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Abstract

Topology-transparent MAC scheduling strategies nowadays are all based on combinatorial design. To get
throughput guarantee, a cover-free set is output as scheduling strategy of network. In this paper, we aim to
modify the cover-free set so that better throughput can be guaranteed. At the first step, the redundant slot of
the cover-free set is proposed and found to have negative influence on the minimal guaranteed throughput.
Second, we prove that any subset of a cover-free set is still a cover-free set after its redundant slots were
squashed out. Our algorithm chooses the subset which has the maximal number of redundant slots, squashes
all of its redundant slots, and then designates it as the network scheduling strategy. Therefore, better through-
put can be guaranteed if the squashed subset is adopted as network scheduling strategy. For any topology-
transparent node scheduling strategy, both the increased minimal throughput and decreased maximal trans-

mission delay can be gotten by just using our algorithm as an extra accessory.
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1. Introduction

Recently, many multimedia applications, such as video
monitoring and voice recording, are suggested to deploy
on Mobile Ad hoc Networks (MANET). Their feasibili-
ties have great relationship with the guaranteed transmis-
sion throughput and transmission delay. In other word,
guaranteed QoS on MANET is required by these appli-
cations.

Since MAC layer is directly above the physical layer
and is the basis of all other protocols, for a MANET with
guaranteed QoS, guaranteed QoS on MAC layer is indis-
pensible [1].

MAC protocols in wireless network are of two types.
One is the contention-based MAC protocol, with the well-
known Carrier Sense Multiple Access/Collision Avoid-
ance (CSMAJ/CA) protocol as its representative. Due to
its possibility of infinite transmission delay caused by
wireless collisions, it cannot provide QoS guarantee. The
other one is the scheduling-based MAC protocol, where
a time frame is divided into multiple time slots, and each
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node is assigned the transmitting right at some given time
slots [2]. We take Figure 1 for example, for a network
whose topology is known, by arranging colliding trans-
missions into different time slots, wireless collision can
be eliminated efficiently.

Scheduling-based MAC protocols can be further cate-
gorized into two subcategories, i.e., the topology-depen-
dent and the topology-transparent MAC protocols. For
the topology-dependent MAC protocols, to minimize wire-
less collisions, a uniform topology graph has to be set up
either in every node in distributed manner, or in the sink
node in centralized manner [3]. Obviously, the topology-
dependent MAC protocols are unfit for MANET because
of constantly changed topology which is caused by the
mobility of node [4]. On the contrary, the topology-trans-
parent MAC scheduling protocols are fully independent
of network topology and may be promising choices for
applications deployed on MANET.

The scheduled object of the topology-transparent MAC
protocols can be either wireless link or node. In this pa-
per, we focus on node scheduling.

Nowadays, all topology-transparent node scheduling
protocols are all based on combinatorial designs [5], in-
cluding the multinomial theory in Galois field [6,7], or-
thogonal array [8], latin squares [9], balanced incomplete
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block [10,11] and superimposed code[12-14]. The aim of
them is same, that is, to give birth to a cover-free set as
MAC scheduling codes, which is the key to QoS guaran-
tee. Of course, the sets generated by different strategies
are distinct even if they are feed with same parameters.
Due to the existence of combinatorial designs, the car-
dinal of the cover-free set is no less than the node num-
ber of network [5]. Therefore, the problem of how to se-
lect an appropriate subset comes into being, for every no-
de has to be uniquely associated with one element of the
cover-free set. In other word, if the node number of a
network is N, and the cardinal of the set is M, then there

M
are [ N j optional subsets which can be assigned as the

MAC scheduling tragedy of network. Obviously, random
selection is not a considerate policy, although it is ado-
pted by all of the topology-transparent MAC scheduling
protocols nowadays. Which subset can provide the best
throughput guarantee? Further, can the selected subset be
optimized further? This paper tries to answer the ques-
tions.

We propose the definition of the redundant slot of the
cover-free set, and prove that the redundant slot has neg-
ative influence on throughput guarantee. Further, we pro-
ve that any subset of a cover-free set is still a cover-free
set after any of its redundant slots is squashed out. There-
fore, the more minimal throughput and the less maximal
delay can be guaranteed. Our algorithm therefore picks
the subset which has the maximal number of redundant
slots, squashes all redundant slots of the subset, and then
designates it as node scheduling strategy of network.
Therefore, for any topology-transparent node scheduling
strategy, both the increased minimal throughput and de-
creased maximal transmission delay can be gotten by just
using our algorithm as an extra accessory.

2. Network Model

Wireless network is modeled by a directed graph G = (V,
E), where V is the set of nodes and E is the set of directed
links. If node w is within the transmission range of node
u, then a directed edge connecting these two nodes is
denoted by (u, w) € E , with u being a neighbor of w. The
degree of a node w, i.e.,, D(w) ={{u|(u,w) e E,u,weV}|
is defined as the number of its neighbors. We assume
that the maximum nodal degree Dy, i.., MaX,, D(W),
remains constant when network operates. Of course, Dz
> 0 is necessary for keeping connectivity.

In this paper, we assume that the transmission channel
is error-free and a reception failure is caused only by
packet collisions. A packet transmitted from a neighbor
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of a node, is successfully received by the node only if no
packet is transmitted from other neighbor nodes simul-
taneously. All nodes are homogeneous. We also assume
that the transceiver at each node is half-duplex. As a re-
sult, a node cannot transmit and receive concurrently.

Time is assumed to be synchronized over the network.
Furthermore, time is slotted and slots are grouped into
time frame. For example, a time frame consists of four
time slots in Figure 1. In other word, a frame F = {S,,
S,, ..., Sp} consists of b consecutive slots. A slot assign-
ment is given by a set S(w)c F for every node w,
where S(w) consists of time slots in which node w has
the transmitting right in a frame.

3. Redundant Slot and QoS Guarantee

3.1. Redundant Slot

Definition 1. Assume [k] = {0, 1, ..., k-1}, a set A = {A,,
A4, ..., Ay1} of subsets of the [T] is a (s, M, T) cover-free
set if for any proper subset | of [M] such that [I| = s (|l] is
the cardinal of set 1), and any integer j€[M]-1 we

have {A;}-U{A}= @ s s called the intensity of the co-
ver-free set.

Cover-free set is equivalent with the d-disjunct matrix
[15] and the superimposed code.

A (s, M, T) cover-free set A can be represented by a T
x M matrix A where

1 ifieA
A=10 itiea,

The matrix is referred as the scheduling matrix. For
convenience, the jth column vector and the ith row vec-
tor of the scheduling matrix A are denoted as A and
A~ respectively. Besides, for a T x M scheduling matrix,
Aqj is the MSB (Most Significant Bit) of A« and Ay; is the
LSB (Least Significant Bit) of As;.

Definition 2. For two vectors X = (X3, Xz, ..., Xm)"
and Y = (Y1, Y2 ... Ym)', the sum of X and Y is
X4Y = (X VY %V Yy X, VYY) L IEX+Y =X, then
Y is covered by X.

Obviously, for the scheduling matrix of a (s, M, T)
cover-free set, any column vector is not covered by any
other s column vectors.

Lemmal. AnyL (s<L<M)elementsina(s, M, T)

0<i<T-1,0<j<M-1

Node Assigned slot MAC Scheduling code
1 0,2 (1,0,1,0)
2 1 EO, 1,0, 0; 1 frame = 4 slots
3 2 0,0,1,0
s 13 oo Lf1]2]3]

Figure 1. An example of MAC scheduling code.
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cover-free set form a (s, L, T) cover-free set.

Proof: For the scheduling matrix of a (s, M, T) cov-
er-free set, any one column vector will not be covered by
any other s column vectors. So it will not be covered by
any other L column vectors since L < s. Therefore, it is a
(s, L, T) cover-free family.

Definition 3. Assume the scheduling matrix of a (s, M,
T) cover-free set is denoted as A, for some integer i
(0<i<T-1)andanyinteger j(0<j<M-1) ifA; =0
or A; = 1, then i is a redundant slot of A.

Theorem 1. Assume the scheduling matrix of a (s, M,
T) cover-free set is denoted as A, a (T —1)xM matrix
which is generated by removing (deleting, or squashing)
redundant slot of A is a (s, M, T-1) cover-free set.

Proof: For any s + 1 column vectors of A, without loss
of generality, assume them to be A«y, Ax, ..., Ax. Ob-
viously, A« is not covered by A« + As + ... + Aseyy . IN
other word, there exist at least one integer k
(0<k <T -1), which satisfies

(As =DA( Y {AF={0D) =true Therefore, k is not a

redundant slot of A.

Assume a (T-1)xM matrix B is generated by
squashing any one redundant slot of A, and A«y, A, ...,
As are turned into B, Bsq, ..., Bsx correspondingly.
Since k is not a redundant slot of A, A~ is still kept in B.
Thus, B. is not covered by By + B« + ... + Bx(sq). Con-
sidering the generality of choosing Axy, A« ..., and A,
the set of all column vectors in B is a (s, M, T-1) cov-
er-free set.

Redundant slot results in less throughput guarantee.
Assume the scheduling matrix of a (s, M, T) cover-free
set to be A and i is one of its redundant slot. If

OSEM 71{%}:{0}, none of nodes will transmit at slot i.

on the other hand, if [ {A}Y={ ail nodes will

0< j<M -
transmit at slot i and no any packets can be received cor-
rectly due to the half-duplex transceiver. In a word, the
throughput of redundant slots is wasted in both cases.

3.2. Redundant Slot and QoS Guarantee

Definition 4. The minimal guaranteed throughput G, is
defined as the ratio of the number of guaranteed suc-
cessful transmissions in one frame to frame length.

Definition 5. The transmission delay under the worst
traffic condition is called the maximal transmission de-
lay, and it is defined as the ratio of frame length to the
minimal number of successful transmission slots in one
frame.

Theorem 2. For a (s, M, T) cover-free set A and a (s,
M, T-1) cover-free set A’ which is generated by squash-
ing one redundant slot of A, if the minimal guaranteed

Copyright © 2010 SciRes.

throughput and the maximal transmission delay are G,
and DTm,and G, and DT, respectively when A
and A’ are adopted respectively as node scheduling
codes, thenG,;, /G,,,, =T /(T 1), and

ﬁlmax /ﬁmax =(T—1)/T .

Proof: For any node, assume there are at least k exclu-
sive transmission slots can be guaranteed if A is adop-
ted as the MAC scheduling codes of network, based
on the definition of the minimal guaranteed throughput,
G, =X Similarly, if A" is adopted, G, ——<— .

T T-1
Therefore, G, /G, =T/(T-1).

Since the maximal transmission delay is the reciprocal

of the minimal guaranteed throughput,

ﬁmax /ﬁmax =(T —1)/T .
4. Algorithm and Performance Analysis
4.1. Algorithm

For selecting N scheduling codes from M candidates, there
M
are ( N ] optional subsets in total. Based on Theorem 2,

QoS guarantee can be enhanced if a redundant slot is
squashed. So our algorithm chooses the subset which has
the maximal number of redundant slots, squashes all re-
dundant slots of the subset, and then designates it as the
node scheduling strategy.

4.2. Performance Analysis

Theorem 3. Assume the scheduling matrix of a (s, M, T)
cover-free set to be Aqy, if its row vectors have equal
weight w, then the algorithm can squash at least i redun-
dant slots if the node number N satisfies

M-(@+)xw<N<M-ixw (OSiSM—l, and i is
w

an integer).

Proof: We prove it using mathematical induction.

HIf M-w<N<M, ie,i=0, Theorem 3 is ob-
viously correct.

2) Assume when M —(k+1)xw<N <M -kxw, at
least k redundant slots can be squashed.

) M—(k+2)xw<N=<M-(k+1)xw , since
M-(k+)xw<N+w<M-kxw, for N + w nodes,
at least k redundant slots can be squashed from Aqy
based on the assumption 2). If the scheduling matrix af-
ter the k redundant slots are squashed from Aqy, is notated
P{Tk),k)(Nw) . Since the row weight of Ay is w, there are at
most w column vectors whose MSBs are 1 in A%, . -
In other word, there are at least N column vectors whose
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MSBs are 0in ATy 1w -

If we select any N column vectors whose MSBs are all
0 as the node scheduling codes of network, then the MSB
slot is obviously a redundant slot. Therefore, at least k +
1 redundant slots can be founded and squashed.

Corollary 1. For the scheduling matrix A of a (s, M, T)
cover-free set, if its row vectors have equal weight M-w,
then if the node number N satisfies

M-(+)xw<N<M-—ixw (osisM—l, and i is
w

an integer) , the algorithm can squash at least i redundant
slots.

Proof: Since the scheduling matrix is just the com-
plementary matrix of that in Theorem 3, the proof is ob-
vious.

5. Apply into Popular Topology-Transparent
Node Scheduling Strategies

Based on Theorem 3, the performance of our algorithm
can be estimated if the row vectors in scheduling matrix
have equal weight. Therefore, to show its universality,
we prove that the most popular topology-transparent no-
de scheduling strategies generate scheduling matrix with
equal weight.

5.1. Strategy Based on the Multinomial Theory
in Galois Field

Both Chlamtac’s and Ju’s algorithm are based on the
multinomial theory in Galois field. Based on two input
parameters, the node number N and the maximal node
degree D, two parameters q and k are get based on a
sufficient condition of forming a cover-free set. Further,
based on g and k, every node is associated with a unique
vector (ay, aq, ..., a), where & €[q](i=0,1,...,k). In
other word, every node is associated with a unique mul-
tinomial a x“+a, X '+..+ax+a,.

To map from the multinomial to scheduling matrix, a
frame is divided into q subframes and a subframe is fur-
ther divided into q slots. Every node has transmission
right only at one slot during a subframe. For example, for
the subframe i, i €[d], node which is associated with
the vector (ay, a1, ..., @) has transmission right only at
the ((ai*+a ,i*"+..+ai+a,) mod g)th slot in
the subframe i.

Theorem 4. For scheduling matrix generated by
strategy based on the multinomial theory in Galois field
with parameters q and k, its row vectors have equal
weight g~.

Proof: Based on the principle of the algorithm, the
weight of the jth row vector in scheduling matrix is the

Copyright © 2010 SciRes.

number of node which has transmission right at the jth
slot. For the slot j in subframe i, it is the number of vec-
tor (ay, ay.y, --., &) Which satisfies
(ai*+a_,i**+..+ai+a,) mod q=j.

Assume a,i* +a, ,i*"+..+ai=mq+z,0<z<q-1
where m is an integer. For every z, there is a unique
a8,=(j—z) mod qg which satisfies
(ai*+a i*"+..+ai+a) mod q=j, ie, a is
determined by (ay, ay.1, ..., @1). In other word, there are k
independent variables in (ay, a1, ..., @). So, the number
of (ay,a.1,-.-,8g) Which satisfies
(ai* +a,i**+..+ai+a,) mod q=j is ¢ ie,
tfle row vectors of scheduling matrix have equal weight

q
5.2. Strategy Based on the Orthogonal Array

Definition 5. A OA(k, t, v) is a txv* matrix with en-
tries from [v], O<k<t, if for any kxv submatrix,
each of its v column vectors is unique.

A OA(k, t, v) can be mapped into a vtxv* schedul-
ing matrix. A frame is composed of vt slots. Each node is
assigned a unique column vector of orthogonal array as
its scheduling code. For example, if a node is assigned a
column vector (0, 3, 1), its scheduling code is
000110000010.

Theorem 6. For scheduling matrix generated by stra-
tegy based on OA(k, t, v), its row vectors have equal
weight V<2,

Proof: For any k row vectors in OA(K, t, v), they form
a kxv matrix. Since every column vector in the
k xv* matrix is unique, there are v* different k-tuples.
Since every entry in [v] appears equal times in any row
vector, every entry appears V<! times in any row vector.
Based on the mapping from orthogonal array to schedul-
ing matrix, every row vector of scheduling matrix has
equal weight V<.,

5.3. Strategy Based on Orthogonal Latin
Square

Definition 7. A orthogonal latin square with order p is a
Px P matrix, with every row and every column to be a
full permutation of [p].

Definition 8. Two different NxnN latin squares A =
(@, ), B = (b)), i,iefL2,...,n} is orthogonal if all
2-tuples (a;;, b;;) are different. As a generalization, r
nxn latin squares A® A® . A® form a latin squares
family with order (r, n) if they are different and ortho-
gonal between any two of them. Especially, if r = n-1,
the latin squares family is a complete orthogonal latin
squares family with order n.
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A complete orthogonal latin squares family with order
n can be mapped into a n”xn(n—1) scheduling matrix.
For all n(n-1) column vectors in the family, each of them
can be associated to a node as its scheduling code.

Theorem 6. If n is a prime or prime power, for sche-
duling matrix generated by strategy based on a complete
orthogonal latin squares family with order n, its row
vectors have equal weight n-1.

Proof: Since a complete orthogonal latin squares fam-
ily with order n consists of n-1 latin squares if n is a
prime or prime power. For each latin square, every ele-
ment appears just once in any column and row. So, the
weight of the scheduling matrix is n-1 based on the map-
ping from latin square to scheduling matrix.

6. Experiments

We take the Chlamtac algorithm for examples to test the
effect of the redundant slot squashing algorithm.

Based on the principle of Chlamtac algorithm, given
the node number N and the maximum nodal degree Day,
the two parameters, g and k, can be get. For example, if
N =120, Dpa =5,thenqg=11, k=2. Thatis, we have
g“! = 1331 candidate node scheduling codes for 120
nodes. In fact, there are at least 11 redundant slots can be
squashed. Figure 2 illustrates the relationship among
g“"Y/N, N and Dpa generated by Chlamtac algorithm.
Obviously, the larger the g“**/N is, the more redundant
slots can be anticipated.

Seen from Figure 2, g**/N increases quickly with N
or Dyax S0 it can be easily anticipated that our algorithm
performs better in network with more nodes or larger no-
de degree.

We now begin to test the effect of our algorithm under
various values of N and D, for Chlamtac algorithm.
The range of N is 2~60, and that of the maximal node
degree is 1~N-1, i.e., all possibilities of maximal node
degree are tested. Figure 3 illustrates the effect of our
algorithm. The three coordinates are the node number N,
the maximal node degree Dy, and the number of redun-
dant slot. It can be found from Figure 3 that there always
exist redundant slots in any case. The larger the N or
Dnax IS, the more redundant slots can be squashed, which
is consistent with our anticipation.

7. Conclusions

The topology-transparent node scheduling strategy is suit-
able for MANET because it can provide guaranteed QoS
and be independent of network topology. In this paper, to
improve QoS guarantee, we present a universal algo-
rithm which can be realized as an accessory of any to-
pology-transparent node scheduling strategy nowadays.

Copyright © 2010 SciRes.
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pow(q, k+1) /N
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Figure 2. The relationship among qk”/N, N and Dy gener-
ated by the Chlmatac algorithm.

1000
800 .-
600 4"
400 -

200§

Number of Compressed Redundant Slots

0

Figure 3. The effect of redundant slot squashing algorithm
for the Chlamtac algorithm.

Node scheduling codes generated by each topology-
transparent node scheduling algorithm nowadays form a
cover-free set. We propose the redundant slot of the cov-
er-free set, and prove that the redundant slot has negative
influence on the minimal guaranteed throughput. Further,
we prove that any subset of a cover-free set is still a cov-
er-free set after any of its redundant slots is squashed.
Our algorithm chooses the subset which has the maximal
number of redundant slots, squashes all redundant slots
of the subset, and then designates it as the node schedul-
ing strategy of wireless network. Both theoretical analy-
sis and experiments prove that the increased minimal
throughput and decreased maximal transmission delay
are guaranteed. Simulation results reveal that the larger
the network node number or the maximal node degree, the
better QoS can be guaranteed by employing our algorithm.
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