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Abstract 
Asymptotic results are obtained using an approach based on limit theorem 
results obtained for α-mixing sequences for the class of general spacings 
(GSP) methods which include the maximum spacings (MSP) method. The 
MSP method has been shown to be very useful for estimating parameters for 
univariate continuous models with a shift at the origin which are often en-
countered in loss models of actuarial science and extreme models. The MSP 
estimators have also been shown to be as efficient as maximum likelihood es-
timators in general and can be used as an alternative method when ML 
method might have numerical difficulties for some parametric models. As-
ymptotic properties are presented in a unified way. Robustness results for es-
timation and parameter testing results which facilitate the applications of the 
GSP methods are also included and related to quasi-likelihood results. 
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1. Introduction 

Let 1, , nX X  be a random sample from a continuous parametric family with a 
distribution function which belongs { }Fθ , θ  is the vector of parameters and 
instead of fitting distribution using maximum likelihood (ML) method, Cheng 
and Amin [1], Ranneby [2] proposed the maximum product of spacings method 
which is also called maximum spacing (MSP) method which makes use of spacings 
which are gaps between order statistics of the sample instead of using directly the 
observations of the sample. The method consists of maximizing or equivalently 

How to cite this paper: Luong, A. (2018) 
Unified Asymptotic Results for Maximum 
Spacing and Generalized Spacing Methods 
for Continuous Models. Open Journal of 
Statistics, 8, 614-639. 
https://doi.org/10.4236/ojs.2018.83040 
 
Received: May 17, 2018 
Accepted: June 23, 2018 
Published: June 26, 2018 
 
Copyright © 2018 by author and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

 

DOI: 10.4236/ojs.2018.83040  Jun. 26, 2018 614 Open Journal of Statistics 
 

http://www.scirp.org/journal/ojs
https://doi.org/10.4236/ojs.2018.83040
http://www.scirp.org
https://doi.org/10.4236/ojs.2018.83040
http://creativecommons.org/licenses/by/4.0/


A. Luong 
 

minimizing the following objective function to obtain the MSP estimators, 

( ) ( )( )( )1
1 log 1n

ii n D+

=
− +∑ θ  

where ( ) ( )( ) ( )( )1 , 1, , 1i i iD F x F x i n−= − = +θ θθ  are the spacings and we define 

( )( ) ( )( )1 01, 0nF x F x+ = =θ θ  with the order statistics of the sample given by 

( ) ( ) ( )1 2 .nX X X< < <  

It is quite obvious that it is not more difficult to obtain the GSP estimators 
than the ML estimators and it has been proven that the MSP estimators are as 
efficient as the ML estimators in general and can be consistent when ML esti-
mators might fail to be consistent. MSP method can be used as an alternative to 
ML method as ML method might encounter numerical difficulties when used for 
fitting some models with shifted origin which are often encountered in loss 
models and extreme value models. We shall examine a few examples for illustra-
tions. Anatolyev and Kosenok [3] have discussed the model of example 1 below 
where they find the MSP estimators have better finite sample properties than ML 
estimators and notice that the method has not received much attention in 
econometrics; it has received even less attention in actuarial science. 

Example 1 (Pareto) 
The Pareto model considered by Anatolyev and Kosenok [3] has density func-

tion given by  

( ) 1;f x
xα
αα +=   

and distribution function given by  

( ) 1; 1 , 1, 1F x x
x

α

α α = − > > − 
 

.  

The model is a sub-model of the larger model with two parameters α and θ, den-
sity function 

( ) 1; , , 0f x x
x

α

α

αθ
α θ θ+= > ≥ ,  

where θ is a shift parameter, 1α > − . The distribution function is given by  

( ); , 1 , , 1F x x
x

αθ
α θ θ α = − > > − 

 
,  

see Klugman et al. [4] (p. 465) for the larger model which is a shifted origin 
model and used in actuarial science. 

The following example gives the Fréchet model which is an extreme value 
model and it is also a shifted origin model, see more properties and details in the 
book by Castillo et al. [5] (p. 63-64) for the Fréchet model. 

Example 2(Fréchet) 
The Fréchet model has three parameters , ,β δ λ  with density function and 

distribution function given by  
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( )
( )

1

2; , , exp , 0, 1, 0f x x
x xx

β ββδ δ δ
β δ λ λ β δ

λ λλ

−     = − > ≥ > >    − −   −   
  

and  

( ); , , exp , 0F x x
x

βδ
β δ λ λ

λ

  = − > ≥  −   
,  

where λ is as shift parameter, 1, 0β δ> > . 
Ghosh and Jammalamadaka [6] have generalized the MSP method by consid-

ering objective functions of the form ( ) ( )( )( )1
1 1n

ii h n D θ+

=
+∑  with ( )h x  being 

a convex function and twice differentiable, we shall call methods based on this 
class generalized spacings methods (GSP) and give more details in the next sec-
tion where we restrict ( )h x  being the commonly used convex functions and 
introduce the GJ class named after Ghosh and Jammalamadaka [6] and by GSP 
methods we refer to GSP methods but with ( )h x  belongs to this GJ class. 

As we have seen that despite the GSP methods are powerful methods for uni-
variate continuous models but they are not used as often as they should be. It 
might be due to the asymptotic results are scattered in the literature and in par-
ticular previous approaches for asymptotic normality have been based on dis-
tribution of spacings and order statistics which make further results such as the 
distributions of counterparts of Wald test statistic, Score statistic and likelihood 
ratio test statistics of likelihood theory difficult to establish which prevent the 
use of these methods for applications. In this paper, a different approach is taken 
for establishing asymptotic normality. The approach is a based on using uniform 
weak law of large numbers (UWLLN) for establishing consistency of the GSP es-
timators and central limit theorem for α-mixing sequences as given by White 
and Domowitz [7] to establish asymptotic normality for the GSP estimators, 
asymptotic distributions for the trinity test for hypothesis testing for parameters 
for GSP methods are also obtained by relating the GSP methods to 
quasi-likelihood methods so that robustness of the GSP methods can also be 
studied. With a unified and simpler presentation, we hope to put the GSP 
methods parallel to likelihood methods and by doing so we hope to encourage 
more use of these methods by practitioners for their applied works in various 
fields. 

The paper is organized as follows. Section 2 gives the preliminary results al-
ready established by Ranneby [2] but needed for further results. The notions of 
mixing sequences are also introduced to facilitate the developments in subse-
quent sections. Section 3 gives the asymptotic properties of the GSP methods 
using UWWLN and CLT; robustness properties are established. Parameter hy-
pothesis testing is treated with results obtained for the trinity test for the GSP 
methods which are related to quasi-likelihood methods and parallel to ML 
methods. Results which are available for M-estimation theory are also used to 
investigate the asymptotic distributions for the trinity test for the GSP methods.  
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2. Preliminaries 

For further study the class of generalized spacing (GSP) methods, we shall pre-
sent the GJ class being considered by Ghosh and Jammalamadaka [6] and define 
some notations. We shall make use of some results already established by Ran-
neby [2] so that subsequently we shall use a different approach for studying as-
ymptotic properties of the GSP methods; the approach is based on uniform law 
of large numbers (ULLN) and central limit theorem as given by White and Do-
mowitz [7] for α-mixing sequences. The approach seems to give results in a 
more unified way than approaches using results on spacings and order statistics; 
see Pyke [8], Shorack and Wellner [9] for results on spacings and David and 
Nagaraja [10] for results on order statistics.  

The GSP methods can be seen to be closely related to quasi-likelihood meth-
ods and M-estimation theory can be used to study estimation, robustness and 
parameter testing via Wald test, Lagrange multiplier test or score test and 
quasi-likelihood ratio test but with a GSP version for each of these tests forming 
the classical trinity. The results appear to be natural and parallel to maximum 
likelihood methods (ML) given that the vector of MSP estimators which belong 
to the class of GSP is as efficient as the vector of ML estimator and therefore it is 
natural to establish inference methods based on this class which parallel ML 
methods. It is also worth to note that this class can be used for robust estimation 
which parallel Hellinger distance methods given by Beran [11] and like the class 
of pseudo-distance studied by Broniatowski [12] there is no need of density es-
timate to implement GSP methods. We try to reduce technicalities for the 
methods introduced subsequently so that practitioners might find that it is not 
so difficult to follow and make use of the results and it is quite clear that it is 
relatively simple to implement GSP methods just as in the case for ML methods. 

Now we shall use the set up as given by Ghosh and Jammalamadaka [6] and 
Ranneby [2] by assuming a random sample of size n where we have observations 

1, , nX X  which are independent and identically distributed (iid) as X with 
density function and distribution function given respectively by ( )f xθ  and 

( )F xθ .The vector of parameters is denoted by ( )1, , mθ θ ′= θ . The vector of 
the true parameters is 0θ .  

The order statistics are denoted by ( ) ( ) ( )1 2 nX X X< < <  and the spacings 
( )iD θ  which can be viewed as transforms of the order statistics and they are 

given by  

( ) ( )( ) ( )( )1 , 1, , 1i i iD F X F X i n−= − = +θ θθ  

with ( )( )0 0F X =θ  and ( )( )1 1nF X + =θ  by definitions. 
Ghosh and Jammalamadaka [6] studied the class of estimators namely GSP 

estimators obtained by minimizing a criterion function of the following form 
which make use of a class of convex function ( )h x , i.e., 

( ) ( ) ( )( )1
1 1n

iiT h n D+

=
= +∑θ θ                    (1)  
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or equivalently, 

( ) ( ) ( )( )1
1

1 1
1

n
n iiQ h n D

n
+

=
= +

+ ∑θ θ .               (2) 

The class considered include the following functional form for ( )h x  which is 
a convex function with domain ( )0,∞  an range being the real line. With 
( ) ( )logh x x= −  we have the MSP method and the function ( ) ( )logh x x= −  is 

optimum in term of efficiency of statistical methods generated but for robust-
ness other choices for ( )h x  might include ( )h x xα=  for 1α > , ( )h x xα= −  
for 0 1α< < , 

( ) ( )logh x x x= , ( )h x xα=  for 1 0
2

α− < < .           (3) 

Note that for all these choices the first and second derivatives ( )h x′ , ( )h x′′  
exist and since ( )h x  is a convex function ( ) 0h x′ ≥ , see Lehmann and Casella 
[13] (p. 45-47) for properties of convex function and Jensen’s inequality which is 
based on the property of convexity of a function.  

We shall call the class defined by using functions given by expression (3) and 
including ( ) ( )logh x x= − , the GJ class as it was introduced by Ghosh and 
Jammalamadaka [6]. The GJ class includes the commonly used ( )h x , see ex-
pression (6) given by Ghosh and Jammalamadaka [6] (p73).  

For this class, we can see that the sub-class with ( )h x xα= −  for 0 1α< <  
and up to an additive and multiplicative constant, it can be expressed equiva-
lently as  

( ) 1xh x
α

α
−

= −  and as 0α +→  

( ) ( ) ( )*1 logxh x h x x
α

α
−

= − → = −   

which is the optimum ( )h x  as using ( )*h x  will generate the MSP estimators 
which are the most efficient within this class and asymptotically equivalent to 
maximum likelihood(ML) estimators. 

Ghosh and Jammalamadaka [6] establish consistency and asymptotic normal-
ity for this class of GSP estimators and make use of limit theorems for spacings 
which are based on order statistics. We shall use another approach which bypass 
limit theorems for spacings and order statistics and obtain consistency and as-
ymptotic normality for the multi-parameter case for this class of GSP methods 
and based on these results, robustness properties for this class can be studied 
and parameter testing can be developed in Section 4 and we shall be able to con-
sider GSP methods as quasi-likelihood methods and hence unify the asymptotic 
theory with M-estimation theory. 

We shall also make use of the following results and notions introduced by 
Ranneby [2] to overcome the need of using spacings or order statistics in expres-
sion (1) and expression (2). With a sample of size n; for each observation iX , it 
can be associated to a random variable ( )1i iY n d= +  where id  is random 
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variable which represents the distance from iX  to the nearest observation to 
the right of iX  and this distance is defined to be infinity if ( )i nX X= . 

It is clear that if we use ( ),i iX Y  to re-express ( )nQ θ  or an asymptotic 
equivalent expression for ( )nQ θ  can be given with the use of 

( ), , 1, ,i iX Y i n= 
 instead of ( ) , 1, ,iD i n= θ  in expression (2). 

Now if we define 

( ) ( ) ( ), 1
1

i
i i i

yz n n F x F x
n

  = + + −  +  
θ θθ            (4) 

and  

( ) ( )( )1

1 ,n
n iiQ h z n

n =
= ∑θ θ                  (5) 

then ( )nQ θ  defined as above is asymptotically equivalent to ( )nQ θ  defined 
using expression (2) as only the first term in the summation of expression (2) is 
left out for the summation of expression (5) and we focus on asymptotic theory 
here. Also, expression (5) is asymptotically equivalent to the expression denoted 
by ( )nS θ  given by Ranneby [2] (p. 98). 

We shall see that most of limit theorems such as the uniform weak law of large 
numbers(UWLLN) or Central limit theorem (CLT) are stated using the form 
given by expression (5) and we need to subject ( )nQ θ  to these limit theorems; 
it is more convenient to use ( )nQ θ  as given by expression (5) with a factor 𝑛𝑛 
as it simplifies the notations. 

Now we can note that if ( ){ },iz nθ  is a sequence of independent identically 
distributed (iid) terms, then there is no problem to apply UWLN and CLT but 
we will see that ( ){ },iz nθ  is a dependent sequence but with a weak form of 
dependency so that we can apply a dependent version of UWLN then we can 
draw the same conclusion just as assuming ( ){ },iz nθ  are iid. 

Clearly, we need to make use of the distribution of ( ),i i iX Y ′=V  and the de-
pendence of the sequence { }iV  to study the sequence ( ){ },iz nθ . Ranneby [2] 
(p. 99-100) has shown that iV  for 1, 2, ,i n=   has a common bivariate distri-
bution which depends on n and given by 

( ) ( )
0 0

1

, 1 1 d .
1

n
x

n
yP x y F u f u u

n

−

−∞

     = − − +   +      
∫ θ θ       (6) 

As n →∞ ,  

( ) ( ) ( )( ) ( )0
0 0

, , 1 e d
x yf u

nP x y P x y f u u−

−∞
→ = −∫ θ

θ θ  

with the bivariate density function given by 

( ) ( ) ( )0
0 0

2, e , 0yf xp x y f x y−= >θ
θ θ ,                (7) 

see Ranneby [2] (p. 98) for the expression for the bivariate density function 
( )

0
,p x yθ . The density ( )

0
,p x yθ , with respect to x, has ( )

0
f xθ  as marginal 

density function. 
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Let ( )0 0 0,X Y=V  and its bivariate density is as given by expression (7) and 
to derive asymptotic results subsequently we let n →∞ , then we have the 
equalities in distribution for 1,2,i =  . 

( ) ( )0 0 0, ,d
i i iX Y X Y ′′= = =V V .                (8) 

Furthermore, we have pairwise asymptotically independent of { },i i′V V  for 
i i′≠  in the sense that the joint distribution of iV  and i′V  which is denoted 
by  

( ) ( ) ( )
0 0

, , , , ,nQ x y x y P x y P x y′ ′ ′ ′→ θ θ  as n →∞ ,         (9) 

see Ranneby [2] (p. 100). Intuitively, it makes sense that we can assume a similar 
form of asymptotically independent for the pair ( ) ( ){ }, , ,i iz n z n′θ θ  based on 
expression (4) and as UWLLN is often stated using sequences with a weak form 
of dependency of a sequence defined as α-mixing sequence as given by White 
and Domowitz [7] in the econometric literature, we shall examine the notion of 
α-mixing sequence and show that we can assume the sequence ( ){ },iz nθ  is 
α-mixing as we can assume that ( ){ },iz nθ  is ρ-mixing using property given by 
expression (9). We shall discuss first the notion of ρ-mixing which makes use of 
the correlation of a pair of random variables as it is more intuitively appealing 
than the notion α-mixing which makes use of two sets of two separate sigma al-
gebras. 

We shall define some more notations. 
Let ( )0 0 0, , 1, 2,i i iX Y i′= =V  . As they have a common distribution let 0V  

be one of them, its bivariate density function is given by 

( ) ( ) ( )0
0 0

2, e yf xp x y f x −= θ
θ θ .                    (10) 

From the mean value theorem, we have   

( ) ( ) ( ) ( ), 1
1

i
i i i i i

yz n n F x F x y f x
n

  = + + − →  +  
θ θ θθ        (11) 

for each i as n →∞  which is also given by Ranneby [2] (p. 99); therefore, we 
also have the equality in distribution ( ) ( )0 0d

i i i iy f x y f x=θ θ  as n →∞  and we 
define ( )0 0

i iz z=θ , let 0z  be one of the 0
iz 's as they have a common distribu-

tion. Consequently, for establishing asymptotic properties as we let n →∞ , we 
can make use of the distribution of ( ),iz nθ  which converges in distribution to 
the distribution of ( )0 0

i iy f xθ  and to simplify the notations, let 

( ),i iz z n= θ  and 0 0
i i

L dz z z = →                (12) 

for all i and the property given by expression (12) can be used to establish as-
ymptotic results subsequently. 

It is not difficult to see that the following covariance relationships hold, 

( ) ( )0 0lim , , 0n i i i iCov z z Cov z z′ ′→∞ = =                (13) 

as 0
iV  and 0

i′V  are independent for i i′≠ . Equivalently, if we use correlation, 

,lim 0
i iz zn

ρ
′→∞
= . The notion of ρ-mixing makes use of the correlation of two 
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random variables and appears to be easier to grasp, so we shall define this notion 
first and verify that indeed we can assume the sequence { }iz  is ρ-mixing which 
in turn implies α-mixing which allows us to use available limit theorems results 
which are stated either using α or ф mixing. 

Define two sets of random variables which are apart of a distance m as follows
{ }1, ,a a az z−Ω =   and { }1, ,a m a m a mz z+ + + +Ω = 

. Pick az′∈Ω  and a mz +′′∈Ω  
and form the covariance ( ),Cov z z′ ′′  and the correlation coefficient  

( )
( ) ( ),

,
z z

Cov z z

Var z Var z
ρ ′ ′′

′ ′′
=

′ ′′
 

and since z′  and z′′  have the same distribution ( )
( ),

,
z z

Cov z z
Var z

ρ ′ ′′

′ ′′
=

′
. 

Now we can define the ρ-mixing coefficient for the sequence { }iz  as 
( ) ( ),supa z zmρ ρ ′ ′′=  and the sequence { }, 1, 2,iz i = 

 will be ρ-mixing if 
( ) 0mρ →  as m →∞ . Note that Ranneby [2] (p. 99) has pointed out that for 

finite n, the random variable , 1, ,iz s i n′ =   are exchangeable in the proof for 
Lemma (2.1) and from the existing results already established, it appears that 
{ }, 1, 2,iz i = 

 forms a covariance stationary sequence. 
Now m →∞  will imply n →∞  and using expression (13), we might con-

clude that the sequence { }iz  is ρ-mixing using the inequality ( ) ( )m b mρ α≤  
with 0b >  as given by expression (5.39) in Hall and Heyde [14] (p. 147).  

The coefficient ( )mα  for α-mixing sequence will be defined subsequently. 
Note that from the above inequality, ( ) 0mρ →  implies ( ) 0mα →  so that 
{ }, 1, 2,iz i = 

 is also α-mixing. The coefficient ( )mα  is defined using two 
sets from two sigma algebras which are of a distance m apart is more abstract 
but nice results follow. If we can establish a sequence is α-mixing then we can 
form a new mixing sequence using a transformation applied on a finite number 
of elements of the original mixing sequence; for example if { }iz  is α mixing 
and define ( )1 2, ,i i i i iw g z z z− −=  then { }iw  is again an α-mixing sequence and 
furthermore if ( )mα  for { }iz  is ( )O m λ− , i.e., ( ) 0mα →  at the rate as 

0m λ− → , the same rate is preserved for ( )mα  of the new sequence { }iw , see 
Lemma 2.1 given by White and Domowitz [7] (p. 146) and discussions as given 
by Martin et al. [15] (p. 38). This property facilitates the use of limit theorems 
for establishing consistency and asymptotic normality for estimators obtained by 
minimizing a nonlinear objective function. 

Now we shall define the coefficient ( )mα  for the sequence { }, 1, 2,iz i = 
. 

Let 1S  and 2S  be two sigma algebras. Choose a set 1F S∈  and another set 

2G S∈  and define ( )1 2,S Sα  using the following probability, 

( ) ( ) ( ) ( )
1 21 2 ,, supF S G SS S P F G P F P Gα ∈ ∈= −  

The coefficient ( )mα  for the sequence { }, 1, 2,iz i = 
 can be defined as 

( ) ( ) ( )( )sup ,a a a mmα α σ σ += Ω Ω  

using ( )aσ Ω  and ( )a mσ +Ω  which denote respectively the sigma algebras 
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generated by { }1, ,a a az z−Ω =   and { }1, ,a m a m a mz z+ + + +Ω = 
. 

3. Asymptotic Properties 

For establishing asymptotic results for the GSP methods which include the MSP 
method we do not aim to obtain the results with a minimum amount of regular-
ity conditions as by doing so the technicalities will be increased and might dis-
courage practitioners to use the methods. The regularity conditions used are 
comparable to regularity conditions for maximum likelihood methods under 
usual circumstances in order to put GSP methods parallel to ML methods. The 
aims are to put the GSP methods as equally practical as ML methods for uni-
variate continuous models and to show that it is not more difficult to use these 
methods than ML methods. Furthermore, by related this class of estimators with 
to the class of M-estimators, it will be shown that this class can offer more flexi-
ble choices for robust estimators should the MSP estimators which are equiva-
lent to ML estimators are not robust and they share similarities with the class of 
estimators considered by Broniatowski et al. [12]. We will treat consistency and 
asymptotic normality for the GSP estimators in the next two sections. 

3.1. Consistency  

The objective function to be minimized to obtain the GSP estimators which is 
denoted by the vector θ̂  is 

( ) ( )( )1

1 ,n
n iiQ h z n

n =
= ∑θ θ .  

The following Theorems can be used to establish consistency for θ̂  and they 
are listed below as Theorem 1 and Theorem 2. Theorem 1 is the basic consis-
tency Theorem (2.1) given by Newey and McFadden [16] (p. 2121-2122) for es-
timators obtained by minimizing an objective function ( )nQ θ  in general and 
clearly applicable for ( )nQ θ  as defined by expression (5). Theorem 2 is essen-
tially Theorem 2.3 given by White and Domowitz [7] (p. 147), Their Theorem 
2.3 is a Theorem on uniform weak law of large numbers (UWLLN) but we shall 
restate it so that it is more suitable for our purposes. The proofs have been given 
by the authors and for related Theorems on UWLLN, see Davidson [17] (p. 
340-344). 

Theorem 1(Consistency) 
Assume that: 
1) The parameter space θ is compact, the true vector of parameters is denoted 

by 0θ , 
2) ( ) ( )p

nQ Q→θ θ  uniformly and ( )Q θ  is a non-random and continu-
ous function of 0θ , 

3) ( )Q θ  is uniquely minimized at 0θ ,  
Then 0

ˆ p→θ θ , i.e., we have the convergence in probability which implies 
consistency for θ̂ , where θ̂  is the vector which minimizes ( )nQ θ . 

To apply this Theorem condition 2) is a condition on uniform convergence, 
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conditions which ensure UWWLN can be applied will imply condition 2 for 

( )nQ θ  as given by expression (5) and ( )nQ θ  is an average over n terms, this 
makes it easier to follow the notations for applying the following Theorem 2 on 
UWLLN. For a detail proof of UWLLN, see Bierens [18] (p. 187). 

Implicitly, we assume that { }, 1, 2,iz i = 
 is a α-mixing sequence with mix-

ing coefficient ( )mα  which imply the new sequence created using the trans-
formation ( ).h  is again a α-mixing sequence, i.e., ( ){ }, 1, 2,ih z i =   is also a 
α-mixing sequence with the same order for ( )mα . 

Theorem 2 (UWLLN) 
Assume that: 
1) ( ),ih z θ  is measurable and continuous for each θ ∈ θ, θ is compact. 
2) There exists a function ( )ig z  such that ( ) ( ),i ih z g z≤θ  for all θ ∈ θ. 
3) For 1r ≥  and any 0δ > , the expectation ( ) r

iE g z
δ+
≤ ∆ < ∞  for all i. 

4) ( ) ( ) , , 1
1

rm O m r
r

λα λ−= > >
−

, ( )O m λ−  is as defined earlier. 

Then we have: 
1) ( )( )0

,iE h zθ θ  is continuous as a function of θ for all i. 

2) ( ) ( )( )( )01

1 , , 0n p
i ii h z E h z

n =
− →∑ θθ θ  uniformly as n →∞  on θ. 

Applying Theorem 1 and Theorem 2 will show consistency for the GSP esti-
mators given by the vector θ̂  which minimizes expression (5). We can say that 
with { }, 1, 2,iz i = 

 being an α-mixing sequence, the regularity conditions of 
Theorem 1 and Theorem 2 can be assumed to be satisfied in general with 

( ) ( )p
nQ Q→θ θ  uniformly, ( )Q θ  is continuous and given by 

( ) ( )( )01

1lim ,n
n iiQ E h z

n→∞ =
= ∑ θθ θ   

and since the iz s′  are identically distributed as z, z being 1z  for example. We 
then have ( ) ( )( ) ( )( )0 0

0lim , ,nQ E h z E h z→∞= =θ θθ θ θ  with ( )0 0 0z y f x= θ  
using expression (11) and Dominated Convergence Theorem (DCT). For ex-
pressions expressible as a sequence of integrals, the Dominated Convergence 
Theorem (DCT) might be useful for finding their limits; details and proof of the 
DCT can be found in standard real analysis books. The joint density function for 

( )0 0 0,X Y ′=V  is as given by expression (8). Consequently, we can express 

( )Q θ  as 

( ) ( )( ) ( ) ( )0
0

2
0

e d dyf xQ h yf x f x y x
∞ ∞ −

−∞
= ∫ ∫ θ

θ θθ              (14) 

which is more general but similar to the expression given by Ranne by [2] (p. 97) 
for the MSP case. We can also express ( )Q θ  as 

( ) ( ) ( )
( ) ( ) ( )0

0 0
0

2
0

e d dyf xf x
Q h yf x f x y x

f x
∞ ∞ −

−∞

 
  =
 

∫ ∫ θθ
θ θ

θ

θ . 

If we consider the inner integral and make a change of variables with 
( )

0
w yf x= θ  which implies ( )d dw f x y= , this allows to re-express 
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( ) ( )
( ) ( )

0
0

0
e d dwf x

Q h w w f x x
f x

∞ ∞ −

−∞

  
 =      

∫ ∫ θ
θ

θ

θ .         (15) 

Therefore, 

( ) ( )( ) ( )
00 0

e d dwQ h w w f x x
∞ ∞ −

−∞
= ∫ ∫ θθ .            (16) 

For consistency based on Theorem 1, we need to show that ( ) ( )0Q Q≥θ θ  or 
( ) ( )0 0Q Q− ≥θ θ . We shall make similar assumptions as in the case of ML 

methods as given by Theorem 2.5 of Newey and McFadden [16] (p. 2131) and 
use Jensen’s inequality to show ( ) ( )0 0Q Q− ≥θ θ . The assumptions are: 

1) f f ′≠θ θ , i.e., identification assumption for the parametric family. 
2) The vector 0θ  is an interior point of the compact parameter space θ. 
3) ( )F xθ  is continuous with respect to θ . 
The conditions (1 - 3) as given above hold in general, it has been shown that 

conditions for MSP estimators to be consistent are more relaxed than the condition 

( )( )0
sup | logE f x < ∞θ θ θ                    (17) 

as given by Theorem 2.5 of Newey and McFadden [16] for ML estimators to be 
consistent but the proofs are very technical and might discourage practitioners 
to use MSP method or GSP methods in general, see Shao and Hahn [19] and Ek-
ström [20]. We can also compare expression (17) with condition 2 of Theorem 2. 
In fact, the MSP method originally proposed by Cheng and Amin [1] is for cir-
cumstances where ML estimators fail to be consistent and the method was called 
maximum product of spacings method. Anatolyev and Kosenok [3] also found 
in many parametric families MSP estimators perform better than ML estimators 
in finite samples yet being as efficient as ML estimators in large samples. These 
findings make this class of GSP methods interesting and it is not more compli-
cated to implement GSP methods than ML methods. Now having the entire class 
defined using a convex function ( )h x , it also allows the flexibility to choose a 
robust method within this class. 

Since ( )Q θ  is obtained from a limit operation as n →∞ , we work with the 
limit density as given by expression (10) with ( )0 0 0,X Y ′=V  for the expression 
( )Q θ . By making the change of variables using 0u x= , ( )0

0 0w y f x= θ , the 
joint density using expression (10) for u and v can be seen to be 

( )
0

e , 0wf u w− >θ  and u−∞ < < ∞ .              (18) 

It is not difficult to see that: 
1) ( )0

0 0w y f x= θ  and 0x  are independent, 
2) the marginal density of W is standard exponential, i.e., the density for W is 

e w− ,  
3) the marginal density for 0x  is simply ( )0

0f xθ .  
We shall see subsequently in the next sections that these properties allow 

many asymptotic results to be obtained in a unified way and simplify proofs for 
some results which already appeared in the literature and allow asymptotic nor-
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mality to be established for the GSP estimators for multi-parameters estimation 
which have been established in the paper by Ghosh and Jammalamadaka [6] but 
the approach is different in this paper. This also facilitates the establishment of 
asymptotic distribution theory for the parametric tests such as the Wald, score 
and quasi-likelihood ratio tests for the GSP methods. These tests have their 
counterparts in likelihood theory or quasi-likelihood theory.   

In fact, for asymptotic properties we essentially work with { }0
iz  and { }0

iV ; 

{ }0
iz  have a common distribution and are pairwise independent as discussed 

earlier.  
We shall see in the next sections by considering { }0 , 1, 2,iz i =   as an iid se-

quence, we still have the same asymptotic statistical results for estimators and 
parametric tests as considering the terms of the sequence { }0

iz  has a common 
distribution and they are pairwise independent. This shows that the assumption 
of an iid sequence provides a close enough approximation to the true sequence 
so that asymptotic results for efficiency on estimation and asymptotic distribu-
tions for parameter test statistics are unaffected. 

For establishing ( ) ( )0Q Q≥θ θ , it suffices to show that ( ) ( )0 0Q Q− ≥θ θ . 
Using expression (16) we can see that  

( ) ( )( )0 WQ E h w=θ                    (19) 

and using expression (16) with a change of order of integration, 

( ) ( )
( ) ( )

0
0

0
e d dw f x

Q h w f x x w
f x

∞ ∞−

−∞

 
=   

 
∫ ∫ θ

θ
θ

θ . 

The inner integral can be expressed as 

( )
( )0

0

f x
E h w

f x

  
      

θ
θ

θ

  

and since ( )h x  is convex, we can use Jensen’s inequality, see Lehmann and 
Casella [19] (p. 46-47) for example to conclude 

( )
( )

( )
( )

( )
( ) ( )

0 0 0
0 0 0

f x f x f x
E h w h E w h w E h w

f x f x f x

          
     ≥ = ⋅ =                         

θ θ θ
θ θ θ

θ θ θ

  

since ( )
( )0

0

1
f x

E
f x

 
=  

 

θ
θ

θ

.  

Therefore, 

( ) ( ) ( )( ) ( )0e dw
WQ h w w E h w Q

∞ −

−∞
≥ = =∫θ θ .  

This completes the proof for the inequality. 
Furthermore, by making a change of variable we can put 

( ) ( )
( )( )
( )( ) ( )( )0

0 0

1
1

0 10
dW W

f F u
Q Q E h w E h w u

f F u

−

−

   
   − = −
   

   
∫

θ θ

θ θ

θ θ       (20) 
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which is the expression used by Ghosh and Jammalamadaka [6] (p. 80) to justify 
consistency for GSP estimators. In the next section, we turn our attention to 
asymptotic normality and we shall see that GSP methods can be viewed as 
quasi-likelihood methods and M-estimation theory can be used to establish as-
ymptotic results. 

3.2. Asymptotic Normality and Robustness 

For asymptotic normality, often we work with an expression with n being finite 
then passing to the limit to get the asymptotic results by letting n →∞  and to 
make the presentation of the proof easier to follow, we define some notations. 
For finite n, we have seen ( ),i iz z n= θ  and to alleviate the notations we also 
use ( )i iz z n=  and since they have the same distribution we let ( )z z n=  to 
denote one of them and to emphasize the dependence on n if necessary. 

When passing to the limit by letting n →∞  we end up working with the se-
quence { }0 , 1, 2,iz i =   and again since the terms of this sequence have the 
same distribution we let 0z  to denote one of them. For establishing asymptotic 
normality under standard conditions which are similar to the ones for ML esti-
mators, we make some assumptions on differentiability on the term ( ),ih z θ  
which plays a similar role for ( )( )log if xθ  for likelihood theory.  

The asymptotic normality results might continue to hold with less stringent 
conditions for some parametric families but the proofs would be technical and 
similar to proofs for maximum likelihood estimators under the nonstandard 
conditions as in M-estimation theory which are given by Huber [21] (p. 43-51). 
Fist we state a Theorem for CLT for an α-mixing sequence which is Theorem2.4 
by White and Domowitz [6] (p. 147-148) but restated as Theorem 3 below.  

Theorem 3 (CLT) 
Let { }tM  be an α-mixing sequence and define the partial sums 

1
n

n tiS M
=

= ∑  and  

( )
1

1 a na
n ti aT M

n
+

= +
= ∑ , 

Assume that: 
1) ( ) 0tE M = . 
2) There exists K finite and nonzero such that ( )( )2

0a
nE T K− →  as n →∞  

for all a, a is a positive integer. 

3) ( )2r
tE M  for all t and some 1r > . 

4) The mixing coefficient ( ) ( )m O m λα −=  with 
1

r
r

λ >
−

. 

Then ( )0,1LnS N
nK

→ . 

Often, we need to apply Theorem 3 in a multivariate context, Cramer-Wold 
devices can be used together with Theorem 3, see Davidson [17] (p. 405-407) for 
these devices. We also define the following notations. 

Let 
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2 3

, , , 1, , , 1, , , 1, ,
i j i k j i

h h h i m j m k m
θ θ θ θ θ θ
∂ ∂ ∂

= = =
∂ ∂ ∂ ∂ ∂ ∂

  
  

be the first, second and third derivatives of the function ( ).h  with respect to 
the elements of the vector ( )1, , mθ θ ′= θ  and we shall assume that: 

1) The above partial derivatives are continuous with respect to elements of 
θ . 

2) The expectations ( )
0

0,

i

h z
E

θ

 ∂
< ∞  ∂ 

θ

θ
 and 

( )
0

0
0,

i

h z
E

θ

 ∂
  < ∞
 ∂
 

θ

θ
 . 

3) 
( ) ( )

0

, ,h z h z
E

∂ ∂ 
< ∞ ′∂ ∂ 

θ

θ θ
θ θ

 and 
( ) ( )

0

0 0, ,h z h z
E

 ∂ ∂
  < ∞

′ ∂ ∂ 
θ

θ θ

θ θ
. 

4) Interchanging order of integration and differentiation is allowed as in like-
lihood theory so that 

( )( )log f x
E

 ∂
=  ∂ 

θ
θ θ

0 , 

and the Fisher information ( )
( )( ) ( )( )log logf x f x

E
 ∂ ∂

=   ′∂ ∂ 
I θ θ

θθ
θ θ

 can also be 

expressed as  

( )
( )( )2 log f x

E
 ∂

= −   ′∂ ∂ 
I θ

θθ
θ θ

. 

5) The convergence of ( ) ( ),i i iz n y f x→ θθ  as n →∞  needs to be 
strengthened to uniform convergence so that  

( ) ( ), ii
i

f xz n
y
∂∂

→
∂ ∂

θθ
θ θ

.  

These functions are with respect to θ . 
6) The vector 0θ  is an interior point of the parameter space θ, θ assumed to 

be compact. 
For condition (5), a sufficient condition to have uniform convergence is the 

sequence of functions with respect to θ , ( ){ },iz nθ  is equicontinuous, see 
Rudin [22] (p. 152-158, p. 168) for these related properties and Davidson and 
Donsig [23](p. 54) for the Lipchitz property as it can be used to show equicon-
tinuity for a sequence of functions and the Lipchitz property is related to the 
partial derivatives of the sequence of functions.  

Now we can state the following Theorem which is Theorem 4 which give the 
asymptotic normality results for the GSP estimators in general, i.e., for the multi 
parameters case and we also verify the result given by expression (9) obtained by 
Ghosh and Jammalamadaka [6] (p. 76). 

Theorem 4 (Asymptotic Normality) 
Under Assumptions (165) as given above, then we have the following conver-

gence in distribution for the vector of GSP estimators θ̂  to a multivariate nor-
mal distribution, 
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( ) ( )0 0
ˆ ,Ln N− →θ θ 0 Σ , 1 1

0 0 0 0
− −= A B AΣ , 

1) 
( ) ( )( )0

0 0

22 0
0

0

, h yf xz
E Eθ

   ∂∂
  = =

′ ′   ∂ ∂ ∂ ∂   
A θ

θ

θ

θ θ θ θ
, 

2) 0B  being the covariance matrix of the vector of 
( )0

0,h z

θ

∂

∂

θ
 under 0θ . 

3) 
( )0

0,h z

θ

∂

∂

θ
 is the vector of partial derivatives of ( ).h  and 

( )2 0
0,h z

θ θ

∂

′∂ ∂

θ
 

is the second derivative matrix of ( ).h  with respect to the elements of the vec-

tor ( )1, , mθ θ ′= θ ,
( ) ( )

0

0 0
0 0

0

, ,h z h z
E

 ∂ ∂
 =

′ ∂ ∂ 
B θ

θ θ

θ θ
, 

( )
0

0
0,

0
h z

E
 ∂
  =
 ∂ 

θ

θ

θ
 as 

given by expression (23). 
Proof. 
Under differentiability assumptions made, the vector of GSP estimators θ̂  is 

given as roots of the following system of equation as θ̂  minimizes ( )nQ θ , i.e., 

( )ˆ
0

nQ

θ

∂
=

∂

θ
. 

Using a Taylor expansion around the true vector of parameters 0θ  of the 
above system allows us to express 

( ) ( ) ( )
2 1

0 0 2
0

ˆ0 n n
p

Q Q
o n

− ∂ ∂
= + − +   ′∂ ∂ ∂  

θ θ
θ θ

θ θ θ
            (21) 

with 
1
2

po n
− 

  
 

 is an expression which converges to 0 in probability faster than 

1 2

1 0
n

→ . 

From expression (21), we have the following representation using equality in 
distribution 

( ) ( ) ( )
2

0 0
0

ˆn ndQ Q
n n
∂ ∂

− = −
′∂ ∂ ∂

θ θ
θ θ

θ θ θ
. 

We can proceed by using { }iz  first but for asymptotic property we let 
n →∞ , so the same conclusion is reached by assuming we have the model as 

{ }0 , 1, 2,iz i =   or alternatively, if we derive asymptotic results we can consider 
( ){ }, , 1, 2,i iX Y i′ =   and the bivariate observations which form the sequence 

follow the common bivariate density as given by expression (10); also they are 
pairwise independent or it turns out the same asymptotic results can be obtained 
as the sequence is an iid sequence as it does not affect the asymptotic results that 
we aim to have. By doing so, we do not need to carry the notation ( )0 0,i iX Y ′ . 
For asymptotic properties with n →∞ , simply we can let ( ) ( )0 0, ,i i i iX Y X Y′ ′= , 
and use the properties which states that ( )

0i iy f xθ  and ix  are independent, 
( )

0i iW y f x= θ  follows a standard exponential distribution. 
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It is not difficult to see that: 

1) 
( )2

0nQ∂
′∂ ∂

θ
θ θ

 being the average of α-mixing random variables with a com-

mon distribution so that the law of large numbers can be applied and there-

fore, ( ) ( )
0

2 02
00

0

,
n p

zQ
E

 ∂∂  → =
′ ′ ∂ ∂ ∂ ∂ 

A θ

θθ
θ θ θ θ

. 

2) Similarly, 
( ) ( )0

0,n LQ
n N
∂

→
∂

B
θ
θ

0  with 0B  being the covariance 

matrix of the vector of 
( )0

0,h z∂

∂

θ

θ
 under 0θ . 

We shall show that 
( )

0

0
0,

0
h z

E
 ∂
  =
 ∂ 

θ

θ

θ
, see expression (23) given below so 

that 

( ) ( )
0

0 0
0 0

0

, ,h z h z
E

 ∂ ∂
 =

′ ∂ ∂ 
B θ

θ θ

θ θ
.             (20) 

Now applying Slutzky’s Theorem if needed as in likelihood theory, we have

( ) ( )0 0
ˆ ,Ln N− →θ θ 0 Σ , 1 1

0 0 0 0
− −= A B AΣ  is similar to the result obtained for 

quasi-likelihood estimators or M-estimators, see expression (12.18) given by 
Woolridge [24] (p. 407) for the asymptotic covariance matrix of M-estimators. 
Consequently, using the similarities with M-estimators, M-estimation theory can 
be used if needed to investigate the GSP estimators. This ends the proof. 

Subsequently, we shall display the matrices 0 0 0, ,A B Σ  and after simplifica-
tions made. First, we consider the matrix 

( )( )0

2h yf xθ

θ θ

∂

′∂ ∂
 

and with expectation taken will give 

( ) ( )( )0

0 0

22 0
0

0

, h yf xz
E Eθ

   ∂∂
  = =

′ ′   ∂ ∂ ∂ ∂   
A θ

θ

θ

θ θ θ θ
.  

Note that 

( ) ( )( )
( )( ) ( )

( )( ) ( )
( )( )

0 0
0

0

0 0

0
0,

log

h yf xz f x
h yf x y

f x
h yf x yf x

∂∂ ∂
′= =

∂ ∂ ∂
∂

′=
∂

θ θ
θ

θ
θ θ

θ

θ θ θ

θ

          (22) 

by letting  

( )( )
( )

( )

0

0

0

log
f x

f x

f x

∂
∂ ∂=

∂

θ

θ

θ

θ
θ

,  

( )h x′  and ( )h x′′  to denote the first and second derivatives of ( )h x . Clearly, 
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( )( )
( )( ) ( )( ) ( )( )0 0

0 0 0 0 0

log
0

h yf x f x
E E h yf x yf x E

   ∂ ∂
   ′= =
   ∂ ∂
   

θ θ
θ θ θ θ θθ θ

 (23) 

using the independence of ( )
0

yf xθ  and x. This property is similar to the unbi-
asedness of the quasi-scores of quasi-likelihood methods or in M-estimation 
theory. This property also justifies the equality given by expression (20). 

The elements of the matrix 0A  are given by taking expectations of the fol-
lowing elements, 

( )( ) ( ) ( )

( )( ) ( )

0 0
0

0
0

2

, 1, , , 1, ,

ij
j i

j i

f x f x
h h yf x y y

f x
h yf x y i m j m

θ θ

θ θ

∂ ∂
′′=

∂ ∂

∂
′+ = =

∂ ∂



 

θ θ
θ

θ
θ

 

Note that the second term of the RHS of the above equality can be expressed 
as 

( )( ) ( )

( )

( )

0

0 0
0

2

j i
ij

f x

b h yf x yf x
f x
θ θ

∂

∂ ∂
′=

θ

θ θ
θ

  

and upon taking expectation, it is reduced to 0 as 

( ) ( )( ) ( )

( )

( )

0

0 0 0 0 0
0

2

j i
ij

f x

E b E h yf x yf x E
f x
θ θ

 ∂
 
∂ ∂  ′=   

 
  

θ

θ θ θ θ θ
θ

 and 

( )

( )

0

0
0

2

0j i

f x

E
f x
θ θ

 ∂
 
∂ ∂  = 

 
  

θ

θ
θ

. (24) 

Let 

( )( ) ( ) ( )

( )( ) ( )( ) ( )( ) ( )( )

0 0
0

0 0

0 0

2 log log

ij
j i

j i

f x f x
c h yf x y y

f x f x
h yf x yf x

θ θ

θ θ

∂ ∂
′′=

∂ ∂

∂ ∂
′′=

∂ ∂

θ θ
θ

θ θ
θ θ

 

which implies  

( ) ( )( ) ( )( ) ( )( )0 0

0 0 0

2
log log

ij
j i

f x f x
E c E W h W E

θ θ

 ∂ ∂
 ′′=
 ∂ ∂
 

θ θ
θ θ θ   

using ( )
0

W yf x= θ  which follows a standard exponential distribution; W and x 
are independent and properties from expression (18). Using these properties if 
necessary, the matrix ( )( ) ( )

0

2
0 0E W h W′′=A Iθ θ , ( )0I θ  is the Fisher informa-

tion matrix as commonly defined in likelihood theory. 
For comparison with results given by Ghosh and Jammalamadaka [6], 0A  

coincides with the corresponding result given as the limit in probability of the  

expression ( )0
1 T
n

θ′′  by Ghosh and Jammalamadaka [6] (p. 81) for the one pa-

rameter set-up. 
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It is not difficult to see that the elements of 0B  with  

( ) ( )
0

0 0
0 0

0

, ,h z h z
E

θ

 ∂ ∂
 =

′ ∂ ∂ 
B θ

θ θ

θ
  

are 

( )( )( ) ( )( ) ( )( ) ( )( )0 0

0 0 0 0

2 2 log log

j i

f x f x
E h yf x yf x E

θ θ

 ∂ ∂    ′    ∂ ∂    

θ θ
θ θ θ θ , 

using the independence of ( )
0

yf xθ  and x which implies the independence of 
( )

0
yf xθ  and  

( )( ) ( )( )0 0
log log

j i

f x f x

θ θ

∂ ∂

∂ ∂
θ θ  

for 1, , , 1, ,i m j m= =   and expression (23). 

Therefore, ( )( ) ( )( ) ( )2 2
0 0WE h W W ′=   

B I θ  and 1 1
0 0 0 0

− −= A B AΣ  which 

implies ( ) 12
0 0hσ

−= I θΣ , 

( )( ) ( )( )
( )( )( )

2 2

2
22

W

h

W

E h W W

E W h W
σ

 ′  =
′′

.                (25)  

The expression for 0Σ  is very similar to the one in M-estimation theory, see 
expression (12.18) given by Woolridge [24] (p. 407). 

The asymptotic covariance for θ̂  is given as 

( )
2

1
0

h I
n
σ −θ .                         (26) 

At this point, we would like to make some remarks which are given below. 
Remark 1 
It appears that a minor adjustment is needed for expression (9) given by 

Ghosh and Jammalamadaka [6] (p. 76) which gives 

( )( ) ( )( ) ( )( ) ( )( )

( )( )( )

2 2

2
22

2 ,W W

h

W

E h W W E Wh W Cov Wh W W

E W h W
σ

 ′ ′ ′−     =
′′

  (27) 

It appears that the term ( )( ) ( )( )2 ,E Wh W Cov Wh W W′    which appears in 
the numerator of the above expression for 2

hσ , ( ) ( ).WE E=  is not needed 
and can be removed, using the properties based on expression (18), also see ex-
pression (23) and the derivations of the elements of 0B  for the proof of Theo-
rem 4.  

An interpretation of asymptotic relative efficiency of the GSP method versus 
the MSP method can be given to 2

hσ . Also, using the gamma function ( ).Γ , we 
can obtain for k being a real number and 1k > − , ( ) ( )1kE W k= Γ +   from the 
moment generating function of the log-gamma distribution which gives 
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( ) ( )( )logek WkE W E= . 

For the moment generating function of the log-gamma distribution, see Chan 
[25]. 

Remark 2 
By relating with M-estimators, we can study the efficiency and robustness for 

GSP estimators based on a function ( )h x  used to generate the estimators. It 
can be seen from the asymptotic results established earlier, the GSP estimators 
are asymptotically equivalent to M-estimators defined be the following estimat-
ing equations 

( )1

1 , 0n
i ii

x y
n

ψ
=

=∑ , ( ) ( )( ) ( )
( )( )log

, i
i i i i i i

f x
x y h y f x y f xψ

∂
′=

∂
θ

θ θ θ
  

is the vector of quasi-score functions. 
From M-estimation theory, we already know that for efficiency ( ),i ix yψ  

must be proportional to the score functions  

( )( )log if xθ

θ

∂

∂
 clearly ( ) ( )* logh x x= −  with ( )* 1h x

x
′ = −   

is optimal as in this case, 

( )
( )( )log

, i
i i

f x
x yψ

∂
=

∂
θ

θ
  

which shows that MSP method is efficient as ML method. This finding has been 
reported by Ghosh and Jammalamadaka [6] (p. 76) and within the class consid-
ered, this is the only optimum choice but the question of robustness has not 
been discussed. If 

( )( )log f x∂

∂
θ

θ
 

is not bounded as a function of x, the MSP estimators might not be robust de-
spite they are efficient.  

For robustness we might want to choose ( )h x xα= −  will 0α >  but near 0, 
such choices of ( )h x  are suboptimal within the GJ class but they can balance 
efficiency and robustness. With these choices, the corresponding quasi-score 
functions are given by 

( ) ( )( ) ( )( )log
, i

i i i i

f x
x y y f x

α
ψ

∂
=

∂
θ

θ θ
             (27) 

and clearly ( ),i ix yψ  will be bounded as in general having the component 
( )( )i iy f x

α
θ  will be able to keep  ( ),i ix yψ  bounded as ( )f xθ  is a density 

function and assuming y →∞  only when x →∞  and we have ( ) 0f xθ →  
as x →∞ . Clearly, with 0α = , we reobtain the true score functions. The class 
of pseudo-distance methods as introduced by Broniatowski et al. [12] also share 
the same type of properties as members of the class can generate quasi-score 
functions which can approximate the true score functions. One interesting fea-
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ture of the GJ class is the class also includes the member that generates the true 
score functions. 

Remark 3 
Only for the MSP case that we have 0 0=A B , 0A  and 0B  are as given in 

Theorem 4 with ( )0 0 0= =A B I θ  and only in this case all three tests with their 
asymptotic distributions as given in section 4 can be used, for other GSP meth-
ods we no longer have 0 0=A B  only the Wald test and score test can be used 
for hypothesis testing with the asymptotic distributions are established and given 
in section 4, this situation is similar to the one encountered for quasi-likelihood 
estimation. These three classical tests form the trinity test and the versions for 
GSP methods will be presented in the next section. 

4. Parameter Hypothesis Testing 

Now having the asymptotic results for θ̂ , we can turn to the question of testing 
hypothesis and construction of the classical tests such as the Wald test, Lagrange 
multipliers or Rao’s score test and test based on the change of the objective func-
tion for the GSP methods. These tests do not seem to have been discussed in the 
literature for the GSP methods and they are parallel to the tests used for likeli-
hood or quasi-likelihood methods. For these tests using maximum likelihood 
methods, see Gallant [26] (p. 178-182); also see Woolridge [24] (p. 420-429). For 
these tests, implicitly we assume that 0θ  is an interior point of the restricted 
parameter space. The original parameter space is restricted by the conditions 
imposed by the null hypothesis 0H . 

4.1. Wald Test 

Often, we are interested to test the null hypothesis which specifies that 0θ  be-
longs to a subset of the parameter space θ , this is phrased as restrictions im-
posed on 0θ  via a vector functions ( ) ( ) ( )( )1 , , qc cθ ′=c θ θ  which satisfies 
( )0 0c =θ  under the null hypothesis 0H  and we assume that q m< . With 
( )c θ , we then have the Jacobian matrix 

( )

( ) ( )

( ) ( )

1 1

1

1

m

q q

m

c c

c c

θ θ

θ θ

 ∂ ∂
 ∂ ∂ 
 =
 
∂ ∂ 
 ∂ ∂ 

C



  



θ θ

θ
θ θ

 and let ( )0 0=C C θ . 

These matrices are assumed to have rank q. With an application of the delta 
method, we can say that the asymptotic covariance matrix of ( )( )ˆ

nn n c=P θ , 
as ( )0 0c =θ  is simply 0 0 0′C CΣ . 

Applying Wald’s method to construct chi-square statistic using nnP  will 
lead to the following quadratic form with a chi-square asymptotic distribution 
with q degree of freedom using standard results for distribution of quadratic 
forms.  

Therefore, we have an asymptotic chi-square distribution with q degree of 
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freedom as given below, L→  is used to denote convergence in distribution 
and ( )1po  is used to denote an expression which converges to 0 in probability, 

( ) ( ) ( )1 2
0 0 0

L
n n qn χ−′ ′ →P C C PΣ . 

Replacing 0θ  by θ , we can estimate 0 0 0′C CΣ  by ′C C 
Σ  and the Wald test 

statistic is given by 

( ) ( ) 1 2
q

L
n nW n χ

−
′= ′ →P C C P 

Σ                 (28) 

4.2. Score Test or LM Test 

The score test is also called Lagrange multiplier (LM) test, it can be derived using 
the Lagrange multipliers but they do not need to be calculated explicitly as they 
can be expressed using the quasi-score function of the GSP methods. We only 
need to fit the restricted model which is specified by the null hypothesis. The 
vector for restricted estimators is denoted by θ  obtained by minimizing under 
the constraints ( ) 0c =θ . The vector for the unrestricted estimators is denoted 
by θ̂ . 

For minimizing under q constraints, we introduce the vector of Lagrange 
multipliers ( )1, , qλ λ ′= λ  and form the Lagrangian function  
( ) ( ) ( ), nL Q c′= +θ λ θ λ θ , also let  

( ) ( ),i
i

h z
s

∂
=

∂

θ
θ

θ
  

which can be viewed as the quasi-score of the GSP methods, this will parallel 
GSP methods with quasi-likelihood methods or likelihood methods. The first 
order conditions using ( ),L θ λ  will give us the following two systems of equa-
tions so that θ  and λ  should satisfy 

( ) ( )0 nQL ∂∂ ′= = +
∂ ∂

C


 

θ
θ λ

θ θ
,                (29) 

( )0 L
λ
∂

= =
∂

c θ .                     (30) 

A Taylor series expansion on the system (29) and (30) around 0θ , with 
( )0 0c =θ  and assuming 0 =λ 0  under 0H  coupled with multiplying by a 

factor n  yields the following two systems of equations which are given by 

( ) ( ) ( )0
0 00 nd Q

n n
∂

′= + − +
∂

A C  

θ
θ θ θ λ

θ
  

as 0 =λ 0 , ( ) ( )0 00 1pn o= − +C θ θ , ( )1po  is an expression which converges 
to 0 in probability. 

Multiply the first system by 1
0 0

−C A  and using the second system gives the 
following system of equation expressed using equality in distribution, 

( ) ( )01 1
0 0 0 0

nd Q
n n− − ∂

′ = −
∂

C A C C A 

θ
θ λ

θ
 

with  
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( ) ( )0
0,n LQ

n N
∂

→
∂

B
θ
θ

0  

as in the proof of Theorem 4. Therefore, using expression (29), we then have 

( ) ( )01 1
0 0 0 0

n nd
Q Q

n n− −
∂ ∂

= −
∂ ∂

C A C A
θ θ

θ θ
. 

Let  

( )1
0 0

n
n

Q
n n−

∂
=

∂
P C A

θ

θ
 

then ( )0,L
nn N→P M0  with 1 1

0 0 0 00 0
− − ′=M C A B A C , Wald’s method apply-

ing on nnP  leads to 

( )
( )

( )11 1
0 0 0 0 0

n nQ Q
n −− −

′   ∂ ∂
   ′
   ∂ ∂
   

 

A C M C A
θ θ

θ θ
  

and replacing 0θ  by θ  leads to the Rao’s score test or LM test statistic defined 
as 

( ) ( )1 1 1 2 ,n n
q

Q Q
R n χ− − −

′   ∂ ∂
   ′= →
   ∂ ∂
   

A C M CA
 

   

θ θ

θ θ
         (31) 

R is with an asymptotic chi-square distribution with q degree of freedom. 
Equivalently, if we can assume that ( )0 0 0= =A B I θ  as indicated by Wool-

ridge [24] (p. 425), we can let 

( ) ( )1 1 1,n nQ Q
R n − − −

′   ∂ ∂
   = =
   ∂ ∂
   

A A B
 

  

θ θ

θ θ
,           (32) 

using a result established by Wooldrige [24] (p. 424) and expression (12.69) 
which is based on optimization theory and linear algebra which states that for 
this type of minimization under constraints, we have with the assumption 

0 0=A B  i.e., only for the MSP case that we have: =A B   and a matrix D  with 
0=CD   and  

( )
1

nn

i

Q
n

=

 ∂
 ′ =
 ∂
 

∑D




θ

θ
0   

such that ( ) ( )1 11 1 1 1− −− − − −′ ′ ′ ′= −           A C CA C CA A D D AD D . 
The proof is involved and requires preliminary results for linear algebra, we 

shall not reproduce here, see Wooldrige [24] (p. 424) instead. Now pre and post 
multiply the RHS of the above expression by  

( )
1

nn

i

Q
n

=

 ∂
 
 ∂
 

∑
θ

θ
  

will give the expression (32) for R. Note that expression (31) holds in general 
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without the additional assumption 0 0=A B  and suitable for GSP methods 
other than MSP method. 

Note that for the use of the score test, only the reduced model under 0H  
needs to be fitted to obtain θ . This test is of interest under the circumstance 
when fitting the reduced model is less problematic than fitting the full model 
without the restrictions. The first test which is the Wald test, one needs to work 
with the full model. For Wald test and score test, the asymptotic covariances of 
some expressions need to be obtained.  

The following test which is the quasi-likelihood ratio test, we do not need the 
expressions for asymptotic covariance matrices where partial derivatives are in-
volved but we need to fit the reduced model and the full model to obtain both 
θ  and θ̂  and the quasi-likelihood likelihood ratio test is only applicable for 

the MSP method. 

4.3. Quasi-Likelihood Ratio Test  

The quasi-likelihood ratio test makes use of a statistic which is based on the 
change of the objective function obtained by fitting the full model and the re-
duced model, it can be expressed as 

( ) ( )( )ˆ2 n nQLR n Q Q= −θ θ   

and we shall see that again we have a chi-square asymptotic distribution for the 
QLR statistic with 2L

qQLR χ→  assuming ( )0 0 0= =A B I θ . Without this 
condition, the score test as given by expression (31) and Wald test can be used 
but not the QLR test with an asymptotic chi-square distribution with q degree of 
freedom. These two tests are asymptotic equivalent under 0H . 

We justify the asymptotic distribution as given above for the QLR statistic by 
expanding ( )nQ θ  around the vector of unrestricted estimators θ̂  and using  

0A , 
( )ˆnQ∂

=
∂

θ

θ
0  to express 

( ) ( ) ( ) ( )
1
2

0
1ˆ ˆ ˆ
2n n pQ Q o n

− ′= + − − +   
 

A  θ θ θ θ θ θ   

with 
1
2

po n
− 

  
 

 converges to 0 in probability faster than 
1
2 0n

−
→  which gives 

( ) ( )( ) ( ) ( )0
ˆ ˆ ˆ2 d

n nn Q Q n n′− = − −  Aθ θ θ θ θ θ . 

But with a Taylor expansion again around θ̂ , 

( ) ( ) ( )01 1

1 1 ˆ ˆn nd
i ii i

s s n
n n= =

= + −∑ ∑ A θ θ θ θ   

with 

( ) ( )1 1

1nn n
ii i

Q
n s

nθ= =

∂  
=  ∂  

∑ ∑




θ
θ , ( )1

1 0.n
ii

s
n =

=∑ θ  
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This implies 

( ) ( )1
0 1

1ˆ nd
ii

n s
n

−
=

− = ∑A θ θ θ   

and using the quasi-score functions,  

( ) ( )1
01 1

1 1n nd
i ii i

QLR s s
n n

−
= =

′   
=    

   
∑ ∑A θ θ   

which is equivalent to the score statistic,   
2
q

LQLR χ→ .                        (33) 

We end this section by noting that GSP methods for multivariate models have 
been introduced by Kuljus and Ranneby [27] with consistency properties estab-
lished for the GSP estimators. The approach used in this paper might also be 
used for a multivariate set up for asymptotic normality results and might lead to 
similar results as the ones obtained for the univariate case. 

5. Conclusion 

Asymptotic results for the GSP methods are obtained and presented in a unified 
way with fewer technicalities which parallel likelihood methods. The implemen-
tation of the methods is not more complicated than the implementation of like-
lihood or quasi-likelihood methods, and the GJ class is large enough to allow 
more choices for robustness if needed for some parametric models, and at the 
same time the MSP method within this class is as efficient as likelihood method 
for continuous univariate models. With all these properties of the GSP methods 
and simple presentation, we hope to show that these methods are indeed very 
powerful and useful for continuous univariate models but appear to be under 
used. Practitioners might want to implement these methods in various fields 
which include actuarial science for their applied works as they are not more 
complicated than quasi-likelihood methods. 
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