nodes will 

transmit at slot i and no any packets can be received cor-
rectly due to the half-duplex transceiver. In a word, the 
throughput of redundant slots is wasted in both cases. 
 

3.2. Redundant Slot and QoS Guarantee 
 

Definition 4. The minimal guaranteed throughput Gmin is 
defined as the ratio of the number of guaranteed suc-
cessful transmissions in one frame to frame length. 

Definition 5. The transmission delay under the worst 
traffic condition is called the maximal transmission de-
lay, and it is defined as the ratio of frame length to the 
minimal number of successful transmission slots in one 
frame.  

Theorem 2. For a (s, M, T) cover-free set A and a (s, 
M, T-1) cover-free set A’ which is generated by squash-
ing one redundant slot of A, if the minimal guaranteed 

throughput and the maximal transmission delay are Gmin 

and maxDT , and '
minG  and '

maxDT  respectively when A 

and A’ are adopted respectively as node scheduling 

codes, then '
min min/ / ( 1)G G T T  , and  

'
max max/ ( 1) /DT DT T T  . 

Proof: For any node, assume there are at least k exclu-
sive transmission slots can be guaranteed if A is adop- 
ted as the MAC scheduling codes of network, based   
on the definition of the minimal guaranteed throughput, 

min

k
G

T
 . Similarly, if A’ is adopted, '

min 1

k
G

T



. 

Therefore, '
min min/ / ( 1)G G T T  . 

Since the maximal transmission delay is the reciprocal 
of the minimal guaranteed throughput, 

'
max max/ ( 1) /DT DT T T  .  

4. Algorithm and Performance Analysis 

4.1. Algorithm 
 
For selecting N scheduling codes from M candidates, there 

are 
M

N

 
 
 

 optional subsets in total. Based on Theorem 2, 

QoS guarantee can be enhanced if a redundant slot is 
squashed. So our algorithm chooses the subset which has 
the maximal number of redundant slots, squashes all re- 
dundant slots of the subset, and then designates it as the 
node scheduling strategy. 
 
4.2. Performance Analysis 

Theorem 3. Assume the scheduling matrix of a (s, M, T) 
cover-free set to be ATM, if its row vectors have equal 
weight w, then the algorithm can squash at least i redun-
dant slots if the node number N satisfies 

( 1)M i w N M i w        ( 0 1
M

i
w

   , and i is 

an integer). 
Proof: We prove it using mathematical induction. 
1) If M w N M   , i.e., i = 0, Theorem 3 is ob-

viously correct. 
2) Assume when ( 1)M k w N M k w       , at 

least k redundant slots can be squashed.  
3) If ( 2) ( 1)M k w N M k w        , since 

( 1)M k w N w M k w        , for N + w nodes, 
at least k redundant slots can be squashed from ATM 
based on the assumption 2). If the scheduling matrix af-
ter the k redundant slots are squashed from ATM is notated 

( )
( )( )

k
T k N wA   . Since the row weight of ATM is w, there are at 

most w column vectors whose MSBs are 1 in ( )
( )( )

k
T k N wA   . 

In other word, there are at least N column vectors whose 
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MSBs are 0 in ( )
( )( )

k
T k N wA   . 

If we select any N column vectors whose MSBs are all 
0 as the node scheduling codes of network, then the MSB 
slot is obviously a redundant slot. Therefore, at least k + 
1 redundant slots can be founded and squashed. 

Corollary 1. For the scheduling matrix A of a (s, M, T) 
cover-free set, if its row vectors have equal weight M-w, 
then if the node number N satisfies 

( 1)M i w N M i w       （ 0 1
M

i
w

   , and i is 

an integer）, the algorithm can squash at least i redundant 
slots. 

Proof: Since the scheduling matrix is just the com-
plementary matrix of that in Theorem 3, the proof is ob-
vious.  

 
5. Apply into Popular Topology-Transparent 

Node Scheduling Strategies 
 

Based on Theorem 3, the performance of our algorithm 
can be estimated if the row vectors in scheduling matrix 
have equal weight. Therefore, to show its universality, 
we prove that the most popular topology-transparent no- 
de scheduling strategies generate scheduling matrix with 
equal weight. 
 
5.1. Strategy Based on the Multinomial Theory 

in Galois Field 

Both Chlamtac’s and Ju’s algorithm are based on the 
multinomial theory in Galois field. Based on two input 
parameters, the node number N and the maximal node 
degree Dmax, two parameters q and k are get based on a 
sufficient condition of forming a cover-free set. Further, 
based on q and k, every node is associated with a unique 
vector (ak, ak-1, …, a0), where [ ] ( 0,1,..., )ia q i k  . In 
other word, every node is associated with a unique mul-

tinomial 1
1 1 0...k k

k ka x a x a x a
    . 

To map from the multinomial to scheduling matrix, a 
frame is divided into q subframes and a subframe is fur-
ther divided into q slots. Every node has transmission 
right only at one slot during a subframe. For example, for 
the subframe i, [ ]i q , node which is associated with 
the vector (ak, ak-1, …, a0) has transmission right only at 

the 1
1 1 0(( ... ) mod )k k

k ka i a i a i a q th
     slot in 

the subframe i.  
Theorem 4. For scheduling matrix generated by 

strategy based on the multinomial theory in Galois field 
with parameters q and k, its row vectors have equal 
weight qk. 

Proof: Based on the principle of the algorithm, the 
weight of the jth row vector in scheduling matrix is the 

number of node which has transmission right at the jth 
slot. For the slot j in subframe i, it is the number of vec-
tor (ak, ak-1, …, a0) which satisfies  

1
1 1 0( ... ) modk k

k ka i a i a i a q j
     . 

Assume 1
1 1...k k

k ka i a i a i mq z
     , 0 1z q    

where m is an integer. For every z, there is a unique 
0 ( ) moda j z q   which satisfies  

1
1 1 0( ... ) modk k

k ka i a i a i a q j
     , i.e., a0 is 

determined by (ak, ak-1, …, a1). In other word, there are k 
independent variables in (ak, ak-1, …, a0). So, the number 
of (ak,ak-1,…,a0) which satisfies  

1
1 1 0( ... ) modk k

k ka i a i a i a q j
      is qk, i.e., 

the row vectors of scheduling matrix have equal weight 
qk.  
 

5.2. Strategy Based on the Orthogonal Array 
 
Definition 5. A OA(k, t, v) is a kt v  matrix with en-
tries from [v], 0 k t  , if for any kk v  submatrix, 
each of its vk column vectors is unique. 

A OA(k, t, v) can be mapped into a kvt v  schedul-
ing matrix. A frame is composed of vt slots. Each node is 
assigned a unique column vector of orthogonal array as 
its scheduling code. For example, if a node is assigned a 
column vector (0, 3, 1), its scheduling code is 
000110000010. 

Theorem 6. For scheduling matrix generated by stra- 
tegy based on OA(k, t, v), its row vectors have equal 
weight vk-1. 

Proof: For any k row vectors in OA(k, t, v), they form 
a kk v  matrix. Since every column vector in the 

kk v  matrix is unique, there are vk different k-tuples. 
Since every entry in [v] appears equal times in any row 
vector, every entry appears vk-1 times in any row vector. 
Based on the mapping from orthogonal array to schedul-
ing matrix, every row vector of scheduling matrix has 
equal weight vk-1. 

5.3. Strategy Based on Orthogonal Latin 
Square 

Definition 7. A orthogonal latin square with order p is a 
p p  matrix, with every row and every column to be a 

full permutation of [p]. 
Definition 8. Two different n n  latin squares A = 

(ai, j), B = (bi,j), , {1,2, ..., }i j n  is orthogonal if all 
2-tuples (ai,j, bi,j) are different. As a generalization, r 
n n  latin squares A(1),A(2),…,A(r) form a latin squares 
family with order (r, n) if they are different and ortho-
gonal between any two of them. Especially, if r = n-1, 
the latin squares family is a complete orthogonal latin 
squares family with order n. 
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A complete orthogonal latin squares family with order 
n can be mapped into a 2 ( 1)n n n   scheduling matrix. 
For all n(n-1) column vectors in the family, each of them 
can be associated to a node as its scheduling code.  

Theorem 6. If n is a prime or prime power, for sche-
duling matrix generated by strategy based on a complete 
orthogonal latin squares family with order n, its row 
vectors have equal weight n-1.  

Proof: Since a complete orthogonal latin squares fam-
ily with order n consists of n-1 latin squares if n is a 
prime or prime power. For each latin square, every ele-
ment appears just once in any column and row. So, the 
weight of the scheduling matrix is n-1 based on the map-
ping from latin square to scheduling matrix. 
 
6. Experiments 
 
We take the Chlamtac algorithm for examples to test the 
effect of the redundant slot squashing algorithm. 

Based on the principle of Chlamtac algorithm, given 
the node number N and the maximum nodal degree Dmax, 
the two parameters, q and k, can be get. For example, if 
N = 120，Dmax = 5, then q = 11，k = 2. That is, we have 
qk+1 = 1331 candidate node scheduling codes for 120 
nodes. In fact, there are at least 11 redundant slots can be 
squashed. Figure 2 illustrates the relationship among 
qk+1/N, N and Dmax generated by Chlamtac algorithm. 
Obviously, the larger the qk+1/N is, the more redundant 
slots can be anticipated. 

Seen from Figure 2, qk+1/N increases quickly with N 
or Dmax. So it can be easily anticipated that our algorithm 
performs better in network with more nodes or larger no- 
de degree. 

We now begin to test the effect of our algorithm under 
various values of N and Dmax for Chlamtac algorithm. 
The range of N is 2~60, and that of the maximal node 
degree is 1~N-1, i.e., all possibilities of maximal node 
degree are tested. Figure 3 illustrates the effect of our 
algorithm. The three coordinates are the node number N, 
the maximal node degree Dmax and the number of redun-
dant slot. It can be found from Figure 3 that there always 
exist redundant slots in any case. The larger the N or 
Dmax is, the more redundant slots can be squashed, which 
is consistent with our anticipation. 

 
7. Conclusions 
 
The topology-transparent node scheduling strategy is suit- 
able for MANET because it can provide guaranteed QoS 
and be independent of network topology. In this paper, to 
improve QoS guarantee, we present a universal algo-
rithm which can be realized as an accessory of any to-
pology-transparent node scheduling strategy nowadays. 

 

Figure 2. The relationship among qk+1/N, N and Dmax gener-
ated by the Chlmatac algorithm. 
 

 
Figure 3. The effect of redundant slot squashing algorithm 
for the Chlamtac algorithm. 
 

Node scheduling codes generated by each topology- 
transparent node scheduling algorithm nowadays form a 
cover-free set. We propose the redundant slot of the cov-
er-free set, and prove that the redundant slot has negative 
influence on the minimal guaranteed throughput. Further, 
we prove that any subset of a cover-free set is still a cov-
er-free set after any of its redundant slots is squashed. 
Our algorithm chooses the subset which has the maximal 
number of redundant slots, squashes all redundant slots 
of the subset, and then designates it as the node schedul-
ing strategy of wireless network. Both theoretical analy-
sis and experiments prove that the increased minimal 
throughput and decreased maximal transmission delay 
are guaranteed. Simulation results reveal that the larger 
the network node number or the maximal node degree, the 
better QoS can be guaranteed by employing our algorithm. 
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