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Abstract 
 
The three-dimensional sensor networks are supposed to be deployed for many applications. So it is signifi-
cant to do research on the problems of coverage and target detection in three-dimensional sensor networks. 
In this paper, we introduced Clifford algebra in 3D Euclidean space, developed the coverage model of 3D 
sensor networks based on Clifford algebra, and proposed a method for detecting target moving. With Clif-
ford Spinor, calculating the target moving formulation is easier than traditional methods in sensor node’s 
coverage area. 
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1.  Introduction 

Three-dimensional sensor networks [1] could enable a 
broad range of applications: Video Surveillance, Ocean 
Sampling, Environmental Monitoring, Assisted Naviga-
tion, and etc. As an emerging technology which can put 
the information field to a new stage, the theory and ap-
plications of three-dimensional intelligent sensor net-
works have become a key research aspect. With the 
coming availability of low cost, short range radios along 
with advances in wireless networking, it is expected that 
wireless ad hoc sensor networks will become commonly 
deployed. So it is useful to study three-dimensional intel-
ligent sensor network systems. The coverage problem 
and target detection problem are the fundamental issues 
in 3D intelligent sensor network systems. Studies on 
sensor networks include distributed network, distributed 
information acquisition, distributed intelligent informa-
tion fusion and so on. Xie [2,3] proposed a coverage 
analysis approach for sensor networks based on Clifford 
algebra. In a 2-dimensional plane, a homogeneous com-
putational method of distance measures has been pro-
vided for points, lines and areas, and a homogeneous 
coverage analysis model also has been proposed for tar-
gets with hybrid types and different dimensions. Thus, an 
analysis framework has been established for sensor net-

works in Clifford geometric space. To evaluate the qual-
ity of network coverage, Megerian [4] used Voronoi dia-
gram and Delaunay triangulation respectively to define 
the worst and best-case coverage in sensor networks. 
There are also a lot of improved methods to solve these 
problems [5-8].  

The target detection problem in sensor networks also 
has been a topic of extensive study under different met-
rics and assumptions [9-11]. There are already some 
related theories and algorithms proposed for solving the 
problems of target detection in sensor networks. The 
work of target detection in sensor networks includes 
many aspects, as the following: 

The Traversing Path Detection [12]: A traversing 
path without being detected should not intersect the 
sensing areas of any sensors [13]. The detection rate of a 
sensor network is interested in application scenarios such 
as vehicles crossing a battlefield in military operations. 
Meguerdichian mentioned a novel coverage model for 
the target detection [14], and proposed an approximate 
value algorithm for calculating the traversing path [15]. 
There are also some distributed algorithms to calculate 
the efficient value in the sensor networks for detecting 
target [16]. Another way to solve the problem is the lo-
calized algorithm with lower computational complexity 
[17]. It uses polar coordinates to detect target and calcu-
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late the path, and refers the Euler equation to calculate 
the minimal exposure traversing path. 

The Exposure of Target [18]: The exposure of target 
detection is another aspect of the related work. The most 
popular definition is the information exposure to the es-
timation of target parameters [18]. With the information 
exposure formulation and grid graph, the minimal expo-
sure traversing path in detecting target could be achieved. 
Meanwhile, some heuristic algorithms were also pro-
posed for nodes deployment according to the degree of 
information exposure [8,15]. 

The Deployment of Nodes Density [19]: The nodes 
density is used for ensuring the probability of target de-
tection[19]. It is assumed that the motive target could 
traverse the deployed area of sensor networks with a 
fixed velocity and a line path. The studies for deploy-
ment of nodes density include the probability sensor 
model and exposure model [20], grid deployment and 
random deployment in wireless sensor networks [21], 
and The critical nodes density based on continuum per-
colation [22]. The all-sensor field intensity can be mod-
eled as a two dimensional Poisson shot noise process for 
large-scale sensor networks under the general sensing 
model [23]. 

Barrier Coverage [24]: Barrier coverage was pro-
posed by Kumar [24] who mentioned it as an appropriate 
notion of coverage when a sensor network is deployed to 
detect targets traversing a protected region, which repre-
sents a promising and popular class of applications for 
wireless sensor networks. There are also some studies for 
the problem such as minimum segment barrier coverage 
[25], and double barrier coverage [11].  

The coverage and target detection problem can be 
solved optimally in 2D plane by dividing the polygon 
into non-overlapping triangles, but it becomes NP-hard 
in 3D space. In this paper, we present a method for cal-
culating target moving in 3D sensor networks with the 
coverage analysis approach based on Clifford algebra, 
which establishes a coordinate-free, homogeneous cov-
erage model for different dimensional spaces and targets 
with hybrid types. This approach gives the intact relative 
geometric description between sensor node and target. 
With the Clifford Spinor, calculating target moving for-
mulation will be more simply and effectively than tradi-
tional method for sensor networks. 

The paper is organized as follows. In Section 2, we 
state relevant background of Clifford algebra. In Section 
3, we present our model and target moving formulation. 
In Section 4, the algorithm based on Clifford algebra is 
proposed. In Section 5, we present our conclusions. 

2.  Clifford Algebra in 3D Euclidean Space 

Rectangular Cartesian coordinate system is adopted in 
2D Euclidean space, and any vector  can be written 

as

a
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 is inner product, and  is outer product. The 
inner product is always coincident with dot product in 
vector algebra, while outer product is the measurement 
of parallelogram area composed by adjacent borders , 

. If  is rotated counter-clockwise with an angle 
which is no more than 

a b

a
b

  to overlap b , the measure-
ment of parallelogram area is larger than zero. Otherwise 
it is less than zero. The area uses  as a measurement 

unit, and its absolute value is 
1 2e e

sinab , where   is the 
angle between  and b . Here a cos a b ab . 
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Because 1 2e e 2e e1  , exchanging the position of 

 will appear a minus, and exchanging the position n 

times should multiply (-1)n. We call it negative exchange, 
and should take care of it in Clifford algebra. 
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It definitely describes that the ordinate unit vectors 
 are fixed, vector  is rotated counter-clockwise 

with 

a

 . It is obvious that  is not only just as -1, but 

also has specific geometric significant. The 

i
ize a  also 

denotes that  is rotated with a  , and magnified  
times.  is the module of complex number. 

z
z

The nodes in sensor networks need scalar and directed 
quantity to be described together, so we use Equation (1) 
for calculating. The quantity  is called dual vector a b
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or bivector, its unit is . According to (1), 
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where  is the scalar product in vector algebra.  
Suppose that ie , , 2 3i e e , 

, and the 3D vector  is the product of the 

pseudo-scalar  and the three basis vectors . Here 

, and . The  

is direct volume unit in 3D space.  
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In 3D space, any rotation is denoted as the result of 
two vector reflections because the vectors are not always 
coplanar. The vector x  is from the reflection of vector 

x  with the plane I whose normal is basis vector , 
depicted in figure 1. And the vector 

u
'x  is from the re-

flection of vector 1x  with the plane II whose normal is 

basis vector . So vector v x  rotates to 'x  with the 
angle  , and 2   where   is the angle between 

 and v . With Clifford algebra, it is shown as  u

' ( )x v uxu v vuxuv     

 

Figure 1. Vector rotation in 3D space. 

Let R uv , so 

          ' Tx R xR                       (3) 

where  is the reversion of .  is called Spinor 
[26] which is composed of scalar u  and bivector 
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where  is the basis vector whose direction is decided 
by 

n
vu .   is the angle between  and . u v

inR e  can be written as R ib  , where   is sca-

lar and  is vector, here . Any bivector can 
be written as the product of i  and a vector due to 

b
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3.  Target Detection in 3D Sensor Networks 

Coverage analysis in sensor networks is essentially to 
determine whether an arbitrary point in a space is per-
ceived by sensor nodes. Previous methods use models of 
different dimensional geometric targets to determine 
whether the interested points covered or not in different 
dimensional space, respectively. For sensor networks 
with hybrid types of targets, those methods cannot pro-
vide a homogeneous and effective coverage analysis in 
different dimensional subspaces. The geometric opera-
tion in Clifford algebra is independent of coordinates 
with a determinate dimension. Hence, Xie [2] proposed a 
coverage model based on the rotation operator in 3D 
space for sensor networks. 

Definition 2: Set an omnidirectional sensor node 
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where the Spinor / sxR v . Figure 2 illustrates the 

coverage model. 



T. C. HE  ET  AL.      85 

Copyright © 2009 SciRes.                                                    Wireless Sensor Network, 2009, 2, 61-121 

S

Vs

x
B

 

2

2 2

2

' ( ) (

   ( )( )

   

  ( )

   ( )( )

TR R ib ib

ib i b

i b i b b b

i b i b b

ib ib R

    
  

)

     

   

   

   
  

   

   

   

 

Here the exchange among vector  , pseudo-scalar  

and 

i

  is positive, but is negative between   and vec-

tor .  b

With 2' R  , consider 1
T T TR R R e R R R      , here 

32
1 1 1

1 3

1 2

          (cos sin )

           cos sin

ieTR e R e R e e

e ie

e e


  

 
 

 

 
 

              (8) 
Figure 2. Coverage model based on Clifford Spinor in 3D 
space. 
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With the method of Clifford algebra, we can easily 
calculate the 3×3 Spinor matrix of arbitrary angle   
rotating around any vector . The element of this ma-
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The conventional methods can also achieve this result, 
but this method is straight and do not need the graph for 
help. Hence the target moving can be detected in cover-
age area of sensor networks by Clifford algebra, as 
shown in figure 3. If the target moves from x  to 'x , 
that is  
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xR R xR   

1
( ) (

2
T T )x R x x R x R x     R R  R

Or   

( ) (
2

T Ti

( )x i x     and ( )x i x     , 

)x R x x R R x     R  R

With 

' [( ) ]Tx R x x R a               (19) 

The target moving formulation can further be denoted 
as 

' [( ) ] [( ) ( ) ]x x x x x x a          R R        (20) 
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Figure 3. The target moving path detected by sensor node. 

 
where  

( ) ( ) ( )

1 1
             ' ( ) ( ) 'T Ti R x R R x Ri

2 2

  [( ) ' ' ( )]
2

             [( ) ( )]
2

             ( )

             ( )

T T

T T T

T

T

T

x R x R R x R

i
           R x R R R R x R

i
R x x R

R x R

R x R

  

       

   

   

 

    

   

   

  
  

R  

 

And 

( )T T T Tx R xR R xR R x R R x R     R       . 

Therefore,  

' [ 2( ) ( ) ]Tx R x x x x R a                (21) 

In the 3D space, the movement formulation of the tar-
ge

w

'

t m  is  

' 'mx g , 

here is the power of the target so 

[T 2( ) ( ) ]R m x x x x R ma g               

[ 2( ) ( ) ] 'T Tm x x x x RmaR Rg R g                

[2( ) ( ) ] Tmx g m x x x RmaR               

We can achieve the movement formulation of the tar-
get in sensor networks, which will help us to analyze the 
state of the detected target. 

4.

otive target detection algor- 
ithm based on Clifford Spinor. We assume that the mo-

or networks can be detected by some 
n the range of these nodes also 

  Algorithm 

With the movement formulation of the target in 3D sen-
sor networks, we propose a m

tive target in sens
nodes, and its positions i
can be calculated. Because the surveillance range of a 
node is always small, the track of the target in the range 
will be considered as a line approximately. Our algo-
rithm for tracking the motive target is following: 

1) Detect the two vertexes of the track when the target 
is in the range of node; 

2) Use (17) or (20) to calculate the movement formu-
lation of the target; 

3) Use the movement states of target to estimate the 
direction and velocity so as to inform the next correlative 
node turning on and starting to detect the target; 

4) Collect all information from each node, and achieve 
the track of the motive target in the sensor networks. 

Figure 4 shows the motive target detection using 
moving formulation calculated by Clifford Spinor in 3D 
sensor networks, where (a) is the target’s actual path to 
traverse sensor networks, and (b) is the target’s travers-
ing path achieved by moving formulation. The target 
positions in sensor’s coverage area can be used to calcu-
late the moving formulation to get the traversing path in 
this area. Connecting all of these paths which are 
achieved from each node can get the target’s track in 
sensor networks. It is helpful for target tracking and 
forecasting. 
 

 
(a) 

 
(b) 

Figure 4. Target detection in 3D sensor networks. 
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Figure 5 denotes the time consuming to calculate tar-

get moving formulation using Cartesian method, polar
coordinates method and Clifford method, respectively. It 
is obvious that the time consuming using Clifford
method is lower than that of the other two methods 
the number of sensor nodes increases. This is because the
Cartesian method should use the information of three
axes in 3D space and the polar coordinates me
would calculate three 3×3 Pauli matrices. The quantity of 
calculation is decreased in Clifford method due to just 
using Spinor equation to get the moving formulation 
without axes information in 3D space. 
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In this paper, we developed the coverage model of 3D 
sensor networks with the coverage analysis approach 
based on Clifford algebra, which establishes a coordi-
nate-free, homogeneous coverage model for different 
dimensional spaces and targets with hybrid types, and 
proposed the method for detecting target moving. With 
Clifford Spinor, calculating the target moving formula-
tion is easier than traditional methods in sensor node’s 
coverage area. It is helpful to the research of coverage 
analysis in sensor networks. 
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