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Abstract 
In the present study, vibration analysis of a three-layered cylindrical shell is performed whose in-
ner and outer layers are composed of functionally graded materials whereas the middle one is 
assumed to be of isotropic material. This formation of a cylindrical shell influences stiffness mod-
ulii and the resultant material properties. The shell problem is formulated from the constitutive 
relations of stresses and strains with the displacement deformations and they are taken from 
Love’s thin shell theory. This problem is transformed into the integral form by evaluating the ex-
pressions for the strain and kinetic energies of the shell. Rayleigh-Ritz method is employed to 
solve the shell dynamic equations. Vibration characteristics of these cylindrical shells are investi-
gated for a number of physical parameters and configurations of the fabrication of shells. The axial 
modal dependence is approximated by the characteristic beam functions that satisfy the boundary 
conditions. Results evaluated, show good agreement with the open literature. 
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1. Introduction 
Yamanouchi et al. [1] introduced the concept of functionally graded materials (FGMs), working as aerospace 
researchers in Japan. Rabin and Heaps [2] reported some methods for the manufacturing of FGMs. The idea of 
ceramic transactions for the fabrication of FGMs was introduced by Koizumi [3]. Miyamoto et al. [4] composed 
a book on FGMs, in which they gave a high quality discussion on the design and applications of FGMs. Ray-
leigh [5] analyzed the study of Sophie on the vibration of circular cylindrical shells. Love [6] at the end of 19th 
century, gave the first linear shell theory based on Krichhoff’s hypothesis for plates. Arnold and Warburton [7] 
[8] derived equations of motion for vibration of thin circular cylindrical shells. They used Lagrange equations 
with strain and kinetic energy expressions to derive these equations. Forsberg [9] studied shell equations to scru-
tinize the effect of boundary conditions on vibration characteristics of circular cylindrical shells. In his work, 
exponential axial modal dependence was measured. Sewall and Naumann [10] studied analytical and experi-
mental frequencies and mode shapes for the vibrations using the Rayleigh-Ritz method. The characteristic beam 
functions were used to approximate the modal dependence in the axial direction. Warburton [11], Warburton 
and Higgs [12] and Goldman [13] studied the natural frequencies and mode shapes of thin cylindrical shells and 
selected exponential functions for the modal dependence in the axial direction. Sharma [14] explored the natural 
frequencies of fixed free circular cylindrical shells. He [15] also studied the problems of vibration characteristics 
of thin circular cylindrical shells with various end conditions with first order shell theory of Sanders. A simple 
variational technique was applied to give a cubic frequency equation. Loy and Lam [16] studied the vibration of 
thin cylindrical shells with ring supports, placed along the shell length and which imposed a zero lateral deflec-
tion. The study was carried out using Sander’s shell theory. Naeem and Sharma [17] employed an analytical 
procedure to study the free vibration characteristics of thin cylindrical shells. Ritz polynomial functions were 
assumed to satisfy the axial modal dependence and the Rayleigh Ritz variational approach was employed to 
formulate the general eigenvalue problem. Influence of some commonly used boundary conditions and shell pa-
rameters on the vibration frequencies were examined. Loy et al. [18] studied the vibration of FGM cylindrical 
shell fabricated with the constituent materials stainless steel and nickel. They concluded that the frequency cha-
racteristics were similar to those of homogeneous isotropic cylindrical shells and the frequencies were affected 
by the constituent volume fractions and the configurations of the constituent materials but they found the re-
sponse of frequencies of FGM cylindrical shells for only simply supported boundary condition. This work was 
extended by Pradhan et al. [19] by studying the vibration of FGM cylindrical shell for various boundary condi-
tions. Arshad et al. [20] [21] calculated natural frequencies of the FGM cylindrical shell by various volume frac-
tion laws and under various boundary conditions respectively. Najafizadeh and Isvandzibaei [22] studied the vi-
bration of thin FGM cylindrical shells with ring supports. The study was carried out based on third order shear 
deformation shell theory. The objective was to observe the influence of the configurations of the constituent 
materials, positions of the ring support and different boundary conditions on the natural frequencies of the cy-
lindrical shells. The analysis was carried out with strain displacement relations from Love’s shell theory. The 
governing equations were obtained using energy functional with the Rayleigh Ritz method. Sofiyev et al. [23] 
studied the vibration and stability analysis of a three-layered conical shell with middle layer composed of func-
tionally graded material. They applied Galerkin numerical technique to transform the governing equations of 
motion into a pair of time dependent partial differential equations. They concluded that the material parameters 
are directly affected by the diverse configurations of the FGM constituents and by the nature of materials used in 
the shell layers. He [24] extended this work to study the vibration and stability response of a composite cylin-
drical shell containing a functionally graded layer. Li and Batra [25] [26] investigated other dynamic aspects of 
shells like buckling of a three layered simply supported axially compressed laminated composite as well as iso-
tropic thin cylindrical shells. They designed these shells in such a way that the inner and outer layers of the 
shells were composed of the composite and isotropic materials respectively and a layer of functionally graded 
material was inserted at the middle in the transverse direction. Arshad et al. [27] [28] studied the frequency 
spectra of bi-layered cylindrical shells by taking different materials in both layers such as isotropic as well as 
functionally graded materials and by taking two different functionally graded materials at the inner and outer 
layers of the cylindrical shells respectively. 

2. Formulation of Shell Problem 
2.1. Volume Fraction Law 
Most of functionally graded materials are used in high temperature and possess temperature dependent proper- 
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ties. The material property P  is expressed as a function temperature ( )T K  by Touloukian [29] as: 

( )1 2 3
0 1 1 2 31P P P T PT P T PT−

−= + + + +                            (1) 

where 0P , 1P , 2P  and 3P  are the coefficients of temperature ( )T K  expressed in Kelvin and are unique to  
the constituent materials. The material properties P  of FGMs are a function of the material properties and vo-
lume fractions of the constituents, and can be expressed as: 

1

k

j fj
j

P P V
=

= ∑                                        (2) 

where jP  and fjV  are the material property and volume fraction of the constituent material j  respectively. 
For three-layered FGM cylindrical shells, the outer and inner layers are assumed to be functionally graded and 
the middle layer isotropic. The shell thickness is assumed to be distributed in three portions. With this assump- 
tion, the extensional, coupling and bending stiffness are modified in three layers. Let inM  and outM  represent  
the inner and outer constituent materials of the FGM layers used to fabricate the three layered FGM cylindrical 
shell with middle layer of isotropic material. For a functionally graded material layers, consisting of two mate- 
rials inM  and outM  , volume fraction is written for an effective material property as: 

( ) ( )in out in outP z P P V P= − +                                 (3) 

where inV , the volume fraction, is defined for a material inM  as: 

in
in

out in

p
z hV

h h
 −

=  − 
                                    (4) 

where z  is the radial variable, inh  and outh  are the inner and outer coordinates from the centre of the circular  
cylindrical shell. Also inP  and outP  are the material properties of inM  and outM  respectively. 

2.2. Theoretical Considerations 
Consider a cylindrical shell as shown in the Figure 1(a). Let R  is the radius, L  is the length and h  is the  
thickness of the cylindrical shell. The orthogonal coordinates system ( ), ,x zθ  is taken to be at the middle sur- 
face of the shell. The x -coordinate is taken in the axial direction of the shell θ  is in the circumferential and 
z -coordinate is in the radial direction of the shell. The deformations of the shell in axial, circumferential and  
radial directions are represented by ( ), ,u x tθ , ( ), ,v x tθ  and ( ), ,w x tθ  respectively. For the study of thin cy- 
lindrical shell, three dimensional problems are converted in to two dimensional by applying plane stress condi-
tion. The constitutive relation of stress and strain of a thin cylindrical shell is given by Hook’s law as: 

{ } [ ]{ }Q eσ =                                      (5) 

where { }σ  is the stress vector, { }e  is the strain vector and [ ]Q  is the reduced stiffness matrix. The stress  
vector and the strain vectors are defined as: 

{ } { }T , ,x xθ θσ σ σ σ=                                  (6) 

{ } { }T , ,x xe e e eθ θ=                                    (7) 

where xσ  and θσ  are the normal stresses in x  and θ  directions, and xθσ  is the shear stress on the xθ  
-plane. Similarly xe  and eθ  are the normal strains in the x  and θ  directions, and xe θ  is the shear strain 
on the xθ -plane. The reduced stiffness matrix is defined as: 

[ ]
11 12

12 22

66

0
0

0 0

Q Q
Q Q Q

Q

 
 =  
  

                                 (8) 
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(a)                                                      (b) 

Figure 1. (a) Geometry of a Circular Cylindrical Shell; (b) Cross-sectional vision of three-layered cylindrical shell.         
 

So the relation (5) can be expressed as: 

11 12

12 22

66

0
0

0 0

x x

x x

Q Q e
Q Q e

Q e
θ θ

θ θ

σ
σ
σ

     
    =    
         

                                (9) 

For isotropic materials the reduced stiffness ijQ  are defined as: 

( )11 22 12 662 2,    ,    
2 11 1

E E EQ Q Q Qν
νν ν

= = = =
+− −

                        (10) 

where E  is the Young’s modulus and ν  is the Poisson’s ratio. According to Love’s shell theory, the compo-
nents in the strain vector { }e  are defined as: 

1 1

2 2

2

x

x

e e z
e e z
e z
θ

θ

κ
κ

γ τ

= + 
= + 
= + 

                                      (11) 

where 1e , 2e  and γ  are the reference surface strains. 1κ , 2κ  and τ  are the surface curvatures. From Eq-
uations (9) and (11) the components in the stress vector { }σ  are defined as: 

( ) ( )
( ) ( )
( )

1 1 11 2 2 12

1 1 12 2 2 22

662

x

x

e z Q e z Q

e z Q e z Q

z Q
θ

θ

σ κ κ

σ κ κ

σ γ τ

= + + + 


= + + + 
= + 

                            (12) 

For a thin cylindrical shell the force and moment resultants are defined as: 

{ } { }
2

2

, , , , d

h

x x x x
h

N N N zθ θ θ θσ σ σ
−

= ∫                               (13) 

{ } { }
2

2

, , , , d

h

x x x x
h

M M M z zθ θ θ θσ σ σ
−

= ∫                             (14) 

where xN , Nθ  and xN θ  are force components in axial, circumferential and shear directions. xM , Mθ  and  

xM θ  are moment components in axial, circumferential and shear directions. Equations (12), (13) and (14) im- 
plies: 
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{ } [ ]{ }N S= ∈                                      (15) 

where { }N  and { }∈  are defined as: 

{ } { }T , , , , ,x x x xN N N N M M Mθ θ θ θ=                            (16) 

{ } { }T
1 2 1 2, , , , , 2e e γ κ κ τ∈ =                                 (17) 

and [ ]S  is defined as: 

[ ] [ ] [ ]
[ ] [ ]
A B

S
B D

 
=  
 

                                   (18) 

where [ ]A , [ ]B  and [ ]D  are the extensional, coupling and bending stiffness matrices given as: 

[ ]
11 12

12 22

66

0
0

0 0

A A
A A A

A

 
 =  
  

 [ ]
11 12

12 22

66

0
0

0 0

B B
B B B

B

 
 =  
  

 [ ]
11 12

12 22

66

0
0

0 0

D D
D D D

D

 
 =  
  

 

where ijA , ijB  and ijD  are the extensional, coupling and bending stiffness and defined as: 

( ) ( )
2

2

2

, , 1, , d

h

ij ij ij ij
h

A B D Z Z Q z
−

= ∫                                  (19) 

The coupling stiffness ijB  become zero for isotropic cylindrical shell and is non-zero for FGM cylindrical 
shells. The general equations for strain energy and kinetic energy of a cylindrical shell can be written as: 

{ } [ ]{ }
2π

T

0 0

1 d d
2

L

U S R xθ= ∈ ∈∫ ∫                               (20) 

2 2 22π

0 0

1 d d
2 T

L u v wT R x
t t t

ρ θ
 ∂ ∂ ∂      = + +      ∂ ∂ ∂       

∫ ∫                         (21) 

where Tρ  is the mass density per unit length and is defined as follows: 

2

2

d

h

T
h

zρ ρ
−

= ∫                                       (22) 

where ρ  is the mass density of the shell material. 
By substituting { }∈ , { }T∈  and [ ]S  from Equations (17) and (18) in Equation (20) implies: 

{

}

2π
2 2 2 2

11 1 22 2 12 1 2 66 11 1 1 12 1 2 12 2 1 22 2 2 66 11 1
0 0

2 2
22 2 12 1 2 66

1 2 2 2 2 2 4
2

                   2 4 d d .

L

U A e A e A e e A B e B e B e B e B D

D D D R x

γ κ κ κ κ γτ κ

κ κ κ τ θ

= + + + + + + + + +

+ + +

∫ ∫
 (23) 

2.3. Strain-Displacement and Curvature-Displacement Relation 
A number of shell theories have arisen and are used. Among these theories however the Love’s shell theory is 
considered to be the first theory about shells and all other shell theories were derived from the Love’s shell 
theory by amending some physical terms. The strain-displacement and the curvature-displacement relations 
which are adopted from Love’s [6] shell theory are given as below: 

1 2
1 1,     ,     u v v ue e w

x R x R
γ

θ θ
∂ ∂ ∂ ∂ = = + = + ∂ ∂ ∂ ∂ 

                      (24) 
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2 2 2

1 22 2 2

1 1,     ,     w w v w v
R x xx R

κ κ τ
θ θθ

   ∂ ∂ ∂ ∂ ∂
= − = − − = − −   ∂ ∂ ∂ ∂∂ ∂   

                 (25) 

By substituting these values of strain displacement and curvature displacement from Equations (24) and (25) 
in Equation (23), we obtain the strain energy equation in the form of displacement functions u , v , w  and 
their partial derivatives as: 

2 2 22π 2

11 22 12 66 112 2
0 0

2

12 122 2

1 1 1 12 2
2

1 1                        2 2

L u v u v v u u wU A A w A w A B
x R x x R xR x

u w v vB B w
x RR

θ θ θ

θ θθ

  ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂           = + + + + + + −            ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂            
 ∂ ∂ ∂ ∂ − − − +  ∂ ∂ ∂∂  

∫ ∫
2 2

222 3 2

2 22 2 2

66 11 222 4 2

2

12 2

12

1 1 1                        8

1                        2

w v w vB w
x R

v u w v w w vB D D
R x R x x x R

wD
R x

θ θθ

θ θ θθ

   ∂ ∂ ∂ ∂   − + −      ∂ ∂∂ ∂      

     ∂ ∂ ∂ ∂ ∂ ∂ ∂ − + − + + −      ∂ ∂ ∂ ∂ ∂ ∂∂ ∂      

∂
+

∂

22 2

662 2 2

14 d d .w v w vD R x
x xR

θ
θ θθ

    ∂ ∂ ∂ ∂ − + −     ∂ ∂ ∂ ∂∂     

(26) 

2.4. Lagrangian Energy Functional 
The Lagrangian energy functional Π , is the difference of the two types of shell energies and defined as: 

T UΠ = −                                       (27) 

2.5. Rayleigh-Ritz Method 
The energy variation methods i.e., Rayleigh Ritz and Galerkin methods are the most frequently used ones to 
analyze the shell vibrational behavior. In the Rayleigh Ritz method, the energy variational functional is mini-
mized with respect to the coefficients of an approximating series representing the displacement deformations. 
Many researchers such as Sewall and Naumann [10], Sharma and Johns [15], Loy et al. [18] and Naeem and 
Sharma [17] used this procedure to analyze the vibration characteristics of the cylindrical shells. 

2.6. Axial Modal Dependence 
The expressions for the modal displacement deformations are presumed in the form of product of functions of 
space and time variables. This leads to a system of ordinary differential equations of three unknown functions of 
the axial space variable. Different types of functions are chosen to approximate the axial modal dependence. 
These functions satisfy the boundary conditions. Well-known functions are beam functions, Ritz polynomial 
functions, orthogonal polynomials and Fourier series of the circular functions. The expression for modal dis-
placement deformations are assumed as: 

( ) d, , cos sin
d

u x t A n t
x
φθ θ ω=                               (28) 

( ), , sin sinv x t B n tθ φ θ ω=                                (29) 

( ), , cos sinw x t C n tθ φ θ ω=                               (30) 

In the axial, circumferential and radial directions respectively, the coefficients A , B  and C  are the con-
stants denoting the amplitudes of the vibrations in the x , θ  and z  directions respectively, n  is the cir-
cumferential wave number and ω  is the natural angular frequency for the cylindrical shell. The axial function 
( )xφ  is chosen as the beam function as: 

( ) 1 2 3 4cosh cos sinh sinm m m m
m

x x x x
x

L L L L
λ λ λ λ

φ α α ς α α
        = + − +        

        
          (31) 
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where ( )1,4i iα =  are some constants with value 0 or 1 chosen according to the boundary condition. mλ  are 
the roots of some transcendental equations and mς  are some parameters dependent on mλ . Their values are 
given as in Table 1:  

The geometric boundary conditions for clamped, free and simply supported boundary conditions can be ex-
pressed mathematically in terms of characteristic beam function ( )xφ  as: 

Clamped boundary condition ( ) ( ) 0x xφ φ′= =  

Free boundary condition ( ) ( ) 0x xφ φ′′ ′′′= =  
Simply supported boundary condition ( ) ( ) 0x xφ φ′′= =   

2.7. Derivation of Frequency Equation 
On substituting the expressions for the deformation displacements u , v  and w  in the expression for the 
strain and kinetic energies of the cylindrical shells and employing the principle of minimization of the energy 
the expression for maximum strain and kinetic energies are obtained. The new form of the Lagrangian functional 
is formed as: 

max maxT UΠ = −                                     (32) 

where 

( ) ( )

( )( ) ( )

2 2 22 2
22 2

max 11 22 12 662 2 2
0

22 2
2 2 2

11 22 122 3 2 2

π d 1 2 d d
2 dd d

d 2 2 d                           2
d d

                   

LR nAU A A A nB C A nAB AC A B
R R xx R x

B AC B nB C n C nB B n AC nAB
x R R x

ϕ ϕ ϕϕ ϕ

ϕ ϕϕ ϕ

      = + + + + + −     
     

 
− + + + + + 

 

∫

( ) ( )

( ) ( ) ( )

222 2
2 2

12 66 112 2

222 22 2 2 2
22 12 664 2 2 2

2 d 4 d d        
dd d

1 2 d 4 d                           d .
dd

nAB nBC C B B nC B D C
R R R xx x

D n C nB D n C nBC D nC B x
xR R x R

ϕ ϕ ϕϕ

ϕ ϕϕ ϕ

    − + + − + +     
     

 + + − + + +  
  

 (33) 

2
2 2 2 2 2 2

max
0

π d d
2 d

L

T
RT A B C x

x
φρ ω φ φ

  = + +  
   

∫                        (34) 

To derive the shell frequency equation, the energy functional is extremized with respect to the vibration am-
plitudes: A, B and C, resulting in three homogenous linear following equations: 

0
A B C

∂Π ∂Π ∂Π
= = =

∂ ∂ ∂
                                   (35) 

By re-arranging Equation (35), the shell frequency equation is written in the eigenvalue form as: 

11 12 13 2
2

12 22 23 4

13 23 33 4

0 0
0 0
0 0

C C C A I A
C C C B h I B
C C C C I C

ρ ω
       
       =       
             

                       (36) 

where the expressions for the terms ijC ’s, 2I  and 4I  are the given in Appendix.  

3. Results and Discussion 
A number of comparison of the results for isotropic and FGM cylindrical shells are presented to verify the valid-
ity, efficiency and accuracy of the present approach. The present analysis is carried out by using the energy var-
iational procedure viz: Rayleigh-Ritz method. This method is based on the principle of minimization of energy. 
The numerical results for the following three frequently encountered sets of boundary conditions are evaluated 
to check the validity, efficiency and accuracy of the present technique. 
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Table 1. Six commonly used boundary conditions.                                                             

Boundary Conditions ( )1,4i iα =  Values for mλ  mς  

SS-SS 1 2 3 0α α α= = = , 4 1α = −  πm  1 

C-C 1 3 1α α= = , 2 4 1α α= = −  cos cosh 1m mλ λ =  
cosh cos
sinh sin

m m

m m

λ λ
λ λ

−
−

 

F-F 1 2 3 4 1α α α α= = = =  cos cosh 1m mλ λ =  
cosh cos
sinh sin

m m

m m

λ λ
λ λ

−
−

 

C-SS 1 3 1α α= = , 2 4 1α α= = −  tan tanhm mλ λ=  
cosh cos
sinh sin

m m

m m

λ λ
λ λ

−
−

 

C-F 1 3 1α α= = , 2 4 1α α= = −  cos cosh 1m mλ λ = −  
sinh sin
cosh cos

m m

m m

λ λ
λ λ

−
+

 

F-SS 1 2 3 4 1α α α α= = = =  tan tanhm mλ λ=  
cosh cos
sinh sin

m m

m m

λ λ
λ λ

−
−

 

 
• Simply supported-simply supported (SS-SS) 
• Clamped-clamped (C-C) 
• Clamped-free (C-F) 

3.1. Isotropic Cylindrical Shells 

In Table 2, the frequency parameters ( )21R v Eω ρΩ = −  for an isotropic cylindrical shell is compared with  

those ones evaluated by Swaddiwudhipong [30] for simply supported boundary conditions. The shell parameters 
are listed in this table. The comparison is analyzed for the cases: 20L R =  and 0.25L R =  with circumfe-
rential mode 1n =  to 5. The absolute differences between the two sets of frequencies are very minute.  

In Table 3, frequency parameter ( )Ω  for a cylindrical shell with clamped-clamped edge conditions are 
compared with those evaluated by Joseph and Haim [30] Shell properties are described in the table. It is noticed 
that for 7n ≤ , the present frequencies are larger where as for 8n ≥ , the two frequencies are approximately 
equal. The fundamental frequency is associated with the circumferential mode number 4n = . 

In Table 4, natural frequencies (Hz) for a clamped-free cylindrical shells are compared with those calculated 
experimentally by Sewall and Nauman [10] for the axial wave number 1,  2,  3m = . Experimental values of the 
shell frequency are lower than the present theoretical ones. This difference may be due to the some imperfection 
in the experimental devices. The lowest frequency is associated with the circumferential wave numbers  

5,  8,  10n =  for 1,  2,  3m =  respectively.  

3.2. FGM Cylindrical Shells 
Table 5 represents a comparison of natural frequencies (Hz) for type-I FGM cylindrical shell configured ac-
cording to those ones evaluated by Loy et al. [18] for simply supported boundary condition and power law ex-
ponents 0.5p = , 1, 5. The minimum frequency occurs at the circumferential wave number 3n =  which is 
about 0.009%, 0.001% and 0.007% less than those given in [18] whereas in Type II shell, lowest frequency cor-
responds to circumferential wave number 3n =  which is about 0.01%, 0.009% and 0.021%, less than those 
evaluated in [18]. It is concluded from the above comparisons of shell frequencies that the present method is va-
lid and efficient and gives fast and accurate results. 

3.3. Three-Layered FGM Cylindrical Shells with Middle Layer of Isotropic Material 
A three-layered FGM cylindrical shell whose cross section is shown in Figure 1(b), is fabricated in such a way 
that the inner and outer layers of the shells is fabricated with FGM layers while an isotropic material is inserted 
at the middle layer of the shell. The thickness of each layer is assumed to be equal. The shell material parame-
ters include the Young’s modulus, Poisson’s ratio and the mass-density. The Young’s modulus is the most in- 
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Table 2. Comparison of frequency parameter ( )21R v Eω ρΩ = −  for cylindrical shell with simply supported conditions: 

0.002h R = , 1m = , 6 230 10  lbf inE −= × , 0.3ν = , 4 2 -47.35 10  lbf s  inρ −= × .                                     

L R  n  Swaddiwudhipong [30] Present 

20 

1 0.016101 0.016101 
2 0.005453 0.005450 
3 0.005042 0.005034 
4 0.008534 0.008525 
5 ------ 0.013623 

0.25 

1 0.951993 0.951976 
2 0.934461 0.934342 
3 0.906732 0.906435 
4 0.87076 0.870196 
5 ------ 0.827882 

 
Table 3. Comparison of frequency parameter ( )21R v Eω ρΩ = −  for cylindrical shell with clamped-clamped conditions: 

304.8 mmL = , 0.254 mmh = , 76.2 mmR = , 1m = , 11 22.0668 10   N/mE = × , 0.3ν = , 3 37.85 10  Kg/mρ = × .        

n Joseph and Haim[30] Present 
3 0.1030 0.1097 
4 0.0681 0.0715 
5 0.0515 0.0532 
6 0.0475 0.0482 
7 0.0528 0.0529 
8 0.0639 0.0638 
9 0.0788 0.0785 

10 0.0964 0.0960 

 
Table 4. Comparison of natural frequencies (Hz) for cylindrical shell with clamped-free conditions: 0.2423 mR = , 

0.000648 mh = , 0.6255 mL = , 9 268.95 10  N/mE = × , 315.0=ν , 3 32.7145 10  Kg/mρ = × .                           

n  
Sewall and Nauman [10] Present 

1m =  2m =  3m =  1m =  2m =  3m =  

2 --- --- --- 354 1500.6 2346 

3 155.0 
157.0 --- --- 182 912 1715 

4 107.0 --- --- 114 588 1248 

5 89.0 
91.0 341.0 --- 95 407 925 

6 102.0 276.0 --- 106 306 707 

7 130.0 240.0 --- 134 256 561 

8 166.0 227.0 
231.0 --- 172 243 469 

9 208.0 246.0 400.0 217 259 418 

10 260.0 281.0 --- 267 294 403 

11 317.0 337.0 409.0 
412.0 324 341 415 

12 374.0 393.0 
396.0 --- 385 398 449 
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Table 5. Comparison of natural frequencies (Hz) for a simply supported-simply supported type-I, II FGM cylindrical shell: 
20/ =RL , 002.0/ =Rh , 1=m .                                                                           

n  

Loy et al. [18] Present 
p  p  

0.5 1.0 5.0 0.5 1.0 5.0 

Type I Shell 

1 13.321 13.211 12.998 13.331 13.210 12.988 
2 4.5168 4.480 4.4068 4.5175 4.4790 4.4045 
3 4.1911 4.1569 4.0891 4.1909 4.1560 4.0883 

4 7.0972 7.0384 6.9251 7.0965 7.0371 6.9244 

5 11.336 11.241 11.061 11.3350 11.2404 11.0603 

 Type II Shell 

1 13.154 13.3210 13.526 13.1545 13.3210 13.5052 

2 4.4550 4.5114 4.5836 4.4550 4.5115 4.5759 
3 4.1309 4.1827 4.2536 4.1308 4.1829 4.2450 

4 7.0076 7.0903 7.2085 7.0034 7.0909 7.1945 

5 11.189 11.3293 11.516 11.1896 11.3305 11.4944 

 
fluencing the shell vibrations characteristics. In this study the Poisson’s ratio is assumed to be constant for func-
tionally graded materials whereas the Young’s modulus is a function of the intrinsic thickness variable ( )z  as 
well as the Young’s moduli of the constituent materials forming functionally graded layers. The thickness of 
each layer is supposed to be of 3h . This variation of material thickness distribution modifies the stiffness 
moduli such as: 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

in FGM isotropic out FGM

in FGM isotropic out FGM

in FGM isotropic out FGM

,

,

.

m
ij ij ij ij

m
ij ij ij ij

m
ij ij ij ij

A A A A

B B B B

D D D D

= + +

= + +

= + +

                          (37) 

where i , 1,  2,  6j =  and in(FGM), out(FGM) are associated with inner and outer functionally graded layers 
respectively and m(isotropic) is related with the middle isotropic layer of a cylindrical shell. Their values are 
given in Appendix I. If we take 1M , 2M  constituent materials at the inner FGM layer and 3M , 4M  at the 
outer FGM layer, the resultant material properties Young’s modulii, Poisson ratios and mass density of inner 
and outer FGM layers are given as: 

( )

( )

( )

in FGM
2 1 1

in FGM
2 1 1

in FGM
2 1 1

33
2

33
2

33
2

p

p

p

zE E E E
h

z
h

z
h

ν ν ν ν

ρ ρ ρ ρ

 = − + +  
  

  = − + +   


  = − + +    

                            (38) 

( )

( )

( )

out FGM
4 3 3

out FGM
4 3 3

out FGM
4 3 3

13
2

13
2

13
2

p

p

p

zE E E E
h

z
h

z
h

ν ν ν ν

ρ ρ ρ ρ

 = − − +  
  

  = − − +   


  = − − +    

                            (39) 
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By keeping isotropic material at the middle layer and by the variation of the constituents in the FGM layer as 
shown in Figure 1(b), four types of cylindrical shells can be formed as shown in Table 6. Material properties of 
the isotropic material as well as FGM constituents are given in the reference [18] [19]. 

3.4. Variation of Volume Fractions of FGM Constituents at the Inner and Outer FGM  
Layers 

Material properties for inner and outer FGM layers of the cylindrical shell vary from 2h−  to 6h−  and from 
6h+  to 2h+  respectively. From these relations, one can conclude that at 2z h= − , the effective material 

properties become 1E E= , 1ν ν= , 1ρ ρ=  whereas for 6z h= − , material properties become 2E E=  , 
2ν ν=  2ρ ρ=  at the inner FGM layer and at 6z h= + , the material properties turn into 3E E= , 3ν ν= , 
3ρ ρ=  while at 2z h= + , the material properties turn into 4E E= , 4ν ν= , 4ρ ρ=  for functionally graded 

outer layer of the cylindrical shell. 
These results conclude that the material properties vary smoothly and continuously of constituent materials  
1M  and 3M  from the inner surface to 2M  and 4M  to the outer surface of both the FGM layers respective- 

ly. Similar response of the material properties is seen in the inverse direction. Variation of volume fractions 1V ,  
3V  and 2V , 4V  of constituent materials 1M , 3M  and 2M , 4M  placed at the inner and the outer shell sur- 

faces at the inner and outer FGM layers respectively of the shell are sketched in Figure 2(a), Figure 2(b) of the 
three-layered cylindrical shells. In Figure 2(a), variation of volume fractions 1V  and 2V  of the constituent 
materials 1M  and 2M  are sketched for the shell inner FGM layer. In this layer, the volume fraction 1V  of 
constituent material 1M  declines from its highest value 1 to its lowest value 0 whereas the volume fraction 2V  
of material 2M  rises from 0 to 1 in the thickness interval 0.5 0.167z h− ≤ ≤ − . Similar behaviour of volume 
fractions 3V  and 4V  of the FGM constituents 3M  and 4M  is shown in Figure 2(b) for the shell outer FGM 
layer. Volume fraction 3V  of material 3M  reduces from 1 to 0 and volume fraction 3V  of constituent  
material 3M  advances from 0 to its maximum value 1 in the thickness variable interval 0.167 0.50z h+ ≤ ≤ +   
respectively. The middle layer is made up with some isotropic material, whose thickness span over the interval  

0.167 0.167z h− ≤ ≤ + . 
Now to study the influence of power law exponent p  on the volume fraction of the constituents in the FGM  

layers, 1M  and 3M  are pure while 2M  and 4M  have zero concentration at the inner surface of the inner 
 
Table 6. Configuration of types of FGM cylindrical shells.                                                       

Type of Shell Inner FGM layer Isotropic Layer Outer FGM layer 
Shell I Nickel-Zarconia Stainless Steel Nickel-Zarconia 
Shell II Nickel-Zarconia Stainless Steel Zarconia-Nickel 
Shell III Zarconia-Nickel Stainless Steel Nickel-Zarconia 
Shell IV Zarconia-Nickel Stainless Steel Zarconia-Nickel 

 

 
(a)                                                      (b) 

Figure 2. (a) Variation of volume fractions FGM1 & FGM2 of Materials M1 and M2 at the inner FGM layer of the three 
layered cylindrical shells; (b) Variation of volume fractions FGM3 & FGM4 of Materials M3 and M4 at the outer FGM layer 
of the three layered cylindrical shells.                                                                        
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and outer FGM layers. Similar but opposite behaviour of the FGM constituents is observed at outer surface of 
both the layers. For the thickness interval 0.50 0.45z h− ≤ ≤ −  and p < 1, 1V  decreases while 2V  increase 
rapidly whereas for 0.45 0.167z h− ≤ ≤ −  and 1p < , 1V  decreases while 2V  increases slowly and con-
stantly. For the thickness interval 0.50 0.25z h− ≤ ≤ −  and 1p > , 1V  decreases while 2V  increases gradu-
ally but for 0.25 0.167z h− ≤ ≤ −  and 1p > , 1V  decreases and 2V  increases swiftly. Eventually, 1V  and 

2V  approach to their minimum and maximum values 0 and 1 respectively. Similar behaviour of volume frac-
tions 3V  and 4V  of the constituent materials 3M  and 4M  are observed in the outer FGM layer of the three 
layered cylindrical shell containing middle layer of isotropic material but in this case thickness interval changes 
from 0.167 0.50z h+ ≤ ≤ + . 

3.5. Frequency Analysis of FGM Cylindrical Shell 
In this section variation of natural frequencies (Hz) for four types of shell described in the above table will be 
discussed. The boundary conditions are taken to be simply supported-simply supported (SS-SS), clamped-clamed 
(C-C) and clamped-free (C-F). 

3.5.1. Variation of Natural Frequencies (Hz) against Circumferential Wave Number for SS-SS,  
C-C and C-F Boundary Conditions 

In Table 7, the variation of natural frequencies (Hz) for three sets of boundary conditions i.e. simply sup-
ported-simply supported (SS-SS), clamped-clamped (C-C) and clamped-free(C-F) are studied against the cir-
cumferential wave number n . In these types of shells the inner and outer layers are composed of the constitu-
ents nickel and zirconia while the middle isotropic layer is made of stainless steel. The shell parameters are 

20L R = , 0.002h R = , 1m =  and 0.5p = . It is seen that the natural frequency first decreases and after at- 
 
Table 7. Variation of natural frequencies (Hz) against circumferential wave number n  for shells I, II, III, IV             
( )1,  1,  0.002,  20,  0.5m R h L p= = = = = .                                                                    

n  SS-SS C-C C-F 
Type I Shell 

1 16.1932 34.6722 6.1921 
2 5.4819 12.1477 2.5145 
3 5.0470 7.2610 4.4855 
4 8.5343 9.0512 8.4259 
5 13.6324 13.7689 13.6005 
 Type II Shell 
1 16.0239 34.3095 6.1273 
2 5.4174 12.0174 2.4726 
3 4.9318 7.1420 4.3684 
4 8.3093 8.8288 8.2003 
5 13.2676 13.4052 13.2358 
 Type III Shell 
1 16.0239 34.3095 6.1273 
2 5.4275 12.0219 2.4946 
3 5.0199 7.2029 4.4673 
4 8.5006 9.0089 8.3940 
5 13.5807 13.7149 13.5494 
 Type IV Shell 
1 15.8527 33.9430 6.0619 
2 5.3624 11.8903 2.4524 
3 4.9040 7.0828 4.3497 
4 8.2747 8.7854 8.1676 
5 13.2145 13.3496 13.1832 
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taining its minimum value it begins to increase with the circumferential wave number n . It is also noticed that 
the natural frequencies for three boundary conditions become closer and closer with the increase of circumfe- 
rential wave number n. The frequencies associated with the clamped-free boundary condition are the lowest 
among those with the clamped-clamped and simply supported-simply supported boundary conditions. The vari-
ation of the frequency is similar to that of an isotropic shell. 

3.5.2. Variation of Natural Frequencies (Hz) against Length-to-Radius Ratio 
In Table 8, the variation of natural frequencies (Hz) against length-to-radius ratio L R  of the four types of 
three-layered cylindrical shells are studied for three boundary conditions simply supported-simply supported, 
clamped-clamped and clamped-free. The shell parameters are 0.002h R =  with circumferential wave number 

4n =  and the fundamental axial mode 1m = .  
From tables it is observed that the natural frequency (Hz) for all three boundary conditions decreases with the 

increase of length to radius ratio. It is also seen that the frequencies related to the clamped-clamped boundary 
conditions are greater than the simply supported-simply supported and clamped-free boundary conditions and 
the difference between the frequencies for all boundary conditions becomes very negligible at 20L R > . 

3.5.3. Variation of Natural Frequencies (Hz) against Thickness-to-Radius Ratio 
In Table 9, variation of natural frequencies of the three-layered cylindrical shell is calculated against the thick-
ness-to-radius ratio under the three selected boundary conditions i.e. simply supported-simply supported, 
clamped-clamped and clamped-free. In this observation the shell geometrical parameters are 20L R = , the 
fundamental axial mode is 1m = , and the circumferential wave number 4n = . From tables it is seen that the 
 
Table 8. Variation of natural frequencies (Hz) against L R  ratios for shell I, II, III, IV ( )4,  1,  0.002,  0.5n m h R p= = = = .  

L R  
SS-SS C-C C-F 

Type I Shell 

0.5 676.7750 720.7210 442.8185 

1.0 356.1130 438.4916 171.9393 

5.0 23.9693 48.6353 12.0134 

10 10.1874 15.5551 8.6910 

50 8.4088 8.4222 8.4054 

 Type II Shell 

0.5 669.6757 713.1185 438.1774 

1.0 352.3808 433.8956 170.1311 

5.0 23.6691 48.1026 11.7902 

10 9.9667 15.3182 8.4666 

50 8.1833 8.1968 8.1799 

 Type III Shell 

0.5 669.7055 713.2100 438.1912 

1.0 352.3917 433.9097 170.1452 

5.0 23.7391 48.1366 11.9279 

10 10.1277 15.4230 8.6548 

50 8.3771 8.3903 8.3738 

 Type IV Shell 

0.5 662.5305 705.5265 433.5006 

1.0 348.6196 429.2646 168.3177 

5.0 23.4359 47.5983 11.7031 

10 9.9057 15.1841 8.4294 

50 8.1507 8.1640 8.1474 
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Table 9. Variation of natural frequencies (Hz) against h R  ratios for shell I. ( )4,  1,  1,  20,  0.5n m R L p= = = = = .          

h R  SS-SS C-C C-F 
 Type I Shell 

0.001 4.4440 5.3762 4.2386 
0.005 21.0814 21.2855 21.0286 
0.01 42.0892 42.1729 42.0464 
0.03 126.1878 126.1485 126.1154 
0.05 210.2552 210.1509 210.1423 

 Type II Shell 
0.001 4.3324 5.2663 4.1260 
0.005 20.5174 20.7230 20.4646 
0.01 40.9607 41.0458 40.9183 
0.03 122.8027 122.7657 122.7320 
0.05 204.6163 204.5155 204.5063 

 Type III Shell 
0.001 4.4242 5.3420 4.2222 
0.005 21.0015 21.2019 20.9494 
0.01 41.9306 42.0126 41.8882 
0.03 125.7130 125.6734 125.6409 
0.05 209.4636 209.3594 209.3512 

 Type IV Shell 
0.001 4.3121 5.2314 4.1091 
0.005 20.4352 20.6372 20.3832 
0.01 40.7977 40.8810 40.7558 
0.03 122.3149 122.2775 122.2445 
0.05 203.8029 203.7022 203.6933 

 
natural frequencies for all three boundary conditions are very close to each other. For every boundary condition, 
it is also observed from the tables that the natural frequencies increase as the thickness-to-radius ratio increase. 
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