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Abstract 
There are a few statistics testing the homogeneity of odds ratios across strata. 
Asymptotic statistics lose their power in the “sparse-data” setting. Both 
asymptotic statistics and exact tests have low power when the sample sizes are 
small. We created a set of U statistics and compared them with some existing 
statistics in testing homogeneity of OR at different data settings. We eva-
luated their performance in terms of the empirical size and power via Monto 
Carlo simulations. Our results showed that two of the U-statistics under our 
study had higher power for testing homogeneity of odds ratios for 2 by 2 con-
tingency tables. The application of the tests was illustrated in two real examples. 
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1. Introduction 

Odds ratio is commonly used in the analysis of association of two factors that 
both have two categories. In epidemiological studies and clinical trials, these two 
factors usually refer to the exposure (treatment/intervention/risk) factor X and 
the outcome factor Y respectively. The association between X and Y, however, 
could be modified or confounded by a third factor Z. For example, in a mul-
ti-center clinical trial, factor Z could be the center. Each center is corresponding 
to a stratum of Z. Because the presence of the heterogeneity of odds ratios may 
lead to different methods of analysis, researchers usually want to test whether 
the odds ratios are homogeneous across the strata of the factor Z or not. This 
type of tests is called the tests for homogeneity of the odds ratios, or the tests for 
null interaction.  
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A few procedures have been developed for testing the homogeneity of odds 
ratios. They are usually categorized into two classes: exact tests and asymptotic 
tests. Most of the asymptotic statistics were derived for “large-stratum” settings, 
where the sample size is large, and the number of strata is small. Liang and Self 
[1] developed two asymptotic statistics—score statistics for the “sparse-data” 
setting, where there are many cells with small counts and/or zeros. The asymp-
totic tests could be poor if there were some cells with small cell counts in the 
contingency tables even when the sample size was quite large. The empirical siz-
es of the asymptotic tests were shown to be conservative when the data were 
“small-stratum” setting [2]. Jones et al. [3] showed in their simulation study that, 
in the “sparse-data” setting, five asymptotic tests suffered in both empirical size 
and power. Zelen [4] constructed an exact test for homogeneity that employs the 
ordering principle for a single 2 by 2 table, which was reexamined by Halperin et 
al. [5]. Algorithms were developed for the Zelen exact test later [6] [7] [8] [9]. 
Hirji et al. [10] showed that their algorithm for the Zelen statistic was more ver-
satile and efficient in terms of the accuracy and the usage of memory in the 
computer computation. Hirji et al. [10] also constructed five other exact statis-
tics from their asymptotic counterparts, which are score, likelihood ratio, Pear-
son χ2 and mixture model χ2 tests. The exact tests are computationally intensive, 
particularly when the cell counts are large. Reis, Hirji and Afifi [11] examined 
the performance of the empirical power of six asymptotic statistics and six exact 
tests mentioned above; the results of the study showed that the power of both 
exact and asymptotic tests was low when sample sizes were small even with rela-
tively large heterogeneity among odds ratios. Baghri et al. [12] compared three 
tests of homogeneity of odds ratios. A recent study investigated profile likelih-
ood tests for common odds ratios in meta-analysis [13].  

Our study presented in this paper compared a class of U-statistics with the es-
tablished tests such as the Zelen test and the Breslow-Day test. 

2. U-Statistics 

The statistics of the form  

( ) ( )
( )

1
,

! ! ! , ,
li i

n l
U l n l n h X X= −   ∑                 (1) 

are known as U-statistics, where { }1
, ,

li iX X  is a set of l-subset of { }1, , n
;  

the sum 
( ),n l
∑  is taken over all subsets 11 li i n≤ < < ≤  of { }1,2, , n

; h is the  

kernel function and symmetric in its arguments. In our study, we investigated 
the applicability of this class of statistics with l = 2 in testing homogeneity of odds 
ratios among 2 by 2 tables. U-statistics were first identified as a minimum-variance 
unbiased estimator by Halmos [14] and were named by Hoeffding [15], who 
demonstrated the asymptotic normality of this class of statistics in his seminal pa-
per [15], Many statistics in common use are members of this class, including the 
sample mean, the sample variance and the sample covariance [16] [17]. 
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Table 1 shows a 2 by 2 table of a stratum k. 
Assume that ak and bk are counts of independent binomial outcomes from 

number nk and mk of trials with or without exposure at the stratum k respective-
ly; Nk is the total sample size of the stratum k; and the tables are independent 
among strata. The commonly used estimate of the odds ratio of the kth stratum 
is expressed as: ( )( ) ( )( )ˆ kk k k k k ka n a b m bψ −= − . We want to test whether 
the odds ratios are homogeneous among all K strata (or all levels of the third va-
riable Z), that is to test H0: 1 2 Kψ ψ ψ ψ= = = =  against Ha: i jψ ψ≠  for at 
least one pair of (i, j), where , 1, , ,i j K i j= ≠ .  

Our study evaluated a class of weighted U-statistics ( )ˆ ˆ,ij i j
i j

w h ψ ψ
<
∑  as well as  

a class of unweighted U-statistics ( )( ) ( )2! 2 ! ! ˆ ˆ,i ji jK hK ψ ψ
<

− ∑ , where ˆ iψ  
and ˆ jψ  are the estimates of the odds ratios in the ith and jth stratum of Z, 

( )ˆ ˆ,i jh ψ ψ  is a function of ˆ iψ  and ˆ jψ , and ijw  is the weight associated with 

( )ˆ ˆ,i jh ψ ψ . Based on the simulation results, we only focus our attention on the 
following two statistics in this paper: 

U3: ( )( ) ˆ ˆlog2! 2 ! ! logi ji jK K ψ ψ
<

−− ∑ ,              (2) 

WU3: ˆ ˆlog log
K

ij i j
i j

w ψ ψ
<

−∑ .                    (3) 

The base of log in all formula is e. The sample distribution of the estimated 
odds ratio is highly skewed when the sample size is small or moderate. Because 
of this, we used the natural logarithm of ψ̂  in U3 and WU3 to reduce the 
skewness. Consider that a large stratum offers more accurate estimate for the 
odds ratio, a weight was selected for each ( )ˆ ˆ,i jh ψ ψ  in expression (3), which is 
proportional to the stratum’s size. It has the following form:  

( )ij i j kw w w w= ∑                        (4) 

where ( )( )1 var lo ˆgi iw ψ= . The log transform of the sample odds ratio has an 
asymptotic variance in a simple form, which is,  

( ) ( ) ( )var log 1 1 1 1ˆ k k k k k kk a n a b m bψ ≈ + − + + − . If there was any cell count 
that equals to zero, the odds ratio estimate ˆkψ  and ( )var log ˆkψ  from the 
above formula would be undefined. We added 0.5 to each cell count of that table 
in the calculations to get the amended estimators [18]. In our simulation, we 
studied other forms of U-statistics. Due to the relatively poor performance of the 
others, we only report the results of the U3 and the WU3 and their comparisons 
to the Zelen’s test and the Breslow-Day test in this paper. Detailed results are 
available upon request. 
 
Table 1. 2 × 2 table of X and Y at Z = k. 

 Y = 1 Y = 0  

X = 1 ak nk - ak nk 

X = 0 bk mk - bk mk 

 tk Nk - tk Nk 
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3. Simulation Study 

A total of 10,000 data sets were simulated using the SAS subroutine RANBIN. 
Each data set contains pre-specified K sets of 2 by 2 tables. The cell counts ak and 
bk were independently generated from binomial distributions (nk, p1k) and (mk, 
p0k), where ( )1| ,xkp P Y X x Z k= = = =  is the probability of Y = 1 when X = x 
(x = 1, 0) in the kth stratum. Each set of the tables was simulated with a given nk, 
mk, the number of the strata K and the odds ratios. For a given odd ratio ψk and 
a binomial proportion p0k, p1k was calculated by solving:  

( ) ( )1 1 0 01 1k k k k kp p p pψ    = − −    . 

Following the previous simulation study by Reis, Hirji and Afifi [11], five fac-
tors that might influence the sizes and power of the test statistics were studied. 
These five factors are: 1) the sample size for X = 1 (nk); 2) the ratio of the sample 
sizes of X = 0 and X = 1 (mk:nk); 3) the probability of Y = 1 among X = 0 (p0k); 4) 
the odds ratio (OR) kψ ; 5) the number of 2 × 2 tables, K (strata). In order to 
study the performance of the statistics, different values of the above five factors 
(parameters) were chosen to simulate different data sets. In choosing the values 
of nk, mk:nk, p0k, kψ , and K, we took the following factors into account: the situ-
ations in practice, the characteristics of U-statistics and the design of the simula-
tion study by Reis, Hirji and Afifi [11]. When the effect of one factor was studied, 
the other four factors’ values were fixed.  

We compared the performance of the U-statistics with the Breslow-Day statis-
tic and Zelen’s exact test in our simulation study. A C++ program was written to 
calculate these statistics’ exact P-values, empirical sizes and power. The empiri-
cal size was calculated as the percentage of times that the test rejected the null 
hypothesis of a common odds ratio at a pre-specified α level among 10,000 tests 
that were simulated with same odds ratios among K tables. The empirical power 
was calculated as the percentage of times that a test rejected the null hypothesis 
of a common odds ratio at a prescribed α level when data were simulated under 
alternative hypotheses. Because the U-statistics studied here are functions of the 
sums across all the absolute distances between all possible pairs of the estimated 
odds ratios in log scale, a large value of U statistics indicates the heterogeneity of 
the odds ratio. 

Theoretically, under suitable conditions, ( ) ( )varT E T T−    will be 
asymptotically following ( )0,1N  as K →∞ , where T represents a U-statistic. 
In our study, the sample mean and the sample variance of 10,000 statistics un-
der the null hypothesis were used to estimate the E(T) and the var(T). In an ac-
tual application, the sample mean and variance may be estimated as suggested 
in our application section. In the simulation, one would use the result from ex-
pression [9] for the variance. In so doing, one would get a different numerical 
value of the variance for each realization, which was inconsistent with our as-
sumption of common variance. The effect of unequal variance is still under in-
vestigation.  
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4. Results of the Simulation Study 
4.1. Empirical Sizes of the Tests 

The five factors affected the test statistics differently. The empirical size of the 
Breslow-Day test was improved (moved closer to the predefined α level) as the 
values of nk, mk:nk, p0k and odds ratios increased but diverged from the 
pre-specified α level when the number of stratum increased. A weak trend was 
observed that the empirical size of U3 and WU3 moved closer and then diverged 
from the pre-specified α level when the sample size nk increased (Figure 1). Sim-
ilar results were observed in studying the effect of ratio mk:nk; their empirical 
sizes were improved when mk:nk increased to moderate value (mk:nk equal to 2 
or 3), they then diverged from the predefined significant level 0.05 if the value of 
mk:nk was higher (Figure 2). The empirical sizes of U-statistics increased as the 
value of the odds ratio increased. The probability p0k had the least impact on the 
empirical sizes of the two U-statistics. 

The number of strata K had an apparent effect on the sizes of U-statistics; 
their empirical sizes were improved as K increased (Figure 3), even when the 
total sample size remained the same (Figure 4). The empirical size of Bres-
low-Day test diverged from the predefined nominal size of 5% as the value of K 
increased. The empirical size of Zelen test improved as K and total sample size 
increased but diverged from nominal size of 5% when the number of stratums 
increased without increasing the total sample size. 

4.2. Empirical Power of the Statistics 

Seven settings of heterogeneous odds ratios were evaluated as alternative hypo-
theses in our study. However, in this article, we only reported the empirical 
powers from the scenario that the alterative odds ratios were generated following 
the pattern of 1, 2, 3, 7. That is, 25% of the generated tables under Ha have odds 
ratios being 1, 2, 3 and 7, respectively. In order to show the effects of different 
factors on the test statistics, we also simulated the critical values based on these 
factors (Figures 5-11).  

 

 
Figure 1. The effect of nk on empirical size, Sparse-strata setting, between 
strata balanced: (p0k = 0.1, K = 10, mk:nk = 1, OR = 2). 
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Figure 2. The effect of ratio mk:nk on empirical size, between strata balanced setting: 
(p0k = 0.05, K = 10, nk = 10, OR = 2). 

 

 

Figure 3. The effect of the number of strata K on empirical size, between strata ba-
lanced and within strata balanced: (p0k = 0.05, nk = 10, mk:nk = 1, OR = 2).  

 

 

Figure 4. The effect of the number of strata K on empirical size, between strata un-
balanced and within strata balanced: (p0k = 0.1, nk = 10, mk:nk = 1, OR = 2). 
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Figure 5. The effect of nk on empirical power, between strata balanced: (p0k = 
0.1, K = 10, mk:nk = 1, Ha7 shown in Table 1). 

 

 

Figure 6. The effect of nk on empirical power, between strata unbalanced and 
within strata balanced setting: Two large strata with OR = 2, and 7, nk 
changed as shown in figure, Eight small strata with OR = 1, 2, 3, 7, 1, 2, 3, 7, 
nk = 5. (p0k = 0.05, K = 10, mk:nk = 1, Ha7 shown in Table 1). 

 

 

Figure 7. The effect of ratio mk:nk on empirical power, between strata ba-
lanced setting: (p0k = 0.05, K = 10, nk = 10, OR = 2, Ha7 shown in Table 1). 
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Figure 8. The effect of the value of odds ratio on empirical power, between 
strata balanced and within strata balanced, (p0k = 0.05, nk = 10, mk:nk = 1, K = 
10, Ha7 shown in Table 1). 

 

 

Figure 9. The effect of the value of p0k on empirical power, between strata balanced and 
within strata balanced, (nk = 10, mk:nk = 1, K = 10, OR = 2, Ha7 shown in Table 1). 

 

 

Figure 10. The effect of the number of strata K on empirical power, between 
strata balanced and within strata balanced: (p0k = 0.05; nk = 10; mk:nk = 1; OR 
= 2, Ha7 shown in Table 1). 
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Figure 11. The effect of the number of strata K on empirical power, between strata 
unbalanced and within strata balanced: Total sample size keeps unchanged while 
changing value of K. (p0k = 0.05; mk:nk = 1; ORi = ORj = 2. 4 small strata with nk = 5, 
and (K-4) large strata with nk = 240/(2 × (K − 4)), Ha7 shown in Table 1). 

 

All the statistics’ empirical power increased as nk increased (Figure 5, Figure 
6). The value of the ratio mk:nk had very little effect on the empirical power of 
U3; the empirical power of the weighted U-statistic and Breslow-Day test were 
improved as the value of mk:nk increased (Figure 7). Increasing the value of the 
odds ratio under the null hypothesis decreased the empirical power of all statis-
tics studied (Figure 8). The empirical power increased as the value of p0k in-
creased (Figure 9). When the number of strata K increased, together with total 
sample size increased, the power of the U-statistics and Zelen’s exact test were 
improved (Figure 10); If the total sample size remained the same when K in-
creased, the empirical sizes of the U-statistics were improved; the empirical size 
of the Breslow-Day and Zelen’s statistics diverged from 5%; the empirical power 
of U3 almost remained unchanged, the others’ power decreased (Figure 11). 

5. Application to Published Data 

Generally, U3 and WU3 performed well in terms of both size and power. Their 
empirical sizes were stable under various situations and had relatively high power.  

With the assumption that the odds ratios of K 2 × 2 tables are the same; and 
( )log ˆ iψ  is normally distributed with variance equal to 2σ , we can derive the 

estimated expected value of U3 and WU3. They are:  

( ) ( )( ) ( )
( )( ) ( )( )2 2

0

ˆ ˆlog log3 2!

2 1 2 π exp 4 d π

2 ! !

2

i ji jE U K E

x

K

x x

ψ ψ

σ σ σ

<

∞

= −

=

−

− =

∑

∫
         (5) 

( )

( )

ˆ ˆlog log

ˆ ˆlog lo

3

g 2 π

K

ij i j
i j

K K

i j ij ij
i j i j

E WU E

E

w

w w

ψ ψ

ψ ψ σ

<

< <

 
=  

 
−

− ==

∑

∑ ∑
           (6) 
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The variance of U3 can be also expressed as: 

( ) ( ) ( ) ( )2 2var 3 2! 2 ! ! 2 2 1.436 2 2U K K K Kσ σ = − − + −     .       (7) 

The variance of WU3 can be also expressed as: 

( ) 2 2 21.a 3 2r 436v ij ik ij
j k i j

WU w w wσ σ
≠ <

 
+ 

 
= ∑ ∑ .              (8) 

To estimate the 2σ , consider the Mantel-Haenzel estimator of common odds 
ratio ˆMHψ  as a weighted average of odds ratios. Given the weight, we can solve 
the 2σ  as a function of ( )( )ˆvar log MHψ , which is:  

( )( ) ( ) ( )22 2ˆvar log k k k k k kMH b c N b c Nσ ψ   = ∑ ∑           (9) 

And the value of ( )( )ˆvar log MHψ  can be calculated by the following formula: 

( )( ) ( ) ( )2

2

2 2

2

ˆvar log i i i i i i i i i

i i

M

i

H G P G G Q H P G H

H Q H

ψ   + +       



=

+  

∑ ∑ ∑ ∑ ∑

∑ ∑
 

where i i i iG a d N= , i i i iH b c N= , ( )i i i iP a d N= + , ( )i i i iQ b c N= + . 
To illustrate the application of these two U-statistics, we applied and com-

pared them to the Breslow-Day statistic and the Zelen statistic in two published 
data sets: 1) Alcohol assumption data (Table 2) are from Statistical Methods in 
Cancer Research [19], volume 1 page 137, which is an example for introducing 
the use of Breslow-Day statistic; 2) new drug data (Table 4) are from a study of 
comparing a new drug with a controlled drug among 22 hospital sites [20]. Be-
cause of the sparseness of the data, asymptotic tests (Breslow-Day statistic) 
might not be able to yield an accurate p-value. The test results for the homo-
geneity of odds ratios are presented in Table 2 and Table 4. For data set 1), ac-
cording to the p-values of the test statistics, U3 rejected the null hypothesis; the 
WU3, Breslow-Day, and Zelen statistics accepted the null hypothesis at 0.05 level. 
For data set 2), Zelen and WU3 rejected the null hypothesis, yet Breslow-Day 
and U3 accepted the null hypothesis of no difference among odds ratios at 0.05 
level (Tables 2-5).  

6. Discussion and Conclusions 

To summarize the simulation study that we conducted, the following are some 
remarks: When the number of strata is not very small, (K ≥ 6), the empirical size 
of U3 and WU3 were very stable under various situations and stay very close to 
the nominal of 0.05. In terms of size and power, U3 and WU3 performed better 
than the Breslow-Day statistic and the Zelen’s exact test. Therefore, U3 and 
WU3 are considered as better statistics for testing the homogeneity of odds ra-
tios in this situation. The test statistic U3 is recommended when the sample size 
is the same in each stratum, the number of strata is large and the sample size in 
each stratum is not large. Otherwise, WU3 is recommended.  

Breslow-Day test is conservative in most situations; its empirical size is close 
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Table 2. Alcohol consumption data. 

Age  Daily Alcohol Consumption Odds Ratio 

(Years)  80 + g 0 - 79 g  

     

25 - 34 Case 1 0 33.63 

 Control 9 106  

     

35 - 44 Case 4 5 5.05 

 Control 26 164  

     

45 - 54 Case 25 21 5.67 

 Control 29 138  

     

55 - 64 Case 42 34 6.36 

 Control 27 139  

     

65 - 74 Case 19 26 2.58 

 Control 18 88  

     

75+ Case 5 8 40.76 

 Control 0 31  

Source: Statistical Methods in Cancer Research, volume 1, page 137. 
 

Table 3. Homogeneity odds ratio test results for alcohol consumption data. 

Statistics Observed value Expected value Variance z value p-value 

U3 2.24525 0.452702 0.144733 2.24525 0.000001228 

WU3 6.25017 4.47819 8.0402 0.624919 0.26601 

Breslow_Day 9.38159    0.0968 

Zelen exact 0.0968552    0.0969 

 
Table 4. New drug data. 

Test Site New Drug Control Drug Odds Ratio 

 Response No Response No  

1 0 15 0 15 1 

2 0 39 6 32 0.06 

3 1 20 3 18 0.3 

4 1 14 2 15 0.54 

5 1 20 2 19 0.48 

6 0 12 2 10 0.17 
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Continued 

7 3 49 10 42 0.26 

8 0 19 2 17 0.18 

9 1 14 0 15 1.07 

10 2 26 2 27 1.04 

11 0 19 2 18 0.19 

12 0 12 1 11 0.31 

13 0 24 5 19 0.07 

14 2 10 2 11 1.1 

15 0 14 11 3 0.01 

16 0 53 4 48 0.1 

17 0 20 0 20 1 

18 0 21 0 21 1 

19 1 50 1 48 0.96 

20 0 13 1 13 0.32 

21 0 13 1 13 0.32 

22 0 21 0 21 1 

 
Table 5. Homogeneity odds ratio test results for new drug data. 

Statistics Observed value Expected value Variance z value p-value 

U3 1.3056 0.762194 0.117405 1.58593 0.0564 

WU3 6.56955 4.11497 1.09492 2.34578 0.0095 

Breslow-Day 25.7844    0.0785 

Zelen exact 0.0292015    0.0292 

 
to 0.05 when the sample size is large; when sample size is small, Breslow-Day test 
is not recommended. Breslow-Day test is never recommended for sparse data;  

When the sample size is small and the number of strata is small, say less than 
5, Zelen’s exact test is recommended; 

In our application, the sample mean and the variance were estimated based on 
certain assumptions. The empirical power and size of U3 and WU3 would be 
highly dependent on how well the estimator of 2σ  would be.  
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