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Abstract 
Presented here are the Generalized BCS Equations incorporating Fermi 
Energy for the study of the {Δ, Tc, jc(T)} values of both elemental and compo-
site superconductors (SCs) for all T ≤ Tc, where Δ, Tc and jc(T) denote, re-
spectively, one of the gap values, the critical temperature and the T-dependent 
critical current density. This framework, which extends our earlier study that 
dealt with the {Δ0, Tc, jc(0)} values of an SC, is also shown to lead to 
T-dependent values of several other related parameters such as the effective 
mass of electrons, their number density, critical velocity, Fermi velocity (VF), 
coherence length and the London penetration depth. The extended frame-
work is applied to the jc(T) data reported by Romijn et al. for superconduct-
ing Aluminium strips and is shown not only to provide an alternative to the 
explanation given by them, but also to some novel features such as the role of 
the Sommerfeld coefficient γ(T) in the context of jc(T) and the role of VF(T) 
in the context of a recent finding by Plumb et al. about the superconductivity 
of Bi-2212. 
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1. Introduction 

Adopting the framework of the Fermi energy (EF)-incorporated generalized BCS 
equations (GBCSEs), we deal here with the calculation of the critical current 
density jc(T)—for all T between 0 and Tc—of a superconductor (SC) which is not 
subjected to any external magnetic field. Specifically, we address here the data 
obtained by Romijn et al. [1] for superconducting aluminium strips for which it 
suffices to apply GBCSEs in the scenario where Cooper pairs (CPs) are formed 
via the one-phonon exchange mechanism (1 PEM). However, with high-Tc SCs 
in mind, also given here are GBCSEs that enable one to deal in a unified manner 
with the gaps (Δs), Tc and jc(T) of a composite, multi-gapped SC requiring more 
than 1 PEM.  

The paper is organized as follows. In order to provide a perspective of the 
conceptual basis of the conventional, multi-band approach (MBA) to the study 
of the set {Δ, Tc, jc(T)} of a composite SC vis-à-vis that of the GBCSEs-based ap-
proach, we include in this section an overview of both approaches. Since the data 
in [1] are explicable in the conventional approach via both the phenomenologi-
cal Bardeen equation [2] and the Kupriyanov and Lukichev (KL) [3] theory dis-
cussed below, the purpose of this paper is to show that the GBCSEs-based approach 
provides a valuable alternative explanation of the same data. In the next section 
are given the EF-incorporated GBCSEs in the scenario when a two-phonon ex-
change mechanism (2 PEM) is operative. These equations provide a unified 
framework for the description of the set {Δ2, Tc, j0}, where Δ2 is the larger of the 
two gaps of the SC. Application of the GBCSEs to the jc(T) data in [1] is taken up 
in Section 3 where they are also shown to provide the values of several other re-
lated T-dependent parameters such as the Sommerfeld coefficient, the effective 
mass of electrons, their number density, critical velocity, Fermi velocity, cohe-
rence length and the London penetration depth. Sections 4 and 5 are devoted, 
respectively, to a Discussion of our approach and the Conclusions following 
from it. 

1.1. Overview of the Conventional Approach in Dealing with the  
Set {Δ, Tc, jc(T)} of a Composite SC 

The gaps of a hetero-structured SCs are most widely studied via an adaptation of 
the multi-band approach (MBA) of Suhl et al. [4]. When such a study also deals 
with a Tc of the SC, which is not always the case, it generally appeals to the Mig-
dal-Eliashberg-McMillan approach (MEMA) [5]. Even though MEMA is cast in 
the BCS mould of a 1-phonon exchange mechanism (1 PEM) for the formation 
of CPs, it is employed to deal with such high-Tcs as are observed because it per-
mits the BCS interaction parameter λ to even exceed unity because it is based on 
an integral equation the expansion parameter of which is not λ, but me/M where 
me is the electron mass and M the mass of an ion. Insofar as jc is concerned, a 
plethora of formulae is conventionally employed depending upon the type of the 
SC (I or II), its size, shape and the manner of preparation—for some such for-
mulae which do not take into account the T-dependence of jc, see [6].  
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Insofar as jc(T) is concerned, it is empirically known that it has its maximum 
value at T = 0 and that jc(Tc) = 0. It took considerable time for theoretical at-
tempts to evolve before the observed variation of jc(T) between these limits could 
be explained. Perhaps the earliest such attempt was due to London, who gave an 
equation for jc(T) valid at T = Tc, but which failed at lower temperatures because, 
as was later realized, it did not take into account the effect of the change in the 
order parameter with current/temperature. The equation for jc(T) given by the 
phenomenological Ginzberg-Landau (GL) theory marks the next stage in the 
said evolution. This equation works well close to Tc, but not for much lower 
temperatures. As is well known, the GL theory reduces to the London theory 
when the concentration of superconducting electrons is uniformly distributed 
and that, as was shown by Gor’kov, the microscopic theory in which the energy 
gap is taken as an order parameter leads to the GL theory near Tc. These brief 
considerations suggest the need to appeal to the microscopic theory in order to 
explain the observed variation of jc(T) for all T ≤ Tc. Before we do so, it is rele-
vant to draw attention to a phenomenological equation for jc(T) given by Bar-
deen [2] post-BCS. This equation, valid for all T between 0 and Tc and obtained 
by treating the gap as a variational parameter and minimizing the free energy for 
a given current, is 

( ) ( ) ( )
3 221 0 1 .

2 2c c cj T j T T = −                  (1) 

Equation (1) is applicable to SCs for which changes in the energy gap with po-
sition can be neglected.  

Since the thin samples of Romijn et al. [1] satisfied the condition(s) of validity 
of (1), they applied it to one of their samples and found that it indeed fits their 
data well. Nonetheless, (1) does not address the core issue of the problem, i.e., to 
identify the parameters on which jc(T) depends. The knowledge of these is es-
sential because it provides a handle to control jc(T). To unravel what lies beneath 
the “blanket” of (1), one needs a microscopic theory, viz. the theory given by Ei-
lenberger which is derived from the original Gor’kov theory under the assump-
tion 1Fρ   , where ρF is the electrical resistivity of electrons at the Fermi sur-
face and   their mean free path. It was shown by KL [3] that for an SC subject 
to certain constraints, the Eilenberger equations can be further simplified. Since 
their samples satisfied these conditions, Romijn et al. [1] also employed ap-
proximate solutions of the KL equations and found that their data were thus 
adequately explained.  

1.2. Overview of the GBCSEs-Based Approach in Dealing with the  
Set {Δ, Tc, jc(T)} of a Composite SC 

Complementing MBA and presented in a recent monograph [7] is an approach 
based on the GBCSEs which too has been applied to a significant number of SCs. 
One of the premises of this approach is that Fermi energy (EF) plays a funda-
mental role in determining the superconducting properties of an SC. We recall 
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in this connection that the usual BCS equations for the Tc and Δ of an elemental 
SC are independent of EF because of the assumption that FE kθ , where k is 
the Boltzmann constant and θ the Debye temperature of the SC. GBCSEs are 
obtained via the Matsubara technique and a Bethe-Salpeter equation (BSE) the 
kernel of which is a super propagator. The latter feature leads to the characteri-
zation of a composite SC by CPs with multiple binding energies (|W|s). A salient 
feature of this approach is that it invariably invokes a λ for each of the 
ion-species that may cause pairing, whence one has the same λs in the equations 
for any Δ and the corresponding Tc of the SC—as is the case for elemental SCs. 
Multiple gaps arise in this approach because different combinations of λs oper-
ate on different parts of the Fermi surface due to its undulations. Each of the 
|W|s so obtained is identified with a Δ of the SC. Thus, as shown in [7], with the 
input of the values of any two gaps of an SC and a value of its Tc, this approach 
goes on to shed light on several other values of these parameters. This is not so 
for MBA, another feature of which is that even when it is employed to deal with 
the same SC by different authors, the number of bands invoked is not always the 
same. 

2. EF-Incorporated GBCSEs for the Tc, Δs and jc of a  
Hetero-Structured SC  

2.1. Equations for |W20| (To Be Identified with Δ20, the Larger of  
the Two Gaps at T = 0), W2(t = T/Tc) and Tc [7] 

The equation for |W20| is: 

( ) ( ) ( )
1 3

1 2
1 1 20 2 2 20 3 20

3, , , , , ,
2 2 4

a W a W a Wλ λ
θ µ θ µ µ + =   

          (2) 

where 

( ) ( ) ( )

( ) ( )

1

1
1 1 20 2 2 20 1 2 20

20

3 2
3 20 2 2

20

, , d ,  , , , ,
2

4, , d 1 .
3

m

m

k

k

k
m m k

a W a W a W
W

a W k
W

θ

θ

θ

θ

ξ µ
θ µ ξ θ µ θ µ

ξ

ξθ µ µ θ ξ ξ µ
ξ

−

−

 +
= = 

+  
  
  = − + + −

  +  

∫

∫

Re

Re

  (3) 

The equation for |W2(t)| for 0 < t < 1 is: 

( ) ( ) ( )
1 3

1 1 1 2 2 2 2 2 3 2
3, , , , , , ,
4 mb W b W b Wλ θ µ λ θ µ θ µ + =   

            (4) 

where 
( ) ( ) ( )
( ) ( ) ( )

1 1 2 11 1 2 12 1 2
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, , , , , ,
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( ) ( ) ( ) ( )21 2 2 22 2 2 11 2 2 12 2 2, , ,  , , , , ,  , ,b W b W b W b Wθ µ θ µ θ µ θ µ=  

( )
( ) 2 2

2

3 2 2 2
2

tanh 1 2
, , 1 ,
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m

ktT W
b W

W

θ

µ

ξ ξ
θ µ µ ξ

ξ−

  +   = + − +  
∫  

and the equation for Tc is: 

( ) ( ) ( )
1 3

1 2
1 1 2 2 3

3, , , , , , ,
2 2 4c c m cc T c T c Tλ λ

θ µ θ µ θ µ + =   
         (5) 
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In the above equations, θ1 and θ2 are the Debye temperatures of the ion-species 
that cause pairing and are obtained from the Debye temperature θ of the SC as 
detailed in [7] and [8]; θm is the greater of the temperatures θ1 and θ2, and the 
variation of chemical potential with temperature has been ignored in order to 
avoid the situation where we have an under-determined set of equations. Thus, 
we have assumed that the chemical potential ( ) ( )0 c FT T T Eµ µ= = = = . With 
the input of |W20|, Tc, and different assumed values of kµ ρ θ=  (ρ = 100, 50, 25, 
10, 5, etc.), solution of simultaneous Equations (2) and (4) yields, for each value 
of μ, the corresponding values of the interaction parameters λ1 and λ2.  

2.2. Equation for a Dimensionless Construct y0 at T = 0 Which  
Enables One to Calculate j0 and Several Other  
Superconducting Parameters  

The construct y0 is defined as 

( ) ( )*
0 0 2 0 ,Fy k P m Eθ=                     (6) 

where m*(0) is the effective mass of superconducting electrons at T = 0 and P0 
their critical momentum.  

The exercise carried out above leads to a multitude of values for the set S = {EF, 
λ1, λ2}, each of which is consistent with the |W20| and Tc values of the SC. In or-
der to find the unique set of values from among them that also leads to the em-
pirical value of j0 of the SC, we solve the following equation for y0 [9] for each 
triplet of {EF, λ1, λ2} values: 

 ( ) ( )1 2
1 1 0 2 2 01 , , ,

4 4
J r y J r yλ λ′ ′= Σ + Σ                 (7) 

where 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1
0 0 0 1 0 2 00

1 0 1 0 2 0 3 0 4 0

, d , , ,  , , , , , ,

, , 4 , , , , , , , ,

J y xF x y F x y f x y f x y

f x y u x y u x y u x y u x y

 ′ ′ ′ ′ ′Σ = Σ Σ = Σ + Σ  
′ ′ ′ ′ ′ Σ = − Σ − Σ + Σ + Σ 

∫Re
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( )
( )
( )

( )
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′ ′ ′ ′Σ = −Σ Σ = + Σ
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′ ′Σ = Σ = ,   .i F i iE r θ θ=

 

The operator Re ensures that the integrals yield real values even when expres-
sions under the radical signs are negative (as happens for the heavy fermion 
SCs). 

Corresponding to each value of y0 obtained by solving (6) with the input of {θ, 
θ1, θ2, EF, λ1, λ2}, we can calculate several superconducting parameters in terms of 
θ, EF, y0, the gram-atomic volume vg and the electronic heat constant/Sommerfeld 
coefficient γ0 at T = 0 by employing the following relations, see [8] and for a 
correction, [10]:  

( ) ( )
( )2 3

0*
1 1 30 0 g

e
F

v
s m m A

E

γ
≡ =                 (8) 

( ) ( )0 2 0s F g FN E A v Eγ=                    (9) 

( )
( )1 3

0
0 3 2 3

0

g
F

F

v
P E A

y E

γθ
=                   (10) 

( )
( )0 4 1 3 1 3

0 0

1
c F

g F

V E A
y v E

θ

γ
=                (11) 

( ) ( ) ( ) ( ) ( )2 30 * 2 3 *
0 0 5 0

0

,   2
2

s F
F c F g F

N E
j E e V E A v E e e

y
θ γ= = =    (12) 

where me is the free electron mass and e the electronic charge,  
10 1 3 2 4 3 7 2 2

1 23.305 10 eV cm K ,  2.729 10 eV K ,A A− − −≅ × ⋅ ⋅ ≅ × ⋅  

6 1 3 8 2 3 1 5 3
3 41.584 10 cm K , 1.406 10 eV sec K ,A A− − − −≅ × ⋅ ≅ × ⋅ ⋅  

4 4 3 1/3 1
5 6.146 10 C eV K s ,A − − −≅ × ⋅ ⋅ ⋅  

and Ns0 is the number density of CPs and Vc0 their critical velocity at T = 0. 
Comparison of the j0-values so obtained with the experimental value of j0 then 
leads to the desired unique set of {EF, λ1, λ2}-values that is consistent with the 
empirical values of |W20|, Tc, and j0 of the SC. 

2.3. Equation for the Dimensionless Construct  
( ) ( )( ) ( )  c Fy t k P t m E t2 ∗= θ  Which Enables One  

to Calculate jc(t) and Several Other Superconducting  
Parameters at t ≠ 0 

When t ≠ 0, the equation for y(t) is obtained from [9] 
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( ) ( )

( ) ( )
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∫  

In terms of ( ) ( ) ( ) ( )*
1 2 2c Fy t E E t k P t m t Eθ= =    , we have (12) as:  

( ) ( )
1 1

1 2
1 1 2 2

0 0

1 d , , , d , , , ,
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        

= = + +  
= =

∫
 

Each value of y(t) obtained by solving (13) for different values of the set S = 
{EF, λ1, λ2} leads to the corresponding value of jc(t) via (11), and to the values of 
the associated parameters via (7)-(10).  

3. Explanation of the Empirical jc(t) Values of Aluminium  
Strips Via GBCSEs 

By adding to the RHS of each of the Equations (2), (3), and (4) a term in which 
λ2 and θ2 are replaced by λ3 and θ3, respectively, the above framework is easily 
extended to a 3PEM scenario where pairing is caused by three ion-species. On 
the other hand, in order to deal with the data reported for Aluminium strips in 
[1], we need the reduced framework of 1 PEM. This is obtained by putting λ2 = 0 
in each of the three equations just noted. 

3.1. The j0 Data  

Reported in [1] are various superconducting properties for six samples of alumi-
nium strips at T = 0. Among these, Tc and j0 are determined experimentally, 
whereas values of some other parameters such as coherence length ξ and the 
London penetration depth λL are model-dependent derived properties.  

In order to show how the GBCSEs-based approach works in such a situation, 
we give below the sequential steps that are followed for Sample 1 in [1].  
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1) The Tc of the sample is 1.196 K. We take its Debye temperature θ to be 428 
K [11]. Employing these values and putting λ2 = 0 (as is appropriate for a 1 
PEM), solution of (4) for some typical values of EF are: λ1 = 0.1665 for any value 
of EF = 10 - 100kθ; λ1 = 0.1666 for EF = 5kθ; λ1 = 0.1670 for EF = 2kθ. 

2) For some select pairs of {EF, λ1} values obtained above, we now solve (6) for 
the corresponding value of y0 and obtain the following results (in the parenthes-
es are given the {EF, λ1} values): y0 = 149.8 {50kθ, 0.1665}; y0 = 149.9 {25kθ, 
0.1665}; y0 = 149.9 {10kθ, 0.1665}; y0 = 149.6 {5kθ, 0.1666}; y0 = 149.5 {2kθ, 
0.1670}. 

3) For each of the above pairs of {EF, y0} values, we now calculate j0 via (11). 
For this purpose, besides the value of θ, we require the values of γ0 and vg which 
are taken as: γ0 = 1.36 mJ/mol-K2 [11], vg = 10 cm3/gram-atom. The results in 
A/cm2 with the corresponding {EF, y0} values given in parentheses are: 2.37 × 107 
{50kθ, 149.8}, 1.49 × 107 {25kθ, 149.8} 8.09 × 106 {10kθ, 149.9}, 5.11 × 106 {5kθ, 
149.6}, 2.77 × 106 {2kθ, 149.5}.  

4) Among the above values, j0 = 1.49 × 107 A/cm2 corresponding to {EF = 25kθ, 
y0 = 149.8} is closest to the experimental value of 1.53 × 107 A/cm2. By 
fine-tuning the value of EF and repeating the above exercise, we find that the ex-
perimental value of j0 is obtained exactly when EF = 26kθ = 0.959 eV and y0 = 
149.8. 

5) With EF fixed at this value, we can find W10 via (2) (with λ2 = 0). 
6) With EF and y0 of the sample fixed as above, we can calculate the values of 

s(0), Ns(0), and Vc0 via (7), (8) and (10), respectively, and the Fermi velocity VF0 
at T = 0 via the relation 

( ) ( )* 2
01 2 0 .F Fm V E=                     (15) 

Besides these parameters, we can now also calculate the coherence length ξ0 at 
T = 0 via  

0 0 10π ,FV Wξ =                        (16) 

and the London penetration depth λL0 at T = 0 via 

( ) ( ) ( )2* 3 2
0 0 4π 0 ,L sm cm c n eλ =                (17) 

where units for m* and ns are electron-volt and cm−3, respectively, e = (137.03604)−1/2, 
cm = 5.067728861 × 104(ħc) eV−1 and, for convenience of the reader, we have 
inserted the requisite factors of ħ and c in order to obtain the value of λL0 in cgs 
units. The results of these calculations are given in Table 1, which also gives 
similar results for the remaining five samples dealt with in [1].  

3.2. The jc(t) Data  

Insofar as jc(t) is concerned, Romijn et al. [1] have given results for one of their 
samples (Sample 5) in their Figure 4, which is a plot of their experimental values 
of ( ) ( ) 2 3

0c cj t j    along with their counterparts as obtained via the pheno-
menological Bardeen Equation (1) and the KL theory [3]. It follows from this  
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Table 1. For the samples employed in [1], the T = 0 values of various superconducting parameters obtained via the procedure 
detailed in Section 3.1.  

Sample 
Tc 

(K) 

j0 

(exp) 
(107 A/cm2) 

j0 (theory) 
(107 A/cm2) 

ρ 
(EF = ρkθ) 

λ1 y0 s 
Ns(0) 

(1022 cm−3) 
V0 

(103 cms−1) 
VF 

(107 cms−1) 
|W1| 

(10−4 eV) 
ξ0 

(10−5 cm) 
λL0 

(10−6 cm) 

1 1.196 1.53  1.53 26 0.1665 149.8 3.005 2.22 4.30 3.35 1.82 3.88 6.18 

2 1.203 1.30 1.29 20 0.1667 148.8 3.279 1.71 4.73 2.81 1.84 3.26 7.36 

3 1.203 1.56 1.58 27 0.1667 148.7 2.967 2.31 4.28 3.44 1.84 3.98 6.03 

4 1.267 1.11 1.12 15 0.1681 141.6 3.609 1.28 5.47 2.32 1.93 2.98 8.92 

5 1.356 1.07 1.07 12.6 0.1701 132.0 3.825 1.07 6.21 2.07 2.07 2.39 10.0 

6 1.154 2.57 2.55 59 0.1655 155.3 2.287 5.04 3.36 5.79 1.82 6.70 3.58 

 
graph that the absolute experimental values of jc(t) are given fairly accurately by 

( ) ( )3 22
0 expexp

1 ,cj t j t−                 (18) 

where 7 2
0 exp

1.07 10 A cmj = × .  
We recall that j0 of Sample 5 in our approach was calculated via the following 

values of the associated parameters: θ = 428 K, Tc = 1.356 K, λ1 = 0.1701, EF = 
12.6kθ, y0 = 132.0, γ0 = 1.36 mJ/mol K−2, and vg = 10 cm3/gram-atom. In order 
now to calculate jc(t) for this sample, we need to take into account the 
T-dependence of all these parameters. It seems reasonable to assume that among 
them, θ, EF and vg retain the values employed for them at T = 0. This assumption 
enables us to calculate y(t) for any “t” via (13) (with λ2 = 0); the resulting values 
are given in Table 2. We could now calculate jc(t) if we knew γ(t), but about 
which we have no information. However, we know that the heat capacity of an 
SC has a marked non-linear dependence on t as discussed, e.g. in general in [12] 
and for superconducting Ga in ([13], p. 411). We are hence led to calculate γ(t) 
with the input of jc(t)—rather than the other way around—via the following eq-
uation 

( ) ( ) ( )( )exp Th
, , , , ,c c g Fj t j y t t v Eθ γ=                (19) 

the LHS of which for any “t” is taken to be given by (17) and the RHS is calcu-
lated via (11) with the input of y(t) obtained by solving (13). These values of γ(T) 
are included in Table 2. Considered together with the values of y(t), they will be 
shown below to provide a microscopic justification of Bardeen’s phenomeno-
logical Equation (1). It is also remarkable that y(t) and γ(t) enable one to obtain 
quantitative estimates of several other t-dependent superconducting parameters, 
viz., s(t) = m*(t)/me, ns(t) = Ns(t)/Ns0, vF(t) = VF(t)/VF0, vc(t) = Vc(t)/V0, ξr(t) = 
ξ(t)/ξ0, and λLr(t) = λL(t)/λL0. The plots of these are discussed below.  

4. Discussion 

1) The T-dependence of γ(T) in the context of jc(t) is a new feature of the ap-
proach followed here. We recall that, as is well known, γ is usually defined via 
the equation  

https://doi.org/10.4236/wjcmp.2019.93004


G. P. Malik, V. S. Varma 
 

 

DOI: 10.4236/wjcmp.2019.93004 56 World Journal of Condensed Matter Physics 
 

Table 2. Obtained as detailed in Section 3.2, values of y(t) and γ(t) corresponding to the 
experimental values of jc(t) for Sample 5 in [1] for 0 ≤ t ≤ 1. 

t ( ) ( )6 2

exp
10 A cmcj t ×  ( )y t  ( ) ( )4 210 J mol Ktγ − −× ⋅  

0 10.7 132.0 13.6 

0.1 10.5 132.4 13.3 

0.2 10.1 133.6 12.6 

0.3 9.29 133.9 11.5 

0.4 8.24 139.9 10.0 

0.5 6.95 145.9 8.25 

0.6 5.48 155.9 6.38 

0.7 3.90 172.6 4.46 

0.8 2.31 203.2 2.60 

0.9 0.89 276.8 0.99 

0.95 0.33 384.5 0.36 

1 0 - - 

 

( )3464.6 ,p vC C T Tγ θ= = +                 (20) 

where Cp (Cv) is the heat capacity of the SC at constant pressure (volume) at very 
low temperatures (<10 K). The experimental data are usually plotted in the form 
Cv/T vs. T2, which yields an intercept equal to γ and a slope equal to 464.6/θ3. 
The generally reported values of γ in the literature, e.g. in [11], obtained in this 
manner correspond to T = 0. It should also be noted that the simple relation (19) 
is invalid when the magnetic and nuclear contributions may be significant and, 
importantly, that γ is directly proportional to N(EF), the density of states of elec-
trons at the Fermi level. The latter of these features implies that we are taking 
into account the T-dependence of N(EF) via γ(T).  

2) It was assumed above that among the five parameters that are required for 
the calculation of jc(t) via (11), we need to take into account the T-dependence of 
only two of them, viz., y and γ. Since the T-dependence of jc(t) is then governed 
by ( ) ( ) ( )2 3

R t t y tγ≡    , we give for Sample 5 in [1] a plot of R(t) vs. t in Fig-
ure 1, where γ(t) and y(t) are obtained via solutions of (18) and (13), respective-
ly. Included in this figure is a plot of the ratio ( ) ( ) ( ) ( )3 22 3 2

1 0 0 1R t y tγ = −   
vs. t, which is seen to be almost indistinguishable from the plot of R(t). It there-
fore follows that our approach based on the microscopic BSE provides a detailed 
theoretical justification of the phenomenological Bardeen Equation (1) for jc(t).  

3) In the approach followed in [1], while both jc(0) and jc(t≠0) depend on e, Tc, 
VF, ρF and  , the expression for the latter requires additional parameters as is 
seen from the Appendix in [1]. In the approach followed in this paper, no such 
additional parameters are required to deal with jc(t≠0); one simply invokes, 
where applicable, the T-dependence of the parameters on which jc(0) depends, 
viz. e, θ, y0, γ0, vg and EF. The two approaches may therefore be said to comple-
ment each other. 
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Figure 1. For Sample 5 in [1]: plots of ( ) ( ) ( )2 3
R t t y tγ≡     as obtained via solu-

tions of (18) and (13), respectively, and of ( ) ( ) ( ) ( )3 22 3 2
1 0 0 1R t y tγ = −  .  

 
4) The expression for jc(0) in [1] depends on VF, which is not so in the 

GBCSEs-based approach where jc(0) depends on Vc(0). Nonetheless, it is inter-
esting to note that the value of VF in [1] is assumed to be 1.36 × 108 cm/s for all 
samples and is not T-dependent whereas, in the approach followed here, it dif-
fers from sample to sample and is T-dependent. For Sample 5, it varies between 
(2.07 - 6.95) × 107 cm/sec for 0 ≤ t ≤ 1. For this sample, the values of ξ0 and λL0 
too differ in the two approaches: while reported in [1] for these parameters are, 
respectively, the values 1.32 × 10−4 cm and 1.10 × 10−4 cm, the corresponding 
values determined by us are 2.39 × 10−5 cm and 1.00 × 10−5 cm.  

5) Given in Figure 2 are the plots of w1(t), s(t) and ns(t) vs. t for Sample 5 in 
[1]. Among these, even though the plot of w1(t) is obtained via an 
EF-incorporated GBCSE with EF = 12.6kθ, it is very similar to the plot one ob-
tains for Δ(T)/Δ0 for an elemental SC via the usual BCS equation sans EF. While 
we could not find any experimental data for the parameter ( ) ( )*

es t m T m≡  
for the SC under consideration, we draw attention to a plot of this parameter for 
Pb and Ta given in (Figure 7 of [12]). This plot covers temperatures up to about 
120 K and therefore does not specifically shed light on the behavior of s(t) in the 
superconducting state. Nonetheless, it is notable that it displays a parabolic de-
crease for a major part of the range of temperatures over which it is plotted. As 
for ns(t), as shown in Figure 2, we find that a good analytic fit to the values cal-
culated by us is provided by ( ) ( )1.5121sn t t= − , which is at variance with the re-
sult of the simple two-fluid model where ( ) ( )41sn t t= − . However, it is also 
well known that, factually, T-dependences of superconducting parameters often 
differ from those following from the simple two-fluid model ([11], p. 48). 

6) In the context of Figure 3 which is the plot of the reduced fermi velocity vF 
that our approach has led to, we draw attention to a paper by Plumb et al. [14] 
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who have reported that “Associated with this feature (a kink-like feature ob-
served at extremely low energy along the superconducting node in Bi-2212), the 
Fermi velocity scales substantially—increasing by roughly 30% from 70 to 110 K. 
The temperature dependence of the feature suggests a possible role in super-
conductivity, although it is unclear at this time what mechanism(s) may lead to 
this low-energy renormalization”. We are hence led to suggest that Figure 3 
provides both: a plausible explanation that Plumb et al. sought for their result 
and a validation of our approach.  

 

 

Figure 2. For Sample 5 in [1]: clockwise, solid lines represent w(t) = W1(T)/W10, 
s(t) = m*(T)/me, and ns(t) = Ns(T)/Ns0 calculated via, respectively, (3), and the 
T-generalized (7) and (8). For values of W10, s(0) and Ns0, see Table 1. The dotted 
plot overlapping s(t) is the analytic fit to it obtained via s1(t) = (1 − t2); the plot 

overlapping ns(t) is a similar plot obtained via ( ) ( )1.512
1 1sn t t= − . 

 

 

Figure 3. Plot of the reduced fermi velocity ( ) ( ) 0F F Fv t V T V=  corresponding to 

Sample 5 in [1]. The dotted plot overlapping it is obtained via ( ) ( ) 0.542
1 1 11Fv t t

−
= − .  

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

w t( )

s t( )

s1 t( )

ns t( )

ns1 t( )

t

0 0.2 0.4 0.6 0.8 1
1

2

3

4

vF t1( )

vF1 t1( )

t1

https://doi.org/10.4236/wjcmp.2019.93004


G. P. Malik, V. S. Varma 
 

 

DOI: 10.4236/wjcmp.2019.93004 59 World Journal of Condensed Matter Physics 
 

7) Both ξr(t) and λLr(t) are known to diverge at t = 1, which is a feature also re-
flected in our Figure 4 and Figure 5. It is thereby seen that for the former para-
meter, ( ) ( ) 1.412

1 11t tξ
−

= −  provides a good fit to ξr(t), whereas a similar fit for 
the latter parameter is provided by ( ) ( ) 0.272

1 1L t tλ
−

= − .  
 

 

Figure 4. For Sample 5 in [1], the solid line is the plot of the reduced cohe-
rence length ( ) ( ) 0r t Tξ ξ ξ=  as obtained via theory in this paper. The over-

lapping plot is obtained via ( ) ( ) 1.412
1 1 11t tξ

−
= − .  

 

 

Figure 5. For Sample 5 in [1], the solid line is the plot of the reduced London 
penetration depth ( ) ( ) 0Lr L Lt tλ λ λ=  as obtained via theory in this paper. 

The overlapping plot is obtained via ( ) ( ) 0.272
1 1L t tλ

−
= − .  
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8) As concerns the rather accurate numerical fits that we have obtained for the 
values of various empirical parameters associated with jc, it is remarkable that 
each of them is found to vary as some power of (1 − t2). Viewed in conjunction 
with (1), it provides another example of the deep physical insight that Bardeen 
had without the benefit of a detailed microscopic theory governing jc.  

5. Conclusions 

It has been shown above that the GBCSEs-based approach provides a valuable 
alternative to the explanation of the Romijn et al.’s jc(T) empirical data for super-
conducting Al strips based on the KL [3] approach derived from the Eilenberger 
equations which, in turn, follow from the microscopic Gor’kov theory when cer-
tain simplifying assumptions are made. Unique features of the GBCSEs-based ap-
proach are: 1) by appealing to the jc(0) value of an SC, it leads to a unique value 
of EF that enables one to deal with its {Δ, Tc, jc(T)} values in a unified framework, 
2) with EF thus fixed, appeal to the jc(t) values of the SC leads to a new finding 
about how γ(t) varies with t, which is then shown to lead to (3 quantitative esti-
mates of several T- and EF-dependent superconducting parameters, viz., s(t), 
ns(t), vc(t), vF(t), ξr(t) and λLr(t). It is remarkable that one can obtain these results 
by remaining within the ambit of the mean-field approximation, i.e. by employ-
ing the model (constant) BCS interaction “−V”, which for (6) in the scenario of 
1PEM is operative only when ( )22 2FE k mθ− ≤ +P p ,  
( )22 2 Fm E kθ− ≤ +P p  and vanishes otherwise ([7], p. 117); for (2), (3) and 
(4), the corresponding constraints on V are obtained by putting 0=P  in these 
inequalities and are identical with those in the usual BCS theory.  

As was mentioned above, a plethora of formulae is known in the literature for 
calculating jc of an SC, depending upon its type (I or II), size, shape and the 
manner of preparation. The application of EF-incorporated GBCSEs herein, and 
to a variety of other SCs in [8] (with a correction in [10]), suggests that the EF of 
an SC subsumes most of these properties.  

We conclude by noting that work is in progress to further generalize the 
GBCSEs given here to deal with the pragmatic situation where the SC is in a heat 
bath in an external magnetic field, i.e. when both T and H are non-zero—a pro-
cedure for which has been given in [15]. 
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