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Abstract 

We elaborate on an alternative representation of conditional probability to 
the usual tree diagram. We term the representation “turtleback diagram” for 
its resemblance to the pattern on turtle shells. Adopting the set theoretic view 
of events and the sample space, the turtleback diagram uses elements from 
Venn diagrams—set intersection, complement and partition—for condition-
ing, with the additional notion that the area of a set indicates probability 
whereas the ratio of areas for conditional probability. Once parts of the dia-
gram are drawn and properly labeled, the calculation of conditional probabil-
ity involves only simple arithmetic on the area of relevant sets. We discuss 
turtleback diagrams in relation to other visual representations of conditional 
probability, and detail several scenarios in which turtleback diagrams prove 
useful. By the equivalence of recursive space partition and the tree, the tur-
tleback diagram is seen to be equally expressive as the tree diagram for ab-
stract concepts. We also provide empirical data on the use of turtleback dia-
grams with undergraduate students in elementary statistics or probability 
courses.  
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1. Introduction 

Conditional probability [1] [2] [3] [4] is an important concept in probability and 
statistics. It has been widely acknowledged that the concept of conditional 
probability, and particularly its application in practical contexts, are difficult for 
students [5] [6] [7] [8] [9] [10] [11] [12] and especially those without much 
background or previous training in mathematics at the college level. 
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Let A and B be two events, then the conditional probability of A given B is de-
fined as 

( ) ( )
( )

| .
A B

A B
B

=





                       (1) 

Our experience with undergraduate students is that a major difficulty in under-
standing and working effectively with conditional probability lies in the level of 
abstraction involved in the concepts of “event” and “conditioning”; see also [7]. 

The focus of this article is on productive visual representations for the under-
standing and application of conditional probability. The significant role of visual 
representation in mathematics is well-established; see, for example, [13] [14]. 
While visualization is an important topic in statistics (see, e.g., [15] [16]), the 
role of visualization in statistics education or practice is not as well documented. 
In particular, there is actually not much research into productive visualization of 
conditional probability [17] [18]; popular books such as [19] do not dedicate 
much effort to visual explanations of the Bayes theorem. There has been some 
research on school student difficulties with conditional probability [6] [8] [10] 
[11] [12] but much less so for undergraduates. Our aim in discussing turtleback 
diagrams is to provide a visual tool for the representation of conditional proba-
bility that may, additionally, be used in further research on student understand-
ing of conditional probability. 

2. Student Difficulties in Understanding Conditional  
Probability 

Tomlinson and Quinn [9], in discussing their graphic model for representing 
conditional probability (see Section 3.2.1), state: 

“Conditional probability is a difficult topic for students to master. Often 
counter-intuitive, its central laws are composed of abstract terms and com-
plex equations that do not immediately mesh with subjective intuitions of 
experience. If students are to acquire the mathematical skills necessary for 
rational judgement, teaching must focus on challenging the personal biases 
and cognitive heuristics identified by psychologists, and demonstrate in the 
most accessible way—the power of probabilistic reasoning.” (p. 7) 

Documented student difficulties with conditional probability can be summa-
rized as one of three main types [7]: 

1) Interpreting conditionality as causality. 
2) Identifying and describing the conditioning event. 
3) Confusing ( )|A B  and ( )|B A . 
Tarr and Jones [8] developed a valid and reliable framework for addressing 

student difficulties with conditional probability, in the context of sampling 
without replacement. This framework is particularly valuable in carrying out re-
search as to which visual representation of conditional probability is most useful 
in assisting students and teachers. 
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3. Visual Representations of Conditional Probability 

3.1. Tree Diagrams 

Tree diagrams have been used by many to help understand conditional proba-
bility. The idea of a tree diagram is to use nodes for events, the splitting of a 
node for sub-events, and the edges in the tree for conditioning. For example, 
Figure 1 is an illustration of conditional probability. Node * indicates the sample 
space Ω , and we will use them interchangeably throughout. Two possible 
events, either B  or B , may happen. This is represented by two tree nodes B
and B . The splitting of node B  into two nodes A  and A  indicates that, 
given B , two possible events, A  and A , may occur. The edges, B A→  and 
B A→  indicate conditional probabilities, ( )|A B  and ( )|A B , respec-
tively. Tree diagrams help many students to understand the concept of condi-
tional probability and apply it for problem solving, but is not so effective to 
many others especially those less prepared ones. Basically, they find the follow-
ing two aspects non-intuitive. One is to represent events by tree nodes, which 
usually appear as dots or small circles, but events are sets and are more naturally 
represented by Venn diagram [20] type of notations. Another is the idea to 
represent conditional probability by tree edges; it is hard to see any straightfor-
ward connections of this to formula (1). 

To address issues with the tree diagram, let us re-examine the idea of graphi-
cal visualization. There are two important ingredients (or steps) in visualizing an 
abstract mathematical concept. One is a concrete graphical representation of the 
target mathematical objects. This step would offload part of the burden of the 
brain by concrete graph objects, without which one has to keep relevant abstract 
mathematical objects in the brain and gets ready for subsequent mathematical 
operation. The second is that, the mathematical concept or operation can be 
understood or achieved by a simple operation on the graphical objects. This is 
the step to be carried out in the brain, and preferred to be simple (or at least 
conceptually simple). If a balance could be achieved between these two ingre-
dients in visualizing a mathematical concept, then the graphical tool would be 
successful. This explains why the Venn diagram has been so successful since it 
was introduced, and has now become the standard graphical tool for set theory. 
Essentially, the Venn diagram converts the set objects to graph objects in such a 
way that many set relationships or operations could be accomplished by “reading” 

 

 
Figure 1. The tree diagram approach for conditional probability. 
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the diagram—the mathematical operation is done directly by the human visual 
system, instead of having to invoke both the visual system and the brain. On the 
other hand, for the tree diagram, each of the two ingredients does some job but 
there is room for improvement. 

The turtleback diagram we propose tries to optimize the two steps involved in 
the design of a graphical tool for conditional probability. In particular, it views 
events and the sample spaces as sets, and uses elements from Venn dia-
grams—set intersection, complement and partition—for conditioning, with the 
additional notion that the area of a set indicates probability whereas the ratio of 
areas associated with relevant sets indicates conditional probability. Once parts 
of the diagram are drawn and properly labelled, the calculation of conditional 
probability involves just simple arithmetic on the area of relevant sets. This 
makes it particularly easy to understand and use for problem solving. 

3.2. Other Visual Representations 

There have been several prior attempts to represent conditional probability vi-
sually [9] [21] [22] [23], and we discuss briefly three of these below. 

3.2.1. Tomlinson-Quinn Graphical Model 
This graphical model, for facilitating a visually moderated understanding of 
conditional probability, described in [9], is a modified tree diagram. 

Tomlinson and Quinn visualize compound events ,A B A B   as nodes of a 
tree (see Figure 2 of [9]), so essentially their idea is still a tree diagram in which 
they carry out a Venn-diagram like visualization at each tree node. 

3.2.2. Roullete-Wheel Diagrams 
Yamagishi [22] introduces roullete-wheel diagrams as a visual representation 
tool; see Figure 1, p. 98 of [22]. He argues that 

“The graphical nature of [roulette-wheel diagrams] take advantage of 
people’s automatic visual computation in grasping the relationship between 
the prior and posterior probabilities.” (p. 105). 

and provides experimental evidence that use of roulette-wheel diagrams in-
creases understanding of conditional probability beyond that for tree diagrams. 
In this regard, Sloman et al. [24] state: 

“The studies reported support the nested-sets hypothesis over the natural 
frequency hypothesis. .... The nested-sets hypothesis is the general claim 
that making nested-set relations transparent will increase the coherence of 
probability judgment.” (p. 307) 

3.2.3. Iconic Diagrams 
“Iconicity” is the lowest of Terrence Deacon’s three levels of symbolic interpre-
tation1 [25], as it is for Peirce on whose semiotic work Deacon’s theory is  

 

 

1In Deacon’s framework, there are three levels of referential relationship in a cognitive process, in-
cluding iconic, indexical, and symbolic reference, where higher levels are built hierarchically upon 
lower levels. 
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Figure 2. A diagram that is universally iconic for humans. 

 
based. An icon is a form of graphical representation that requires no significant 
depth of interpretation: an icon brings to mind, without any apparent interme-
diate thought, something that it resembles. For example, the diagram in Figure 2 
is universally iconic for human beings. Brase [23] carried out a number of expe-
riments from which he inferred that an iconic representation of a Bayesian 
probability question is more effective in eliciting correct responses than either 
no visual aids, or Venn diagrams. 

A modified version of Brase’s question is as follows: 

“A new test has been developed for a particular form of cancer found only 
in women. This new test is not completely accurate. Data from other tests 
indicate a woman has 7 chances out of 100 of having cancer. The test indi-
cated positively only 5 of these women as having cancer. On the other hand, 
the test indicated a positive result for 14 of the 93 women without cancer. 
Janine is tested for cancer with this new test. Janine has probability—of a 
positive result from the test, with a probability—of actually having cancer.” 

An iconic representation for this problem is shown in Figure 3. 
The strength of such iconic representations is that they reduce the calculation 

of probabilities to simple counting problems and, as Brase [23] demonstrates, 
are effective in assisting students to get correct answers. A weakness of iconic 
representations such as these, are that they rely on counting discrete items and 
so are quite limited in representing more realistic probabilities. 

3.3. Turtleback Diagrams 

Our focus is on how to represent an event graphically, how to relate it to the 
sample space, how to express the notion of conditioning such that it would be 
easy to understand the concept of conditional probability, to gather pieces of in-
formation together, and to solve problems accordingly. 

We start by treating the sample space (denoted by Ω ) and events as sets, and 
in terms of graph, as a region and its sub-regions, similarly as in a Venn diagram. 
Assume the region representing the original sample space Ω  has an area of 1. 
To simplify our discussion (or to abuse the notation), we will use a label, say B, 
to denote the region associated with event B. Note that here the label can be ei-
ther a single letter, or several letters (such a case indicates the intersection of 
events. For example, a label AB indicates the intersection of events A and B and 
thus that of regions A and B). Similarly we can use the union of two regions 
(viewed as sets) to represent the union of two events. Other operations of events  
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Figure 3. An iconic representation of the effectiveness of a cancer test. 

 
can also be defined accordingly in terms of set operations; we omit the details 
here. To quantify the chance of an event, we associate it with the area of the re-
levant region. For example, ( )B  is indicated by the area of region B . 

The centerpiece in “graphing” conditional probability is to express the notion of 
conditioning. This can be achieved by re-examining the definition of conditional 
probability as given in (1). It can be interpreted as follows. Let A  be the event 
of interest. Upon conditioning, say, on event B , both the new effective sample 
space and event A  in this new sample space can be viewed as their restriction 
on B , that is, Ω  becomes B BΩ =  and A  becomes A B , respectively. 
The conditional probability ( )|A B  can now be interpreted as the proportion 
of the part of A  that is inside B  (i.e., A B ) out of region B , that is, 

( ) area of region | .
area of  

A BA B
B

=
                 (2) 

Now we can describe how to sketch a turtleback diagram. We start by drawing 
a circular disk which represents the sample space Ω . Then we represent events 
by partitioning the circular disk and the resulting subregions. To facilitate our 
discussion, we define the partition of a set [26]. { }| iS i= ∈   is a partition of 
set S  if ii

S S=


 and iS S⊆ , i jS S = ∅  for all i j≠  in the index set  . 
We will use Figure 4 to assist our description. To represent the partition 

B BΩ =  , we use a straight line “adc” to split the circular disk into two halves, 
i.e., regions surrounded by “abcda” and “adcea”, which stands for event B  and 
B , respectively. The regions corresponding to event B  and B  can be further 
split for a more refined representation involving other events. To represent con-
ditional probability as defined by (1), event B  is written as 

( ) ( ) ,B A B A B=                       (3) 

which can be represented by splitting the region for B , i.e., “abcda”, with a 
straight line “db”. The conditional probability ( )|A B  can then be calculated 
as the ratio of the area for region “bcdb” and that for region “abcda”. 
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Figure 4. Illustration of the turtleback diagram for conditional probability. The left panel 
shows the partition of Ω  by B BΩ =  , the middle panel shows event B is further 
partitioned by ( ) ( )B A B A B=   

, and the right panel is a simplified version of the 

middle panel where AB stands for A B , and AB  stands for A B . The conditional 
probability ( )|A B  is the ratio of the area for region “bcdb” and that for the area 

“abcda”. 

 
The turtleback diagram leads to a partition of the sample space Ω  as follows 

B BΩ =                                  (4) 

( ) ( ).B A B A B=                       (5) 

Continuing this process, we can define events as complicated as we like in a 
simple hierarchical (recursive) fashion as a nesting sequence of partitions 

0 1 2      where { }0 = Ω , { }1 ,B B= , and 1i+  is a refinement of 

i  for index 0i >  in the sense that each element in 1i+  is a subset of some 
element in i . 

We can now assign labels to each of the sub-regions, e.g., by the name of the 
relevant events to indicate that a particular region is associated with that event. 
For example in Figure 4, we assign labels AB and AB  to regions bcdb and ab-
da, respectively. Here, AB means A B , and AB  indicates A B , and the 
same convention carries over throughout. Accordingly, the turtleback diagram 
simplifies to the right panel in Figure 4. Note that here an event need not be a 
connected region, rather it could be a collection of patches (i.e., small regions) 
with each of them capturing information from a different source. This causes a 
little burden in calculation but costs really nothing conceptually, or, in terms of 
the ability of visualization. 

One advantage of such a recursive-partition representation of the sample 
space Ω  is that the data are now highly organized and we can easily operate on 
it, for example to find out the probability of a certain event. The idea of orga-
nizing the data via recursive space-partition and manipulating by their labels has 
been explored in CART (classification and regression trees [27]) and more re-
cently, random projection trees [28], as well as a recent work of one author and 
his colleagues [29]. Note that dividing a region into a number of small patches 
also entails the total probability formula, an important ingredient in conditional 
probability to which formula (3) is related. We will use the “Lung disease and 
smoking” example to illustrate the use of turtleback diagrams for conditional 
probability. 
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3.4. The Lung Disease and Smoking Example 

This example is taken from online sources (see [30]). It is described as follows. 

“According to the Arizona Chapter of the American Lung Association, 6.0% 
of population have lung disease. Of those having lung disease, 92.0% are 
smokers; of those not having lung disease, only 24.0% are smokers. Answer 
the following questions. 
1) If a person is randomly selected in the population, what is the chance 
that she is a smoker having lung disease? 
2) If a person is randomly selected in the population, what is the chance 
that she is a smoker? 
3) If a person is randomly selected and is discovered to be a smoker, what is 
the chance that she has lung disease?” 

According to the information given in the problem, we can sketch a graph as 
Figure 5. Labels and area information to each sub-regions are assigned properly. 
Assume the circular disk has an area of 1. Now we can answer the questions 
quickly as follows. 

1) The answer is simply the area of region abda, which is 6% 92% 0.0552× = . 
2) The answer is the area of region edbae, which is  

6% 92% 94% 24% 0.2808× + × = . This is, in essence, the total probability formu-
la ( ) ( ) ( )S L S L S= +    . 

3) Recognizing that this involves conditional probability and is the ratio of 
two relevant areas, (area of abda/area of edbae) = 0.0552/0.2808 = 0.1966. 

3.5. Difficulty with the Venn Diagram 

The Venn diagram is known as the standard graphical tool for set theory. Both 
Venn diagram and the turtleback diagram use regions to represent sets. However, 
there is a major difference. In a turtleback diagram, as illustrated in Figure 4, 
straight lines, such as line “adc”, “db” etc., are used to split the sample space and 
regions. In contrast, the Venn diagram represents events by drawing circular 
disks. Partitioning the sample space Ω  in such a way would cause substantial 
difficulty in handling the complement operation, one crucial ingredient in con-
ditional probability. One has to deal with a setting where the complement of a 
region would surround the region itself, for example, in Figure 6, S  and L  
surround S and L, respectively. This would cause extra burden to the human 
brain or the visual system. We will illustrate with the “Lung disease and smoking” 
example. 

In Figure 6, one would find it tricky to label the region and put area informa-
tion for L  (which is 94%) without causing confusion. Moreover, it may re-
quire some extra work (versus simply “reading” from the graph) to assign the 
label LS , or to calculate the area of this region. The turtleback diagram (c.f. Fig-
ure 5) introduces straight lines, e.g., “adc”, “ed”, and “db”, which readily avoiding 
obstacles caused by set intersection or complement in a Venn diagram. 
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Figure 5. The turtleback diagram for the “Lung disease and smoking” example. The 
letters “ L ” and “ L ” stand for “with lung disease” and “without lung disease”, “ S ” 
and “ S ” for “smoking” and “nonsmoking”, respectively. 

 

 
Figure 6. The Venn diagram approach to the “Lung disease and smoking” example. 

4. Semantic Equivalence of the Turtleback and the Tree  
Diagram 

Given a graphical representation, it is natural to ask questions about its expres-
sive power—will it be expressive enough to represent a complicated or very ab-
stract concept? We will show that the turtleback diagram is equally expressive as 
the tree diagram. 

The way that the turtleback diagram progressively refines the partition over 
the sample space is essentially a recursive space partition, where the sets in-
volved in the partition are organized as a chain of enclosing sets. For example, in 
Figure 4, we have 

( ) ( ) and A B B A B B⊆ ⊆ Ω ⊆ ⊆ Ω                   (6) 

By equivalence (see, for example, [27]) between the recursive space partition 
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and the tree structure, we can actually show the “semantic” equivalence between 
the turtleback diagram and the tree diagram. The remaining of this section is 
dedicated to this. Let a tree node correspond to a set in a recursive space parti-
tion with the following three properties: 

1) The root node corresponds to the sample space Ω ; 
2) All the child nodes of a node form a decomposition of this node; 
3) Down from the root node, the nodes along any path form a chain of en-

closing sets. 
Property 2) entails the total probability formula, and property 3) corresponds 

to a refinement of a partition. This allows one to turn the turtleback diagram in 
Figure 4 into a tree representation, that is, the left panel of Figure 7. The “chain” 
property forces a child node to be a restriction of its parent node. We can use 
this to simplify the labels for the tree nodes, e.g., the left panel becomes the right 
in Figure 7. Note that in the right panel, really node A corresponds to the set 

B AΩ  , that is, the intersection of all sets along the path from the root to 
node A (i.e., the tree path B A∗→ → ). 

For real world conditional probability problems, often the following formula 
is used instead of (1), due to availability of information from multiple sources 

( ) ( )
( )

|
ii

A B
A B

B A
=
∑









                      (7) 

where iiA = Ω∑ . This requires the calculation of probabilities in the form of 
( )iB A , or in other words, the probability of the intersection of multiple 

events. 
In Figure 7, by construction node A, through path B A∗→ → , has a size 
( )B AΩ  , and node B has size ( )B . We can now endow the weight of 

edge B A→  according to the proportion of node A (treated as a subset of B) 
out of B, or the probability of transition to node A given that one has reached 
node B from the root. This equals ( )|A B . Such a definition is valid as the size 
of nodes ,A A  and B satisfies ( ) ( ) ( )A B A B B+ =    . 

Thus, in Figure 8, the probability that one arrives at a node, say A, along the 
path B AΩ→ →  is given by 

( ) ( ) ( ) ( ) ( )| ,BA B A BA B A BΩ = Ω = = ⋅               (8) 

which is simply the product of edge weights along the path B AΩ→ →  (the 
edge weight for BΩ→  is ( )B ). Same reasoning extends to any node in a 

 

 
Figure 7. The tree diagram representation of the turtleback diagram in Figure 4. 
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Figure 8. The tree diagram approach illustrated. 

 
tree. Thus we have provided a tree-based interpretation of the turtleback dia-
gram for conditional probability. Such an algebraic system on the tree has the 
following two properties: 

1) The probability of arriving at any node equals the product of edge weights 
along the path. 

2) The weight of an edge H L→  has weight given by ( )| , ,L H∗ . 
This is exactly what a tree diagram would represent. The above properties ex-

tend readily to a series of events. For example, the probability of a series of 
events, B C D→ →  can be computed as the probability of arriving at node D 
along the tree path B C D→ → →  (c.f., Figure 8) 

( ) ( ) ( ) ( )
( ) ( ) ( )| | , .

B C D B B C C D

B C B D B C

= ∗→ ⋅ → ⋅ →

= ⋅

    
  

            (9) 

This approach applies even for non-sequential events, as one can artificially 
attach an order to the events according to the “arrival” of relevant information. 
Thus, we have shown the semantic equivalence between the turtleback diagram 
and the tree diagram. Their difference is mainly on the visual representation, 
which matters as visual tools. 

The tree diagram appears to be less intuitive than the turtleback diagram as 
there is no longer an association between the area of a region and its probability 
(one may use the thickness of an edge to indicate the probability, but that is less 
attractive too). However, the tree diagram seems to scale better to large prob-
lems. 

5. Case Studies 

We consider four examples in case study, including the “Lung disease and 
smoking” example, the “History and war” example, the “Lucky draw” example, 
and “the urn model” example [1]. As a matter of fact, very few students (about 
10% - 15%) can do the “History and war” example completely correctly in an 
in-class practice, after explaining to them the non-graph based concept of condi-
tional probability. That motivated us to adopt the graph-based approach. In the 
following, we provide the details of the examples. 
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5.1. The Lung Disease and Smoking Example 

With the tree diagram, the answer to (1) is the probability of reaching node S 
along the path L S→ → , which is the product of edge weights along this 
path and is calculated as 6% 92% 0.0552× = . The solution to (2) is the sum of 
products of edge weights along two paths, L S→ →  and L S→ → , that 
is, 6% 92% 94% 24% 0.2808× + × = , and (3) by the ratio of the product of edge 
weights along path L→ →  over that over two paths, which is 0.0552/0.2808 
= 0.1966 (Figure 9).  

5.2. The History and War Example 

This example is artificially created so that it has a similar problem structure as 
the “Lung disease and smoking” example. It is described as follows. 

“According to a market research about the preference of movies, 10% of the 
population like movies related to history. Of those who like movies related 
to history, 90% also like movies related to wars; of those who do not like 
movies related to history, only 30% like movies related to wars. Answer the 
following questions. 
(a) If a person is randomly selected in the population, what is the chance 
that she likes both movies related to wars and movies related to history? 
(b) If a person is randomly selected in the population, what is the chance 
that she likes movies related to wars? 
(c) If a person is randomly selected and is discovered to like movies related 
to wars, what is the chance that she likes movies related to history?” 

We can construct a turtleback diagram as the left panel of Figure 10. One can 
quickly answer the questions as follows. (a) is the area of region abda, which is 
given by 10% 90% 0.09× = , (b) is the total area of region ebdae, which is given 
by 10% 90% 90% 30% 0.36× + × = , and (c) is the ratio of (a) and (b) which is 
0.09/0.36 = 0.25. 

Similarly, the right panel of Figure 10 is a tree diagram. One can answer the 
questions as follows. (a) is the product of edge weights along the path 

H W→ → , which is given by 10% 90% 0.09× = , (b) is the sum of the prod-
uct of edge weights along two paths, H W→ →  and H W→ → , which is 
given by 10% 90% 90% 30% 0.36× + × = , and (c) is the ratio of (a) and (b) which 
is 0.09/0.36 = 0.25. 

5.3. The Lucky Draw Example 

The lucky draw example is taken from the popular lucky draw game. This exam-
ple is especially useful as many sampling without replacement problems can be 
converted to this and solved easily. Here we take a simplified version with the 
total number of tickets being 5 and there is only one prize ticket. The description 
is as follows. 

“There are 5 tickets in a box with one being the prize ticket. 5 people each 
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Figure 9. The tree diagram approach for the “Lung disease and smoking” example. The 
letters “ L ” and “ L ” stand for “with lung disease” and “without lung disease”, “ S ” and 
“ S ” for “smoking” and “nonsmoking”, respectively. 

 

 
Figure 10. Solving the “History and War” example with the turtleback diagram and tree 
diagram, respectively. The letters “ H ” and “ H ” stand for “like movies related to history” 
and “do not like movies related to history”, “W ” and “W ” for “like movies related to 
wars” and “do not like movies related to wars”, respectively. 

 
randomly draws one ticket from the box without returning the drawn ticket 
to the box. Is this a fair game (i.e., each draws the prize ticket with the same 
chance)?” 

Figure 11 depicts the process of ticket drawing. As here our interest is the 
prize ticket, the tree branch that has already seen the prize ticket will not grow 
further. Easily the probability of getting the prize ticket at the first draw is 1/5. 
Following Figure 11, the probability of getting the prize ticket at the second 
draw is the product of edge weights along the path N P→ → , which is 
0.8 0.25 0.2× = . Similarly, the probability of getting the prize ticket at the third 
draw is given by 0.8 0.75 1 3 0.2× × = , and so on. 

Figure 12 is the turtleback diagram for the “Luck draw” game. Easily the 
probability of getting the prize ticket at the first draw is the area of the region  
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Figure 11. The tree diagram for the “Luck draw” game. The letters “P” and 
“N” denote the prize ticket and non-prize ticket, respectively. 

 

 
Figure 12. The turtleback diagram for the “Luck draw” game. The 
letters in the labels indicates status of each attempt, “P” for prize 
and “N” for a non-prize ticket. For example, “NNP” means getting 
non-prize tickets for the first two draws and the prize ticket at the 
third draw. The percentage next to the label indicates the probabil-
ity of a prize at the last draw, conditional on the outcome of all 
preceding draws. For example, “25%” next to “NP” means the 
conditional probability of getting a prize is 25% in the second draw 
if the first draw is not a prize. Or in other words, that is the ratio of 
the area of the slice containing “NP” to all slices after the first slice 
is taken away. 
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labelled as “P”, which is 0.2. Following the figure, the probability of getting the 
prize ticket at the second draw is the area of the region labelled as “NP”, which is 
0.8 25% 0.2× = . Similarly, the probability of getting the prize ticket at the third 
draw is given by 0.8 75% 1 3 0.2× × = , and so on. 

5.4. An Urn Model Example 

This can be viewed as an extension of the lucky draw problem in the sense that 
there are more than one prize tickets here. Note that this example mainly serves 
to demonstrate that both the tree and the turtleback diagram could be used to 
solve problems of such a complexity (one can solve this problem quickly by dis-
tinguishing the two green balls and apply result of the lucky draw game2). As-
sume there are 2 greens balls and 3 red balls. The problem is described as fol-
lows. 

“There are 2 green balls and 3 red balls in an urn. One randomly picks one 
ball for five times from the urn without returning. Will each draw have the 
same chance of getting the green ball?” 

Figure 13 is the tree diagram for the urn model. We are not going to calculate 
the probability of getting a green ball for each draw, instead we only do it for the 
third draw. The probability of getting a green ball at the third draw is give by the 
sum of the product of edge weights along three paths 

, , ,G R G R R G R G G→ → → → → → → → →    

which is (2/5)(3/4)(1/3) + (3/5)(1/2)(2/3) + (3/5)(1/2)(1/3) = 2/5. One can simi-
larly calculate that the probability of getting a green ball at other draws all equal 
to 2/5. 

Figure 14 is the turtleback diagram for the urn model. To calculate the prob-
ability that the third draw gets a green ball, we simply sum up the area of all re-
gions with a label such that the third letter is “G”. That is, the total area of re-
gions labelled as 

“RGG”, “GRG”, “RRGG”, “RRGRG”, 

which is 
3 1 1 2 3 1 3 1 2 1 3 1 2 1 0.4.
5 2 3 5 4 3 5 2 3 2 5 2 3 2
× × + × × + × × × + × × × =  

The calculation seems a little tedious, but conceptually very simple, as long as 
one could follow the way the regions are partitioned. 

6. Empirical Data 

We carried out case studies on over 200 students. This includes students in the 
elementary statistics class, STAT235 (non-calculus based), at University of Mis  

 

 

2Label the two green balls as G1 and G2, respectively. Then the probability of getting a green ball at 
each draw is simply that of getting G1 or G2. Either G1 or G2 can be treated as the only prize ticket in 
the lucky draw game thus the probability of getting either one is 1/5, and so the probability of getting 
a green ball at any draw is always 2/5. 
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Figure 13. The tree-based approach for an urn model with 2 green 
balls and 3 red balls. We use the   to denote the root node, and 
“R” and “G” for red ball and green ball, respectively. As our inter-
est is the green balls, so tree branches that have seen 2 green balls 
will not grow any further. 

 

 
Figure 14. The turtleback diagram for an urn model with 2 green balls 
and 3 red balls. “R” and “G” are used to denote red ball and green ball, 
respectively. As our interest is the green balls, so tree branches that 
have seen 2 green balls will not grow any further. Each letter, “G” or 
“R”, indicates the outcome of a particular draw. For example, a 
“RGRG” indicates that the first draw gets a red ball, the second draw a 
green ball, the third a red and the fourth a green ball. 

 
souri Kansas City (UMKC) during 2012-2013, and students from elementary 
statistics, MTH231, and elementary probability, MTH331, classes at University 
of Massachusetts Dartmouth (UMassD) during 2015-2017. These three courses 
had a fairly different student population. For STAT235, about 30% from engi-
neering, 30% from business, and the rest from such diverse majors as biology, 
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chemistry, psychology, political sciences, education etc. For MTH231, about 80% 
are from mathematics or data science, and the rest from majors such as comput-
er science, electrical engineering, criminal justice etc. For MTH331, about 75% 
from computer science or electrical engineering, 20% from mathematics or data 
science, and the rest from other engineering majors or economics, physics etc. 
Table 1 gives a summary of students involved in the case studies. The study is 
carried out as follows. First we explain to students the concept of conditional 
probability with a non-graph based approach. Then we continue with two exer-
cises. In the first exercise, we explain to students the “Lung disease and smoking” 
example, with both the turtleback and the tree diagram, and have students solve 
the “History and war” problem, or vice versa (for different classes we were 
teaching). In another exercise, we explain the “Lucky draw” example, and have 
students solve the “Urn model” problem, or vice versa. Due to time constraints 
on the course schedule, we did not ask students to solve problems using a partic-
ular technique followed by its discussion. Rather we discussed both the turtleback 
and the tree diagrams, and let students choose one of them for problem solving. 
The following is a breakdown of the number of students involved (Table 2). 

We collect two types of data from the case studies, one on students’ preference 
between graph and non-graph based approach, and the other on students’ pre-
ference between the turtleback and the tree diagram. Here, except for the case of 
non-graph based approach, by preference we mean the students actually used 
the technique for problem solving, and nearly in all such cases they could apply 
it correctly in solving the assigned problem; so we use this as measurement of 
learning outcome (with an understanding that further experiments may be 
needed to validate this). The results are reported in Table 3. The data collected 
are quite encouraging. About 78% - 88% students found a graph tool helpful. 
For the “Lucky draw” and the “Urn model”, fewer students found it helpful. This 
is possibly because these two problems appear to be harder to students: even a 
graphical tool may not help them much. Further experiments are needed to va-
lidate or understand this. 

In terms of a preference for which graphical tool, the results show an inter-
esting pattern. For the “Lung disease and smoking” and the “War and history” 
example, more students prefer the turtleback diagram to the tree diagram, 
around 53% - 54% vs 33% - 34%. The “Lucky draw” and the “Urn model” exam-
ples exhibit an opposite pattern, more students prefer the tree diagram to the 
turtleback diagram, around 46% - 48% vs 31% - 34%3. This is probably due to 
the fact that, in the first two examples, the sample spaces and events involve 
populations in the usual sense, while the last two examples involve sequential 
decisions, for which a tree structure that represents the decision dichotomy may 
be more natural (although in such cases, the concept of conditional probability is 
not as natural as that in the turtleback diagram). Further experiments are needed 
to confirm this. The advantage of the turtleback diagram over the tree diagram  

 

 

3Since in all cases, the sample size is large enough and the difference between contrast groups is sig-
nificant, we did not carry out a hypothesis testing using the reported data. 
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Table 1. Students involved in the case studies. 

Course # students Class size Institute 

STAT235 128 40 - 60 UMKC 

MTH231 25 10 - 20 UMassD 

MTH331 72 35 - 45 UMassD 

 
Table 2. Number of students involved in the empirical study breakdown by course and 
problem. 

Course 
Lung disease and 

smoking 
War and history 

movie 
Lucky draw 

Urn 
model 

STAT235 66 62 62 66 

MTH231 14 11 14 11 

MTH331 37 35 35 37 

Total 117 108 111 114 

 
Table 3. Data collected in the case studies on whether graphs help understand the con-
cept of conditional probability, and the preference between the turtleback diagram and 
the tree diagram. 

Question Neither helpful Either one helpful Prefer Turtleback Prefer Tree 

Lung disease and 
smoking 

13.7% 86.3% 53.0% 33.3% 

War and history 
movies 

11.1% 88.9% 54.6% 34.3% 

Lucky draw 17.1% 82.9% 34.2% 48.6% 

Urn model 21.9% 78.1% 31.6% 46.5% 

 
appears to decrease as the problem becomes harder, but this is not a serious 
problem for beginning students as those who most need help from a graphical 
representation are just those who could not solve simple problems. Moreover, 
we do not expect one single graphical tool can help solve all the problems, rather 
different people may use different tools for a particular problem. 

7. Potential Research Questions 

Many instances of conditional probability occur in sampling without replace-
ment. Tarr and Jones [8] describe a framework for assessing middle school stu-
dents’ thinking in conditional probability and independence, which is elaborated 
in [12]. This framework is a levels model, with 4 levels—Subjective, Transitional, 
Informal Quantitative, and Numerical—subject to all the difficulties such a 
model has as students transition from one level to another. 

Research Question 1: Are turtleback diagrams, as compared to tree diagrams, 
helpful to students, at any or all of the Tarr-Jones framework levels, in under-
standing conditional probability. If so, how can we measure and assess the com-
parative utility of turtleback diagrams compared to tree diagrams? 
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Research Question 2: Related to Research Question 1, specifically, how help-
ful are turtleback diagrams in helping students understand conditional probabil-
ity in the context of sampling without replacement? 

Conditional probability is increasingly being introduced into middle school in 
the United States. The Conference Board of the Mathematical Sciences [31] 
stated: 

Of all the mathematical topics now appearing in middle grades curricula, 
teachers are least prepared to teach statistics and probability. Many pros-
pective teachers have not encountered the fundamental ideas of modern 
statistics in their own K-12 mathematics courses... Even those who have had 
a statistics course probably have not seen material appropriate for inclusion 
in middle grades curricula. (p. 114) 

Research Question 3: Are turtleback diagrams helpful to middle school 
teachers of probability and statistics in (a) enhancing their own understanding 
of conditional probability and (b) assisting them to better teach conditional 
probability? If so, how and to what extent? 

8. Conclusions 

Motivated by difficulties encountered by many undergraduate students new to 
statistics, we re-examined the definition and representation of conditional 
probability, and presented a Venn-diagram like approach: the turtleback dia-
gram. We discussed our graphical tool in the context of other graphical models 
for conditional probability, and carried out case studies on over 200 students of 
elementary statistics or probability classes. Our case study results are encourag-
ing and the graph-based approaches could potentially lead to significant im-
provements in both the students’ understanding of conditional probability and 
problem solving. While the existing tree diagram is preferred to the turtleback 
diagram on problems that involve a sequential decision, the turtleback diagram 
is considered more helpful in settings where the underlying population resem-
bles the usual human population; it is exactly in such situations that weaker stu-
dents are more likely to need help. Though the turtleback diagram appears very 
different from the tree diagram, we are able to unify them and show their equi-
valence in terms of semantics. 

Our discussion suggests a simple framework for visualizing abstract concepts, 
that is, a suitable graph representation of the abstract concept followed by a sim-
ple post-processing in the visual-brain system. A good visualization idea needs 
to balance both. We are able to use such a framework to interpret the difficulty 
encountered by the tree diagram, and aid our development of the turtleback di-
agram. Further studies are expected to validate or to adopt such a framework to 
general visualization tasks. Given the increasingly important role played by data 
visualization in data science and exploratory data analysis [15] [16] [32] [33], it 
would be worthwhile to give a few remarks here comparing the graph represen-
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tation of abstract concepts and data visualization. These two concepts are dif-
ferent yet closely related. Graphical representation aims to understand an ab-
stract (or complicated) concept by representing elements of the concept with a 
graph, while data visualization seeks to understand the data or the information 
behind by displaying aspects (i.e., descriptive statistics) of the data. In terms of 
implementation, as both aim to help understanding or reasoning, the used 
graphical objects need to be simple (though simple in different ways in the two 
cases). In data visualization, the graphical objects need to be simple so that 
people can quickly grasp the information conveyed or to understand the concept 
behind without resorting to paper and pencil; in graphical representation of 
concepts, the objects need to be conceptually simple and easy to manipulate for 
applications of the concepts. 

Our case studies suggest that it is worthwhile to introduce such graphical tools 
to students whose success would seem to depend on them. We hope that this 
will benefit our statistics colleagues who are teaching elementary statistics and 
students who are struggling with the concept of conditional probability and its 
application to problem solving. The potential savings in time can be huge. As a 
conservative estimate, assume each year there are about 1.5 million bachelor’s 
degrees awarded in US (about 1.67 million awarded in 2009). Assume there are 
about 200,000 of them have taken an elementary statistics class, and about 10% 
of them need help and succeed with our proposed approach, and further assume 
an average class size of 40. If each instructor saves 2 hours of time in each ele-
mentary statistics class and each student who benefits from our approach saves 1 
hour, then the estimated total amount of time saved is at least 30,000 hours per 
year in the U.S. alone. 
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