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ABSTRACT 

We model the conscious learning process of human brain with a dynamical equation (cramming dynamics) by consid-
ering both the data entry and loss of data simultaneously. We show the analytical solution of the differential equation in 
some special cases. We define some indexes like memory index, merit index, utilization index etc. Using them we can 
measure the corresponding memory functions. Applications of this model have also been discussed. More general nu-
merical and analytical results are also presented at the end. 
 
Keywords: Switching Function, Cramming Dynamics, Memory Index, Merit index, Utilization Index, Relative  

Performance Index 

1. Introduction 

The memory retention mechanism in human brain is 
quite a complicated process indeed. It is just like infor- 
mation processing for a huge database. This database is 
filled with all sorts of information that we use to go about 
our everyday lives. The information is stored and re- 
trieved as needed. No matter what we are doing, at any 
instant or other, at anywhere, the memory is involved in 
an active fashion. This complex system or network of 
data processing is located in different parts of the brain 
like the hippocampus and cortex. As these parts work in 
tandem, memory begins to process and interacts with the 
environment and its surroundings.  

After understanding how we process memory, why do 
we sometimes loose memories? It has been proven that 
we forget simply because of a problem with encoding, 
storage, retrieval, or a combination of any of these. The 
first significant study in this field was carried out by 
Ebbinghaus [1]. He studied the memorisation of non- 
sense syllables. By repeatedly testing himself after va- 

rious time periods and recording the results, he was the 
first to describe the shape of the forgetting curve. On the 
other hand acording to Eichenbaum [2], most forgetting 
occurs very soon after learning. However, when mean- 
ingful material is used, the forgetting curve is not so 
steep. Memory also fades and become less reliable with 
time and aging. An over flow of information may also 
cause certain information to be forgotten as a result of 
competition. Benfenati [3] in his work examined the cel- 
lular and molecular mechanisms that contribute to the 
various forms of memory including short and long-term 
memory, unconscious and conscious memory etc. Cro- 
vitz et al. [4] suggested that a memory measurement (M) 
can be expressed as a power function of time t as, 
M t   . Anderson [5] mentioned that the experimen- 
tal power function curves are related to the mean taken 
over all the subjects. Wixted [6] opposed the idea of 
Anderson by showing that the power function also fits 
better than the exponential function when data from the 
individual subjects are fitted. Other important models of 
the forgetting process are CHARM, due to Metcalfe [7], 
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Chappell [8], Matrix Model, due to Humphreys [9] and 
MINERVA II due to Hintzman [10]. The neural network 
model predicted by Hopfield [11] was latter modified by 
sikstrom [12] using the concept of bounded weights and 
a distribution of learning rates. In a recent communica- 
tion Stepanov [13] proposed a new model of memoriza- 
tion dynamics using exponential functions. 

In our work we have attempted to build up a physical 
model of the memorizing process of the human brain (of 
a learner in particular) undergoing a course of study with 
a fixed duration of time. The act of learning is considered 
here as a process of data storage in the brain. It is as- 
sumed that one accumulates data while studying a sub- 
ject consciously and there is a continuous process of data 
loss, caused by several physiological and psychological 
factors such as mental stress and fatigue etc. As this 
memorizing and forgetting processes are continuous in 
the said time interval hence we can express this process 
as a dynamical equation to be explained in more details 
in the section to follow. The dynamical equation involves 
different parameters quantifying the capacity of the brain 
from different aspects e.g. memorization ability, grasping 
power etc. The solution to that differential equation of 
learning process gives us a clear picture of how data are 
being stored and lost continuously from the brain. We 
have obtained the analytical solution of the said equation 
in some particular limits and the numerical solution has 
also been obtained as a result of system simulation using 
MATLAB in Intel platform. The corresponding results 
are mentioned in the sections to follow. 

The idea behind choosing this particular model of the 
brain and the basic assumptions are very simple and 
based upon our common experiences. We have assumed 
that the rate of data storage (accumulation rate) in the 
brain at any instant can be calculated simply by subtract-
ing the rate of data loss from the rate of data entry. Ob-
viously the actual dynamics of the brain may not be ex-
actly the same as we have assumed but for all practical 
purposes our work can mimic the activity of the brain up 
to a certain extent that will be cleared from our next 
analysis. To support this claim we have shown that the 
work of Ebbinghaus [1] will come as a special case of 
our model. Also none of the previous models as men- 
tioned earlier are as so much simple like ours and can 
give a complete mathematical description of both the 
learning and forgetting processes simultaneously using 
the concept of switching process of the brain. 

2. Mathematical Modeling 

Let RS, RL and RE be the rate of data storage, the rate of 
data loss and the rate of data entry in the brain at any 
instant respectively. Let x(t) be the amount of data or 
information already stored in the brain at any time t, 
hence, the rate of storage at that moment is given by 

S E L

dx
R R R

dt
                (1) 

The rate of data entry can be enhanced by the factors 
like intelligence, concentration, the ability of a person to 
cope with the stressed situations etc. Experience tells us 
that as we go on acquiring more and more knowledge 
and thereby store more and more data, the rate of data 
entry becomes slower due to some mental stress or brain 
fatigue, as we generally perceive. As the accumulated 
data increases in volume in the brain, the rate of data 
entry must decrease. Hence, to give it a very simple 
mathematical form, one can safely assume that at any 
point of the learning process we have 

( ) on
E ER S t R .              (2) 

where ( )S t  is a time dependent switching function (to 
be discussed elaborately later on) whose value toggles 
between 0 and 1 for it’s OFF and ON stages respectively. 
During a conscious effort of cramming, this switch rem- 
ains ON and otherwise it is OFF. on

ER  is actually the 
rate of data entry for the ON state of the switch ( )S t . 
Thus, during the ON state, we have on

E ER R . During 
the OFF state of ( )S t we have 0ER  . We define on

ER  
as Equation (3). 

Here, C1 quantifies one’s intelligence, concentration, 
eagerness, urgency of learning etc. Thus, it is a measure 
of the traits of the learner that causes faster entry of data. 
C denotes the maximum storage capacity, hence x C . 
The quantity /x C  is the fraction of memory occupied 
by information and therefore (1 / )x C  is the fraction 
of storage space still available for data entry. Common 
experience tells us that, larger the value of /x C , greater 
will be the difficulty in the further storage of data. The 
parameter is a positive quantity that may be called the 
index of brain fatigue related to memorization (taking  

care of the non-linearity). Since 1
x

C
  
 

 is generally 

a fraction, 
E

onR  is smaller for larger values of  . 
 

1
1

 
1

    1

1 /

on
E

Cmeasure of  grasping power, concentration, IQ  and urgency of  learning x
R C

 measure of  factors impeding accumulation of data C

x C




     
  

  

   (3)
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It is a common experience that one forgets information 

more rapidly when the amount of accumulated data is 
large. In mathematical terms, the larger the value of 

/x C , greater will be the amount of data loss per unit 
time. As the storage becomes higher the rate of loss bec- 
omes more and more pronounced, possibly due to the 
limitation of retention ability and the stress caused by the 
load of already accumulated data. One may simply write 
an expression for rate of data loss (RL), at any stage of 
learning, as a function of the data (x) already stored in 
the brain in the following way 

 
2

β

L

x / Cstress caused by data storage or data load
R

memory retention ability C
   

(4) 

The parameter C2 is a measure of one’s ability of 
memory retention or memorizing ability. The term 
( / )x C   may be regarded as a measure of stress caused 
by the accumulated data where the parameter   is int- 
roduced to take care of the natural non-linearity of the 
process. Like , it is also a positive quantity. Since 
( / )x C  is a fraction, LR  is smaller for higher values of 
 . The parameter   may be called the stress endur- 
ance index. A person with a larger value of   feels less 
stressed by the accumulated data (i.e. less internal anxi-
ety about the necessity of retention of accumulated data). 
With substitutions in (1), from (2, 3) and (4) we have 

1
2

( / )
( )  1

dx x x C
S t C

dt C C

     
 

       (5) 

Let us define a dimensionless variable as /X x C  
(with X  varying from 0 to 1). Hence, in terms of X, (5) 
can be expressed as 

 1

2

( )
  1   

S t CdX X
X

dt C CC


         (6) 

3. Analysis 

For any arbitrary learner the parameters C1 and C2 are 
defined below 

max
1 1 1 1,  where  0 1,C f C f          (7) 

max
2 2 2 2,  where  0 1,C f C f          (8) 

Here, max
1C  and max

2C are the values of 1C  and 

2C for the best possible learner (ideal, being the most 
intelligent, enthusiastic, diligent and having the strongest 
memory and greatest zeal for learning). Here, we define 
the dimensionless parameters 1 2 and f f  as the merit 
index and the memory index respectively of any arbitrary 
learner, quantifying one’s IQ and MRA (memory reten- 
tion ability) respectively, relative to the best learner. For 

the learner of the highest calibre or merit we have 

1 2 1f f  . Using (7) and (8) in (6) we obtain 

 
max

1 1
max

2 2

( )
  1   

S t f CdX X
X

dt C Cf C


        (9) 

For convenience of calculation (without any loss of 
generality) we may choose max max

1 2 1C C  . If a system 
of units can be defined for these quantities, they can al-
ways be chosen to satisfy this equality. Hence (9) can be 
expressed as 

 1

2

( )
  1   

S t fdX X
X

dt C Cf


         (10) 

To determine the variation of X as a function of time, we 
need to solve (10) for different functional forms of ( )S t  
(Figures 1-3). Where ( )S t  is a function determining the 
duration for which the data entry channel remains open.  

As long as one maintains a conscious learning effort, 
( )S t  remains 1, zero otherwise. During the time when 
( ) 0S t   we have from (10) 

2

  
dX X

dt Cf



               (11) 

Let mT  be the duration for which one maintains a 
conscious memorizing effort without any break. Hence 
we may write 

( ) 1  for  0 mS t t T             (12) 

( ) 0  for  mS t t T             (13) 

The above criteria can very well be approximated by a 
tan-hyperbolic function as given below 

 1
( ) 1 tanh ( ) 1

2 mS t t T             (14) 

 

 

Figure 1. Variation of X with t for three different values of 
C, with 1 20.6 0.6f = , f = ,   610 ,  200mT ,  0.9α , 
 25β  and S(t) follows (14). 
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Figure 2. Variation of X with t for three different β , with 

1 20.6, 0.6f = f = , 610ε = , 200mT = , = 0.9α ， = 10C  and 
S(t) follows (14). 
 

 

Figure 3. Variation of X with t for three different  , with 
. , . , 1 20 6 0 6f f , 610   200mT ,  100C ,  5  and 

S(t) follows (14). 
 

For a sufficiently large positive value of  , this func-
tion behaves almost exactly like (12, 13). 

There may be another situation where the data entry 
channel remains open intermittently. The learner can 
alternately open and close the channel in a periodic fash-
ion. Let T be the interval of time over which it remains 
open and, for the next phase of the same duration it re-
mains closed. In this case, the plot of ( )S t  vs. t should 
have the pattern of a square wave, varying between 0 and 
1. For numerical calculations in this case, ( )S t  can be 
approximated by a function of the following form (the 
case is illustrated in Figure 4.  

1  
( ) tanh sin 1

2 m

t
S t

T


  

   
   

         (15) 

 

Figure 4. X-t variation with , , 1 20.6 0.6f f  610ε , 
 5mT , , ,  10 3 0.9C β α  and S(t) follows (15). 

 
The sharpness of the square wave pattern of ( )S t  in-

creases with higher values of  .  
For a sufficiently large positive value of  , this function 
behaves in a manner such that 

( ) 1  for  2 (2 1) ,

0,1,2,3.......
m mS t nT t n T

n

   


     (16) 

( ) 0  for  (2 1) (2 2) ,

0,1,2,3.......
m mS t n T t n T

n

    


 (17) 

4. Analytical Solution for a Particular Case 

For 1   , both growth and decay processes men-
tioned earlier are exponential in nature (as suggested by 
(10, 11)), similar to that obtained by Ebbinghaus [1]. 
Under the boundary condition that, at 00,t X X  , we 
have from (10) 

1 2 1 2
0

1 2 1 2

2

1 2

exp ,
1 1

 

1

f f f f t
X X

f f f f

C f
With

f f





             




   (18) 

It suggests that as t  , 1 2

1 21

f f
X

f f



. Hence we 

define 1 2
max

1 21

f f
X

f f



 and 1 2

max max
1 2

 

1

C f f
x CX

f f
 


,  

as the saturation values of X and x respectively. For the 
best learner, having 1 2 1f f  , these quantities can be  

expressed as max

1

2
bX   and max max 2

b b C
x CX  . Here, 

2

1 21

C f

f f
 


 is the characteristic time constant determin-  

ing the rapidity with which X reaches its saturation 
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value maxX . For smaller values of  , X varies at a faster 
rate with time.  

For 1 2 1f f  , we have max

 

2

C  . The duration  

( mT ) of the interval, for which one continues a conscious 
cramming effort, may be expressed as a multiple of  

max  as max 2m

NC
T N  . Hence.  

2

1 2

2  

(1 )
mT f

N f f
 


             (19) 

Let us now define a dimensionless variable n such that 

mt nT                  (20) 

Combining (19) and (20) we obtain 

1 2

2

(1 )

2

nN f ft

f


              (21) 

Incorporating all these results in (18) we get the foll- 
owing expression of X representing the data storage 
process up to the time of mt T  we are getting  

  1
max max 0

max

( ) exp
2m

nNf
X t T X X X

X

 
     

 
 (22) 

While studying the behaviour of X beyond mt T , we 
need to solve (10) for 1   and ( ) 0S t   under the 
boundary condition that, at ,   m Mt T X X   where 

MX  is the value of ( )mX t T  at mt T  or equiva- 
lently at 1n  . The corresponding solution holds only 
for mt T  and is given by 

2

( )     exp m
m M

T t
X t T X

Cf

 
   

 
     (23) 

MX can be determined from (18) by using mt T . 
/ 2NC  Then, by using (20) the above expression 

takes the form of Equation (24). 
It would be reasonable to express 0X  as a fraction of 

maxX  for any learner. Taking into account the expres- 
sion of maxX  we may have 

1 2
0 max

1 2

 
 

1

f f
X X

f f


 


, with 0 1    (25) 

Now using (24) and (25) we obtain 

  1
max

max 2

(1 )
( ) 1 1 exp exp

2 2m

Nf N n
X t T X

X f


    
        

     
 

(26) 

The behavior of X, as a function of n, is obtained from 
(22) and (26) for the ranges 0 1n   and 1n   resp- 
ectively (see Figures 5-7). 

5. Applications 

Let us now consider the learning behaviour for a group 
of students, preparing for a certain examination proc- 
ess.The time allotted for preparation before the examina- 
tion is 1T . Let hX  be the information gathered by the 
best learner. Hence using 1 2 1f f  , 1t T  and 

max   ( / 2C ) again. 

1
0

max

1 1
exp

2 2h

T
X X


       

   
       (27) 

A student may make some delay while starting the 
process of learning. Let 1T be the time utilized by any 
arbitrary learner where 0 1  . The delay in starting 
the learning process is 1(1 )T . Let us define  as the 
utilization index. For the most sincere student  = 1. 
Let aX  be the amount of knowledge acquired by any 
arbitrary learner before the commencement of examina-
tion.  

Thus for aX X  at 1 t T  with 2

1 21

C f

f f
 


 we 

have 

1 2 1 2 1
0

1 2 1 2

exp
1 1a

f f f f T
X X

f f f f




             
  (28) 

The performance of any arbitrary student in an exami-
nation, relative to the best learner, can be defined as 

1 2 1 2 1
0

1 2 1 2

1
0

max

exp
1 1

1 1
exp

2 2

a
r

h

f f f f T
X

f f f fX
P

X T
X






             
      

   

 

(29) 

Let us call rP  the relative performance index. We 
can always express 1T  as a multiple of max  as 

1 max 2

C
T

  , with 0        (30) 

Assuming 0 0X   and substituting for 1T  and   
we get see (Figures 8-13) 

.
2

)1(
exp

2

)1(
exp

11
)(

22

21
0

21

21

21

21







 















 

















f

nN

f

ffN
X

ff

ff

ff

ff
TtX m

             (24)
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1 2 1 2 1 2

1 2 1 2 2

2 2   (1 )
exp

1 1 2

1 exp( )
a

r
h

f f f f f f

f f f f fX
P

X

 



   
         

 
 

(31) 

Defining 1 2

1 2

2

1

f f
K

f f



 we obtain 

1  
1 exp

1-exp(- )r

f
K

K
P

 



                  (32) 

When the time available for study is sufficiently long, 
for a sincere learner (with 1  ), the exponential 
terms in the last equation become negligible and it will 
reduce to 

1 2

1 2

2

1r
f f

P K
f f

 


           (33) 

Using experimental results one can determine C and 

2f . 
Let us suppose somebody performs two tests of  

 

 
Figure 5. Graphical representation of (22), (23) and (24) 
with parametric variations.  

 

 

Figure 6. Graphical representation of (22), (23) and (24) 
with parametric variations. 

 
Figure 7. Graphical representation of (22), (23) and (24) 
with parametric variations.  
 

 
Figure 8. rP - 1f  variation for three different 2f , drawn 
on the basis of (31) 
 

 
Figure 9. rP - 2f  variation for three different 1f , drawn 
on the basis of (31).  
 

 
Figure 10. rP – 1f  variation for three different  , drawn 
on the basis of (31). 
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Figure 11. rP - μ  variation for three different η , drawn 
on the basis of (31).  
 

 

Figure 12. rP - μ  variation for three different 1f , 
drawn on the basis of (31).  
 

 

Figure 13. rP - μ  variation for three different 2f , 
drawn on the basis of (31).  
 
knowledge at t T  and 2t T , resulting in TX X  
and 2TX X  respectively. One can determine the ratio 

2 /T TX X  as  

 2 2ln / /T TX X T Cf              (34) 

For the best learner (with 2 1f  ), let the corresponding 
X’s be b

TX  and 2
b
TX  respectively. Hence  

 2ln / /b b
T TX X T C           (35) 

While constructing (34) and (35) the underlying as- 
sumption is that, the maximum data storage capacity C of 
the brain does not vary from person to person. It is a 
constant for all human beings in the adulthood. Again as 

 
 

2

2
2

ln /

ln /

b b
T T

T T

X X
f

X X
              (36) 

One can determine the memory index ( 2f ) of any 

learner using the grade points scored by him and by the 
best learner also, in the two examinations held at t T  
and 2t T . Now from (35)  

  22
ln lnln / b bb b

T TT T

T T
C

X XX X
  


     (37) 

Using (33) and (36) we get 

 
   

2
1

2

ln /

2 ln /
r T T

b b
r T T

P X X
f

P X X



        (38)  

One can determine the merit index 1f  of any individ-
ual from the grade points scored by him and the best 
learner in two examination held at t T  and 2t T .  

The validity of the above set of equations are ensured 
if the data entry channel remains closed during the time 
between t T  and 2t T . It means that these equa- 
tions hold good only if there is no conscious learning 
effort during this interval of time, on the part of both 
learners. 

6. More Generalised Analysis 

The common experience of learning tells us that if we 
sustain the learning process (by keeping ( ) 1S t  ) for an 
indefinite period of time, the memory X will continue to 
increase but with a gradually decreasing rate. The value 
of X will asymptotically approach a definite saturation 
level ( maxX ), which is likely to depend on parameters 
( 1 2, , , ,f f C   ) of the model given in (10).  

Therefore, at ( ) 1S t  and maxX X , (10) is expe- 
cted to show the following behavior 

  max1
max

2

1 0
XfdX

X
dt C Cf


          (39) 

Hence 

  1/ /
1 2 max max   1 0f f X X

         (40) 

The parameter 1 2f f  is generally a fraction. Hence we 
can write 1 2 1/f f   where 1  . Substituting this in 
(40) we have 
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 1/ /
max max    1 0X X

              (41) 

The real solutions of this polynomial are the intersec-
tions of the curve   1/

max  y X   with straight line 

max1y X  . For max 1X  , the curve will never have 
0y   as obtained for the straight line. Thus, we always 

have max 1X   which means that a learner will always 
have x C . Theoretically, the highest possible value of 

( / )X x C  is 1. Here we have to consider the particular 
real and positive maxX  (we definitely have some positive 
roots as all the parameters are positive) which is less than 
1. For an individual learner, it is always desirable to have 
a saturation value ( maxX ) that is as close to 1 as possible. 
To ensure it, the curve   1/

max  y X    must be very 
flat. Since max0 1X  , for a sufficiently large value of 
  we must have max 1X   . Hence, for this large value 
of  , one can increase the flatness of the curve by re-
ducing the value of  . From the definitions of   and 
  it is clear that, persons with larger values of the ratio 

/   must make better learning performances. Here we 
see that larger values of this ratio increase the flatness of 
the curve   1/

max  y X   , making maxX  closer to 1. 
In Figure 14, we have a plot of maxX  as a function of 

/   for three different values of  . Any of these 
curves shows that as the ratio /   increases, maxX  
increases. At any fixed value of /  , the value of 

maxX  increases as   increases.  
It is important to calculate the time required for reach- 

ing the saturation level. We know that, as t  , we 
have maxX X , where maxX  is the saturation value. 
One can calculate the time required to reach a certain 
fraction of maxX . Let us define optimum time ( optT ) as 
the time required to reach 99% of the saturation value. 
Putting ( ) 1S t   in (10) we find an analytical expres- 
sion for optT  as  

0.99

2
1 2

max

(1 )

X

opt
Xin

dX
T Cf

f f X X 
     (42) 

Here, inX  indicates the initial amount of memory at t 
= 0. (42) shows that the integrand diminishes for smaller 
values of   and larger values of   since 0 1X  . 
Therefore, the ratio /   may be expected to play a 
significant role here. This integrand also decreases for 
any increase in the value of the quantity 1 2f f . For a 
definite set of numerical values of the model-parameters 
we can estimate optT  numerically from (42) and can 
compare it with mT  For any learner it is desirable to 
maximize maxX  and minimize optT . 

Let us consider a situation that allows one to continue 
the conscious learning process up to the time of mt T .  

 

Figure 14. Variation of maxX  as a function of β / α  for 
different values of β  for C = 10, f1 = 0.6, f2 = 0.6, ε = 
1000000, T = 200, X0 = 0, S(t) = 1. 
 

Thus, from mt T  onwards we have ( ) 0S t  . Here, 

mT  may be the time given for preparation before any 
test of learning. Comparing mT  with optT , let us dis-
cuss different possible cases below. 

a) m optT T : In this case the learner gets the percep-
tion of reaching the saturation level before having to stop 
the learning process.  

b) m optT T : Here, the learner just reaches the satura-
tion level at the end of the time interval given for learn-
ing. It is worse compared to the last case.  

c) m optT T : This situation is the most undesirable 
one. Here the learner has to stop the process before at-
taining the saturation level of learning. 

To explore the role played by the ratio /  , we may 
define average learning speed ( avS ) as follows 

max0.99
av

opt

X
S

T
               (43) 

In Figure 15, we have a plot of avS  as a function of 
the ratio /   for three different values of  . Each 
curve has an increasing trend with a gradually decreasing 
slope. Although these curves have intersections with 
each other at lower values of /  , at higher values of 
this ratio, avS  becomes larger for greater values of  .  
Let us now analyze the situation after one stop the learn-
ing process at mt T . The system now follows the (11). 
Since we have already discussed cases with 1  earlier, 
we should now consider the cases with 1  . Consid-
ering the boundary condition that kX X  at mt T , 
we may write  

1
1

2

(1 )
1

m kT t X
X

Cf


 




  

   
 

         (44) 
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Figure 15. Variation of average learning speed (Sav) as a 
function of β / α  for different values of β  for C = 10, f1 

= 0.6, f2 = 0.6, ε = 1000000, T = 200, X0 = 0, S(t) = 1. 
 

Here we have to take into account the physical reality 
that, for mt T  we must always have 0X   and 
therefore 1 0X   . (44) clearly shows that, 1 0X    
at any point of time beyond mt T  only if 1  . Thus, 
the present study shows that, the model is logically ac-
ceptable only for 1  . Unlike exponential decay, 
which was obtained for the case with 1  , we have the 
following solution for 1   

1/(1 )
1

2

(1 )
1

m kT t X
X

Cf






  
    

   
      (45) 

(45) suggests that X decreases with time but it remains 
greater than zero (since mt T  and 1  ). We never 
lose our entire memory in the decay process.  

Common experience tells us that when one is engaged 
in a conscious learning process (i.e. ( ) 1S t  ), we must 
have / 0dx dt  . Then, from (10) we can write 

 1/
  1 ,X X

   where 1 21/ f f      (46) 

The values of   and   should be such that (46) is 
satisfied for the highest possible values of   and X.  

7. Conclusions 

We have proposed and analyzed a simple model of lea- 
rning process. Some numerical results including simula-
tions are also presented. Learning and memorizing are 
two most essential features of human brain. The model 
can further be improved by considering more compli- 
cated growth and decay process. These can be achieved 
if we express the features of memorizing process as men-

tioned in (3) and (4), e.g. grasping power, stress, IQ etc. 
separately in clear mathematical form with proper ex-
planations.  
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