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Abstract 
 
Distributed Compressed Sensing (DCS) is an emerging field that exploits both intra- and inter-signal correla-
tion structures and enables new distributed coding algorithms for multiple signal ensembles in wireless sen-
sor networks. The DCS theory rests on the joint sparsity of a multi-signal ensemble. In this paper we propose 
a new mobile-agent-based Adaptive Data Fusion (ADF) algorithm to determine the minimum number of 
measurements each node required for perfectly joint reconstruction of multiple signal ensembles. We theo-
retically show that ADF provides the optimal strategy with as minimum total number of measurements as 
possible and hence reduces communication cost and network load. Simulation results indicate that ADF en-
joys better performance than DCS and mobile-agent-based full data fusion algorithm including reconstruc-
tion performance and network energy efficiency. 
 
Keywords: Wireless Sensor Networks, Mobile Agent, Compressed Sensing, Distributed Compressed Sensing, 

Joint Sparsity, Joint Reconstruction 
 
1. Introduction 
 
Wireless Sensor Networks (WSN) are an emerging 
technology that promises an ability to monitor the 
physical world via spatially distributed networks of small 
and inexpensive wireless sensor nodes that have the abil-
ity to self-organize into a well-connected network. The 
communication tasks consume the limited power avail-
able at such sensor nodes and, therefore, in order to en-
sure their sustained operations, the power consumption 
must be kept to minimum. Different from transmission 
cost, the computational cost may be negligible for some 
applications. For example, WSN monitoring field tem-
perature may use simple functions which essentially are 
of insignificant cost. Consequently, a major challenge in 
the design of WSN is developing schemes that extract 
relevant information about the sensor data with the 
minimum energy consumption, especially with transmis-
sion cost. In order to reduce transmission of sensor data, 
a new framework for single signal sensing and compres-
sion has developed recently under the rubric of Com-

pressed Sensing (CS) [1–3]. The implications of CS are 
promising for many applications, especially sensing sig-
nals that have a sparse representation in some basis [4–6]. 
Based on the intra-signal correlations (between samples 
in each signal), CS can perfectly reconstruct a com-
pressible signal from remarkably few linear measure-
ments. In WSN, however, a large number of sensor 
nodes presumably observe related phenomena and are 
programmed to perform a variety of signals acquisition 
tasks. These signals have high correlations and need to 
be jointly processed, so the independently encoding and 
decoding theory and practice of single signal in a CS 
framework can not satisfy such applications. Fortunately, 
the ensemble of signals that sensor nodes acquired can be 
expected to possess some joint structure, or inter-signal 
correlations (between samples across signals), in addition 
to the intra-signal correlation of single signal. Most ex-
isting coding algorithms [7,8], however, exploit only 
inter-signal correlations and not intra-signal correlations. 
A new Distributed Compressed Sensing (DCS) theory 
exploits both intra-signal and inter-signal correlation 
structures of multiple signal ensembles [9–11]. In a typi-
cal DCS scenario, each individual node independently 
encodes its signal by CS framework and then transmits 
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the measurements to a distant Sink node (Sink) by multi-
ple skips. Under the right conditions, Sink can jointly 
reconstruct multiple signal ensembles precisely. How-
ever, we note that the network traffic may be extremely 
heavy in DCS, resulting in poor performance of the sys-
tem, when the number of sensor nodes is big and the 
amount of sensing signals is large. Furthermore, nodes 
can not know the suited minimum number of measure-
ments that they need to transmit to Sink under DCS 
framework. In order to guarantee perfect reconstruction, 
each node has to transmit enough measurements. This 
means that DCS only utilizes the inter-signal correlations 
in jointly decoding processes, but not in jointly encoding 
processes.  

In this paper, we design a mobile-agent-based Adap-
tive Data Fusion (ADF) algorithm for multiple signal 
ensembles which is inspired by DCS. Instead of passing 
large amounts of independently encoding measurements 
by DCS in each individual node over the network, Mo-
bile Agent (MA) can fuse multiple signals from node to 
node along a shortest path, based on Global Closest First 
(GCF) heuristics algorithm [12]. According to the sparse 
property of single signal and the joint sparsity of multiple 
signal ensembles under the results of data fusion, each 
node can determine the minimum number of measure-
ments needed to transmit to Sink and effectively reduces 
the transmission cost. Extensive experiments in session 4 
demonstrate that the energy efficiency and the recon-
struction performance of ADF are more excellent than 
DSC and mobile-agent-based Full Data Fusion (FDF) 
algorithm.  

The organization of this paper is as follows. Section 2 
overviews a joint sparsity model in DCS. Single signal 
and multiple signals reconstruction methods are dis-
cussed respectively. Section 3 introduces our two mo-
bile-agent-based data fusion algorithms: Full Data Fu-
sion (FDF) and Adaptive Data Fusion (ADF). Detailed 
theoretical analyses indicate that FDF and ADF are more 
energy efficient than DCS, sufficiently utilizing intra- 
signal and inter-signal correlation of multiple signal en-
sembles. Experiments in Section 4 confirm that ADF 
indeed reduces large amounts of total transmission cost 
and the number of total measurements compared to DCS 
and FDF. Section 5 describes conclusions. 

 
2. Distributed Compressed Sensing 
 
2.1. Joint Sparsity Model 
 
The recently introduced theory of DCS enables a new 
distributed coding algorithm that exploits both intra- and 
inter-signal correlation structures of multiple signals [9]. 
In this paper, we focus on a Joint Sparsity Models (JSM, 
sparse common component +innovations), which can be 
improved by mobile-agent-based data fusion. For exam-

ple, a practical situation well-modeled by the JSM is a 
group of sensors {Sl,…SJ} measuring temperatures at a 
number of outdoor locations throughout the day. The 
temperature readings xl(l∈{1,2,…J}) have both tempo-
ral (intra-signal) and spatial (inter-signal) correlations. 
Global factors, such as the sun and prevailing winds, 
could have an effect that is both common to all sensors 
and structured enough to permit sparse representation in 
some basis. More local factors, such as shade, water, or 
animals, could contribute localized innovations that are 
also structured (and hence sparse in some basis). A simi-
lar scenario could be imagined for a network of sensors 
recording light intensities, air pressure, or other phe-
nomena. All of these scenarios correspond to measuring 
properties of physical processes that change smoothly in 
time and in space and thus are highly correlated. 

We adopt language and notation from [9]. Assume that 
there exists a known basis { | , 1, , }m

i i R i mψ ψΨ = ∈ = L  in 
which a signal { (1), , ( )} ( {1,2, , })T m

l l lx x x m R l J= ∈ ∈L L  
can be sparsely represented as l lx θ= Ψ , where 

( (1), , ( ))T
l l l mθ θ θ= L  is a sparse coefficient vector and 

0|| ||l kθ = . Thus, a compressible multiple signal ensem-
ble 1, , Jx xL  shares a common sparse component while 
each single signal contains an innovation sparse compo-
nent. That is 

ˆ
l C lθ θ θ= + ， {1, 2, , }l J∈ L          (1) 

with 

0,|| ||C C C Cx kθ θ= Ψ =  

and 

0
ˆ ˆˆ ,|| ||l l l lx kθ θ= Ψ =  ( )l Ck k<         (2) 

where kc is a common sparse parameter of θc and kl is an 
innovation sparse parameter of θl. 

Thus, the signal xc is common to all of 
( {1, 2, , })lx l J∈ L  and has sparse coefficient vector θc in 

basis ψ, and the signal ˆ ( {1, 2, , })lx l J∈ L  is the unique 

portions of xl and has sparse coefficient vector l̂θ  in the 
same basis. Denote that Ωc is a tight support set of the 
nonzero values in θc and Ωl is a tight support set of the 
nonzero values in l̂θ .  

To make linear measurements, denote the measure-
ment matrix ( )

ll ij n mϕ ×Φ =  ( {1,2, , })l J∈ L  for the mul-
tisignal ensembles, where a second basis matrix Φl is inco-
herent with Ψ. Thus, a small number of noiseless measure-
ments ( (1),l l l ly x y= Φ = , ( )) ( {1, 2, , })T

l ly n l J∈L L  
contain sufficient information for approximate reconstru- 
ction [1,2]. Mathematically, this can be reduced to a 
standard linear algebra problem: we wish to find 
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( {1, 2, , })lx l J∈ L  which explains the measurements 

l l l l ly x θ= Φ = Φ Ψ  ( {1,2, , })l J∈ L . 
 
2.2. Joint Reconstruction of Multiple Signal   

Ensembles via 1l  Optimization 
 
To give ourselves a firm footing for analyses, we firstly 
consider single signal reconstruction based on the CS 
theory, mainly to exploit intra-signal structure at a single 
node. CS encodes a workable approximation of the sin-
gle compressible signal ( {1, 2, , })lx l J∈ L  with ln m=  
sampling resources and signal reconstruction can be 
achieved by Basis Pursuit (BP) [1,2] or Orthogonal 
Matching Pursuit (OMP) [3]. OMP allows faster recon-
struction at the expense of more measurements. 

Formally, BP needs to solve the following 1l  optimi-
zation problem 

(P1) 1min || ||lθ subject to l l l l ly x θ=Φ =ΦΨ ( {1,2, , })l J∈ L (3) 

The simulation results in [2] state that there exists meas-
urements n ≥ck (oversampling factor c ≥ 4) are required 
to reconstruct lx  with high probability, using linear 
programming methods e.g. interior point method and 
simplex method. That is, an optimal reconstructed signal 

* *
l lx θ= Ψ  can be achieved by an optimal sparse solution 
*
lθ  of the problem (P1). 
In addition to single signal encoding and decoding 

methods, the jointly encoding and decoding methods of 
multiple signal ensembles are considered in DCS. DCS 
expects that 1) ( )C lc k k+ ( {1,2, , })l J∈ L  measurements 

suffice to reconstruct x1, 2)
1

( )
J

C l
l

c k k
=

+ ∑  measurements 

suffice to reconstruct multiple signal ensembles x1,..., xJ, 

for there exists 
1

J

C l
l

k k
=

+ ∑  nonzero elements in x1,..., xJ. 

Furthermore, the recovery problem can be formulated 
using matrices and vectors as  

1

C

J

θ
θ

θ

θ

 
 
 =
 
 
 

M
,

1

J

x
x

x

 
 =  
  

M ,
1

J

y
y

y

 
 =  
  

M , 

1 0

0 J

Φ 
 Φ =  
 Φ 

L
% O

L
, 

0

0

Ψ Ψ 
 Ψ =  
 Ψ Ψ 

L
% M O (4) 

In order to sufficiently utilize inter-signal correlation of 
multiple signal ensembles, we assume that 

1 JΦ = = Φ = ΦL and then Φ% can be rewritten as 
( , , )diagΦ = Φ Φ% L . It is possible to let Sink previously 

send the same random seed to all sensor nodes in the 
interesting field and then the same pseudorandom matrix 
Φ can be generated using simple algorithm with seed at 
each node. 

With sufficient sampling, DCS can reconstruct multi-
ple signal ensembles by solving the following 1l  opti-
mization problem 

(P2) 1min || ||θ  subject to y θ= ΦΨ%%       (5) 

Due to the optimal spare solution *θ  of the problem 
(P2), we can get the corresponding reconstructed multi- 
signal ensembles * *x θ= Ψ% . 
 
3. Mobile-Agent-Based Adaptive Data   

Fusion Algorithm 
 
The DCS theory proposes a framework for joint recon-
struction of compressible multi-signal ensembles. How-
ever, each single node independently encodes in DCS, 
which does not sufficiently utilize the joint sparsity of 
multi-signal ensembles. This operation makes each node 
have to transmit a lot of measurements. In this session, 
we focus on reducing measurements required to transmit 
at each node by mobile-agent-based data fusion in WSN. 

A WSN under a DCS framework, as shown in Figure 
1, consists of three types of components: Sink, sensor 
nodes and communication network. With energy restric-
tion, sensor nodes can not directly communicate with 
Sink. For example, the encoding results of a node Sl+1 in 
the interesting field are transmitted to Sink by multi skips 
routing in Figure 1. Other nodes do the same works. In 
Figure 1, we model a WSN as a graph G=(V,E), where  

Sd

1S

2S

1JS −

JS

12d

1,J Jd −

2JS −

3S

lS

1lS +

, 1l ld +

Sd

 
Figure 1. A WSN under DCS framework. Circles denote 
sensor nodes. The communication distance between node lS  
and node 1( {1, , 1})lS l J+ ∈ −L is , 1l ld +  and the communica-

tion distance between Sink and lS  is approximately as Sd  
by the shortest multiple skips routing. For being simple, 
other links representing the communication links among 
nodes and Sink are omitted. On the other hand, a route 

1{ , , , , , }S J SS S S SL L  represents MA data fusion routing. 
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1{ , , , }S LV S S S= L  and E denotes an edge set represent- 
ing the communication links between node-pairs or links 
between Sink and nodes. In many applications, a distant 
Sink SS  retrieves relevant interesting field information 
from the sensor nodes. Let ( {1, , })Sld l L∈ L  be the total 
communication distance between Sink and a node 

( {1, , })lS l L∈ L  by the shortest multiple skips routing. 
For being simple, Sink is assumed to be far away from 
the interesting field so that 1S SL Sd d d≈ ≈ ≈L and 

, 1( {1, , 1})S l ld d l L+ ∈ −? L , where , 1l ld +  denotes the com-
munication distance between node-pairs lS  and 1lS +  
[13].  

We next describe the communication architecture of 
WSN in Figure 1 to motivate the formulation of two data 
fusion algorithms for multiple signal ensembles. Assume 
that a connected subgraph ' ' '( , )G V E G= ⊆  is found, 
where 'V  contains Sink and encode nodes, i.e., 

'
1{ , , , }S JV S S S V= ⊂L ( , )I H J L< < , and 'E  de-

notes a edge set representing all communication links in 
'V . For a node ( {1, , })lS l J∈ L , its node weight ( )lw S  

denotes the amount of data outgoing from lS . An edge 
( {1, , 1})le E l J∈ ∈ −L  is denoted by 1( , )l l le S S += . 

The weight of edge le  is equivalent to the weight of lS , 
i.e., ( ) ( )l lw e w S= . Two metrics, ( )lt e  and ( )lf e , are 
associated with each edge, describing the transmission 
cost and fusion cost on the edge, respectively. In many 
WSN applications, however, the fusion cost may be neg-
ligible. For being simple, we do not consider fusion cost 
in this paper. 

The unit cost of the link for transmitting data from S1 
to 1lS + is abstracted as , 1( ) r

l l lc e dβ ε+= + , where β and r are 
tunable parameters based on the radio propagation [14]. 
Thus the transmission cost ( )lt e  is 

( ) ( ) ( )l l lt e c e w e=              (6) 

Similarly, we approximately define ( {1, , })Sle l J∈ L  is 
the communication links between a node Sl and Sink by 
the shortest multiple skips routing, and then the trans-
mission cost is approximately as ( ) ( )Sl Slt e c e=  

( )( {1, , })Slw e l J∈ L , where ( )Slc e  and ( )Slw e  are the 
unit transmission cost and the weight of Sle . Obviously, 
we can get ( ) ( )Sl lc e c e? , for , 1S l ld d +? . 

From above definitions, the total network energy con-
sumption in ' ' '( , )G V E=  with different computing 
models can be calculated. We firstly consider total net-
work energy consumption of DCS. According to encod-
ing method of a single signal, we assume that individual 
node ( {1, , })lS l J∈ L  can gain a sparse coefficient vec-

tor ( {1, , } )l l Jθ ∈ L  by projecting a sensing signal 
( {1, , })lx l J∈ L  into a basis matrix Ψ . This operation 

may consume some computational energy, but it does not 
affect the total network energy consumption and can be 
omitted compared to transmission cost. 

To conveniently explain the network energy consump-
tion, we assume that C lΩ ∩ Ω = ∅ . Single signal recon-
struction, therefore, needs ln measurements with nl= 
c(kc+kl) in a CS framework, and then the total network 
energy consumption of DCS can be calculated as follows 

1 1
( ) ( ) ( ) ( )

J J
r

DCS Sl Sl S C l
l l

C c e w e d c k kβ ε
= =

= = + +∑ ∑    (7) 

where the number of measurements ( )l C ln c k k= +  di-
rectly denotes the weight ( )Slw e . 

We consider the network energy consumption of two 
mobile-agent-based data fusion algorithms. Generally 
speaking, MA is a special kind of software with small 
size, whose transmission cost can be omitted compared 
to transmission cost of larger amount of sensing informa-
tion. We will not consider MA transmission cost. Sink 
predetermined the MA routing 1{ , , , , , }S J SS S S SL L  
by GCF. The detailed mobile-agent-based data fusion 
process is presented as follows. 

In initialize stage, MA migrates toS1and obtains meas-
urements y1 with 1 1 0|| ||n c θ= . Subsequently, it migrates 

to S2 and finds θc 1̂θ  and 2̂θ  by contrasting sparse coef-
ficients θ1 and θ2. Thus, it can calculate the common 
measurements yc corresponding to the common sparse 
component θ1 of the signal ensembles. This means that 
measurements y1 and y2 can be divided into 1 1ˆCy y y= +  
and 2 2ˆCy y y= + , where 1ŷ  and 2ŷ  correspond to the 

sparse innovation component 1̂θ  and 2̂θ . MA carrying 
measurements Cy , 1ŷ  and 2ŷ  with 2( ) ( Cw e c k= +  

1 2 )k k+  migrates to 3S . We then repeat above process 
on remaining nodes along MA routing until MA returns 
to Sink. Such process is a typical mobile-agent-based 
data fusion process. In this paper, we term this process a 
mobile-agent-based Full Data Fusion (FDF) algorithm 
compared to the following adaptive data fusion process. 
The total network energy consumption of FDF is shown 
as follows 

1

1
1

, 1 1
1

1

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

J

FDF l l SJ SJ
l

J
r
l l C l

l

r
S C J

C c e w e c e w e

d c k k k

d c k k k

β ε

β ε

−

=

−

+
=

= +

= + + + +

+ + + + +

∑

∑ L

L

      (8) 

We interest in comparing the total energy consumption 
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of DCS and FDF. The total transmission cost can be cal-
culated as follows 

1

, 1
1

( )( 1) ( )
J

r r
DCS FDF S C l l l

l
C C d J ck d ckβ ε β ε

−

+
=

− = + − − +∑  

1

, 1
1
(( ) ( ) )

J
r r
S C l l l

l
d ck d ckβ ε β ε

−

+
=

= + − +∑        (9) 

Note that , 1S l ld d +?  and C lk k> , it is easy to get 

DCS FDFC C>                 (10) 

As expected, the inequality (10) means that the total 
transmission cost of DCS is much larger than FDF. By 
analyzing FDF in detail, we find another challenge that 
MA will carry more and more amount of data fusion 
results along the MA routing. However, data fusion at a 
node lS ( {2, , })l J∈ L  only needs the common meas-
urements Cy . If MA still carries all front innovation 
measurements 1 1ˆ ˆ, , ly y −L , it is not in favor of saving 
communication cost. This result brings a question 
whether we can avoid transmitting an amount of the in-
novation measurements. In this regard, we establish the 
following data fusion algorithm named mobile-agent- 
based Adaptive Data Fusion (ADF) algorithm. Different 
from in FDF, MA only carries the common measure-
ments Cy  in ADF. Concretely, MA can calculate l̂θ  
( {2, , })l J∈ L  by contrasting Cθ  and lθ ( {2, ,l ∈ L  

})J , when it carrying Cy  migrates to 

lS ( {2, , })l J∈ L . This allows ly ( {2, , })l J∈ L to be 
divided into ˆl C ly y y= +  in which the number of the 
innovation measurement ˆly  is ˆl ln ck= . MA carrying 
measurements Cy  with ( )l Cw e ck=  continuously mi-
grates to 1lS + . On the other hand, measurements ˆly are 
directly transmitted to Sink. We then repeat above proc-
ess on remaining nodes along the same MA routing as 
FDF until MA returns to Sink. Then, the total network 
energy consumption of ADF is expressed as follows 

12 1
1

, 1
2

( ) ( )

(( ) ( ) ) ( ) ( )

r
ADF C
J

r r r
l l C S l S C J

l

C d c k k

d ck d ck d c k k

β ε

β ε β ε β ε
−

+
=

= + +

+ + + + + + +∑
(11) 

We also attend to compare the total energy consumption 
of FDF and ADF as follows 

1

, 1
1

( ) 0
J

r
FDF ADF l l l

l
C C d ckβ ε

−

+
=

− = + >∑    (12) 

i.e., FDF ADFC C>             (13) 

From (10) and (13), it can be shown that 

DCS FDF ADFC C C> >            (14) 

From (14), we can easily obtain the benefits of ADF. 

Firstly, based on DCS, ADF also sufficiently utilizes 
both temporal (intra-signal) and spatial (inter-signal) 
correlations of multi-signal ensembles to analyze single 
signal sparsity structure and multi-signal ensembles 
jointly sparsity structure. These sparsity structures make 
it possible to perform data fusion of multi-signal ensem-
bles. Second, the innovation measurements are allowed 
to directly transmit to Sink, while MA only carries the 
common measurements. It benefits reducing transmis-
sion cost. So we can say that ADF provides the optimal 
strategy for minimizing total transmission measurements 
and transmission cost compared to DCS and FDF. 
  According to the above discussion, we can reconstruct 
multi-signal ensembles by solving the following 1l  op-
timization problem 

(P3) 1min || ||θ  subject to ˆˆŷ θ= ΦΨ      (15) 

where 1

C

J

θ
θ

θ

θ

 
 
 =
 
 
 

M
, 1ˆˆ

ˆ

C

J

y
y

y

y

 
 
 =
 
 
 

M
, 1

0 0
0 0ˆ

0 0

C

J

Φ 
 Φ Φ =
 
 

Φ 

L
L

M L O M
L

, 

0
ˆ

0

Ψ 
 Ψ =  
 Ψ 

L
M O M

L
. 

We can obtain * * * *
1̂ ˆ( , , , )T

C Jx x x x= L  with an optimal 
sparse solution * * * *

1( , , , )T
C Jθ θ θ θ= L , where * *

C Cx θ= Ψ  

and * *ˆˆ , ( {1, , })l lx l Jθ= Ψ ∈ L . Furthermore, multi-signal 
ensembles can be reconstructed by * * *ˆ ,l C lx x x= +  
( {1, , })l J∈ L .  

The above results focus on theoretical analyses of sav-
ing transmission cost in ADF. On the other hand, we are 
interested in comparing the joint reconstruction per-
formance of DCS, FDF and ADF. The following simula-
tion results are presented illustrating the better joint re-
construction performance of ADF. 

 
4. Simulation 
 
In our setup, sensor nodes are randomly distributed in a 
region of a 50 50m m×  square. The distance between 
Sink and the interesting field is 400Sd m= . When con-
sidering transmission cost, we set 2100 / /pJ bit mβ = , 

2r =  and 100 /nJ bitε =  [12] in (6). Furthermore, we 
consider a series of example multiple signal ensembles 

1, , Jx xK  that satisfy the conditions of joint sparsity 
model. The signal components 1̂ ˆ, , ,C Jx x xK  are as-
sumed to be sparse in Discrete Cosine Transform (DCT) 
matrix Ψ  with sparse parameters 1, , ,C Jk k kK , re-  
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Figure 2. Effect of the number of nodes on joint reconstruction performance of multiple signal ensembles. We choose signals 
with 50m = , 10,Ck = 4( {1, , })lk l J= ∈ L  and Cn 4 40,Ck= = ˆ 4 16l ln k= = ( {1, , })l J∈ L . (a) The total network transmission 
cost, (b) The relative decreasing rate, (c) Joint reconstruction error, (d) The total number of measurements. 
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Figure 3. Effect of the number of nodes on energy consumption of multiple signal ensembles. We choose signals 
with 50m = , 10,Ck = 4( {1, , })lk l J= ∈ L and 4 ,C Cn k=  ˆ 4 ( {1, , })l ln k l J= ∈ L . (a) The total transmission cost, (b) The relative 
decreasing rate. 
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spectively. We assign random Gaussian values to the 
nonzero coefficients 1̂

ˆ, , ,C Jθ θ θK , and the locations of 
nonzero are chosen at random. As a measure of the re-
construction performance, the joint reconstruction error 

*
2

1

|| ||
J

l l
l

e x x
=

= −∑  is designed. The Interior Point (IP) 

method in “Matlab” is used to solve the problem (P2) and 
the problem (P3). 

Our first experiment chooses signals with the length 
50m= and sparse parameters 10,Ck = 4( {1, , })lk l J= ∈ L . 

Then the corresponding numbers of measurements are 
chosen by 40,C Cn ck= = ˆ 16( {1, , })l ln ck l J= = ∈ L , 
where 4c = . Without loss of generality, assume that one 
measurement produces 8 bit packet [12]. With increasing 
number of nodes J , the total number of measurements of 
DCS is greatly larger than FDF and ADF in Figure 2(d). 
This result causes the transmission cost of DCS also 
greatly larger than FDF and ADF in Figure 2(a). To fur-
ther illustrate the advantage of ADF, we consider the rela-

tive decreasing rate calculated as TC(FDF)-TC(ADF)
TC(FDF)

τ =  

in which TC(FDF) and TC(ADF) are the total transmis-
sion cost of FDF and ADF, respectively. Figure 2(b) 
clearly shows that the relative decreasing rate linearly 
increases with J. This means that the energy efficiency of 
ADF is more distinctness with increasing number of 
nodes. In Figure 2(c), we emphasize on comparison of    

reconstruction performance between DCS and ADF 
(FDF). ADF and FDF enjoy less joint reconstruction 
errors than DCS, though ADF and FDF use less number 
of measurements than DCS. So we can say that ADF per-
forms much better than DCS and FDF. 

WSN typically consists of a large number of sensor 
nodes, so we need consider energy consumption of much 
more nodes in DCS, FDF and ADF to further observe the 
advantage of ADF. We repeat the first experiment while 
the number of nodes varies from 20 to 60. As expected, 
the transmission cost of DCS is further larger than FDF 
and ADF as J  increases in Figure 3(a). Comparing 
Figure 3(b) with Figure 2(b), we note that the relative de-
creasing rate scales linearly with J . The energy savings 
of ADF can be as large as 27%. These results identify that 
ADF is an optimal strategy with minimum total number 
of measurements and total transmission cost, which con-
sist with the front theoretical conclusions in Section 3. 

Experiments in Figure 3 bring another question 
whether we can guarantee better joint reconstruction 
performance as the number of nodes J increases. In our  
joint decoding simulations, we find that computational 
time and complexity will greatly increase as J increases. 
So measurements in Sink should be grouped according to 
applications. This operation consists with the idea in [9]. 
In the next experiment, we use J=40 nodes and their 
measurements are separated in 5 groups. Average recon-

struction error 
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Figure 4. Effect of the number of common sparse parameters kc on joint reconstruction of multiple signal ensembles. We 
choose 50m = , fix 3( {1, , })lk l J= ∈ L , and vary common kc from 4 to 9 and then choose ˆ4 , 4 ( {1, , })C C l ln k n k l J= = ∈ L . (a) The 
total transmission cost, (b) Average reconstruction errors, (c) The total number of measurements. 
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Figure 5. Effect of the number of innovation sparse parameters lk  on joint reconstruction of multiple signal ensembles. We 
choose 50m = , fix 8Ck = and vary ( {1, , })lk l J∈ L from 1 to 7, and then choose 4 ,C Cn k= ˆ 4 ( {1, , })l ln k l J= ∈ L . (a) The total 
transmission cost, (b) Average reconstruction errors, (c) The total number of measurements. 
 
reconstruction performance, where ( 1, ,5)te t = L  is the 
joint reconstruction error of every group. We perform 
experiments with the length of signals 50m =  and in-
novation sparse parameters 3lk = ( {1, , })l J∈ L , while 
the common sparse parameter kc varies from 4 to 9. The 
obtained results in Figure 4 (a)-(c) show the similar con-
clusions in Figure 2 and Figure 3. The number of com-
mon sparse parameters kc greatly affects the total trans-
mission cost of DCS while not FDF and ADF, for DCS 
need each node to transmit the common measurements 
while FDF and ADF avoid this operation by data fusion. 
This sufficiently reveals the advantage of mobile-agent- 
based data fusion algorithms. Moreover, the average re-
construction error of DCS, FDF and ADF decrease bene-
fiting from the increasing number of measurements. This 
means joint reconstruction performance can be improved 
by increasing the total number of mea- surements. 

The finally experiments focus on effect of the number 
of innovation sparse parameters kl on joint reconstruction 
of multiple signal ensembles. We repeat the front ex-
periments with the length of signals m=50 and the com-
mon sparse parameter kc=8, while the innovation sparse 
parameter kl (l∈{1,…J}) varies from 1 to 7. As kl (l∈
{1,…J}) increasing, the total transmission cost and the 
number of measurements of FDF and ADF fleetly in-
crease compared to Figure 4. Figure 5(a) and Figure 5(c) 

reveal that the performance of data fusion is influenced 
by the innovation sparse parameters kl, for kl represent 
the differences among multi-signal ensembles. At the 
expense of more measurements and energy cost, we can 
obtain multi-signal ensembles with more details. At the 
same time, we gain the better joint reconstruction per-
formance in Figure 5(b), for the total number of meas-
urements increases.  

As can be seen, above experiments imply that ADF 
sufficiently takes advantage of intra- and inter-signal 
correlation of multi-signal ensembles by mobile-agent- 
based data fusion. So ADF enjoys better performances 
than DCS and FDF. 
 
5. Conclusions 
 
Distributed Compressed Sensing (DCS) extends the the-
ory and practice of Compressed Sensing (CS) to multi- 
signal ensembles. A joint sparsity model for multi-signal 
ensembles with both intra- and inter-signal correlation 
captures the essence of real physical scenarios. This pa-
per provides a new mobile-agent-based Adaptive Data 
Fusion (ADF) algorithm. ADF can greatly reduce the 
total number of measurements for successful joint recon-
struction compared with DCS. Moreover, ADF can 
greatly reduce transmission cost and network load. Ex-
tensive experiments demonstrate that it indeed leads to 
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better performance than DCS and mobile-agent-based 
Full Data Fusion (FDF). 
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