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Abstract 
Maximum Entropy Empirical Likelihood (MEEL) methods are extended to 
bivariate distributions with closed form expressions for their bivariate Laplace 
transforms (BLT) or moment generating functions (BMGF) without closed 
form expressions for their bivariate density functions which make the 
implementation of the likelihood methods difficult. These distributions are 
often encountered in joint modeling in actuarial science and finance. Moment 
conditions to implement MEEL methods are given and a bivariate Laplace 
transform power mixture (BLTPM) is also introduced, the new operator 
generalizes the existing univariate one in the literature. Many new bivariate 
distributions including infinitely divisible(ID) distributions with closed form 
expressions for their BLT can be created using this operator and MEEL 
methods can also be applied to these bivariate distributions. 
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1. Introduction 

Bivariate distributions are useful for joint modelling and naturally fitting these 
distributions is a necessity for pricing in insurance and finance. For example, in 
finance fitting a bivariate jump diffusion model to joint returns data allowed us to 
price a basket option accordingly, see Ruijter and Oosterlee [1] (p. B658) for a 
bivariate jump diffusion model. The authors advocated a two dimensions cosine 
method for pricing basket option. In actuarial sciences, one might consider 
modeling two claim amounts from an accident, i.e., the amount from body 
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damage and the amount from material damage which are incurred simultaneously 
in a car accident, see Partrat [2] (p. 225). Joint survival analysis is also useful for 
lifetime study, see Crowder [3] (pp. 121-136). 

In order to find suitable bivariate parametric models, compound methods and 
copulas are often used. New bivariate distributions created using the traditional 
distribution or survival copulas are often continuous with closed form distribu-
tion functions or density functions so that methods based on likelihood functions 
can be applied for statistical inferences. It is also well known that many useful 
bivariate infinitely divisible distributions do not have closed form density function 
nor distribution function yet very useful for applications. 

For the univariate case, the LT power mixture (LTPM) operator as introduced by 
Abate and Whitt [4] (pp. 92-93) for the univariate set up for creating new distri-
bution using Laplace transforms (LT) can be used to generate many distributions 
with closed form LT. Furthermore, it can also be used to generate distribution 
which is infinitely divisible. In this paper we shall generalize the LTPM to a 
bivariate version, the BLTPM operator and show that the BLTPM operator can be 
used to generate new bivariate distributions with closed from BLT. Furthermore, 
the traditional survival copulas such as the Clayton copula, see Shih and Louis [5] 
can be used as a LT copula if the property of complete monotonicity of two specific 
related functions are satisfied. For another class of survival copulas, see Crowder [3] 
(pp. 121-138). Consequently, some distribution or survival function copulas which 
are defined using a generator based on a LT of a nonnegative random variable can 
be used to generate new distribution with prescribed marginals specified by their 
marginal LTs. A similar bivariate PM operator based on distribution functions or 
survival functions, the BDSPM operator has been introduced by Marshall and 
Olkin [6] (pp. 834-836) to create new distributions functions and with frailty 
induced distributions, it also related to a class of distribution or survival Copula 
functions defined with a generator. The BLTPM operator can be used to generate 
bivariate infinite divisible distributions with closed form BLTs. It appears to be 
useful to have bivariate infinite divisible distributions for joint modeling as they 
are related to corresponding bivariate Lévy processes with stationary and inde-
pendent increments. These types of processes are useful as they often lead to 
elegant results in risk theory in actuarial sciences and in finance. 

It appears natural to extent inferences based on bivariate maximum entropy 
empirical likelihood (MEEL) to distributions with closed form bivariate LT (BLT) 
or closed form bivariate moment generating function(BMGF) which are similar to 
the univariate case as given by Luong [7]. Beside only the BLT or BMGF is needed 
without asking the explicit expression of the Bivariate distribution function or 
density function, MEEL methods appear to be practical and the methods also offer 
simultaneously a goodness of fit test statistics which follows a chi-square distri-
bution which is relatively simple to implement and appear to be useful for prac-
titioners. Along the same vein of univariate MEEL methods, bivariate MEEL 
methods of estimation and tests are based on constraints specified by moments 
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conditions which can be identified with elements of a basis where the true score 
functions are projected as in the univariate set up, see Luong [7] (pp. 463-465); 
these moment conditions which define elements of the base can be extracted from 
the model BLT or BMGF. 

It is also worth to mention that many bivariate distributions with a singular 
component in a domain such as the Bivariate exponential distribution as intro-
duced by Marshall and Olkin [8] (p. 36) or bivariate phase type distribution as 
given by Assaf et al. [9] (p. 692) do have a closed form bivariate LT so that model 
testing for these distributions with singular components in the domain can be 
handled by bivariate MEEL methods. This motivates us to extend MEEL methods 
to bivariate distributions and the paper is organized as follows.  

In Section 2 some examples from actuarial science and finance are given to il-
lustrate the usefulness of bivariate models without closed form density functions 
but with closed form BLTs. The BLTPM operator is introduced in Section 3 and it 
is shown that it can be used to create bivariate ID distribution with closed form 
BLT.MEEL methods are introduced in Section 3 with the proposal of two bases to 
generate moment conditions. The elements of the bases are based or BLT or 
BMGF and do not need the density functions explicitly. These bases are proposed 
to balance efficiencies and numerical tractability as a base with a large number of 
elements tend to create numerical difficulties on implementation of the MEEL 
methods. The asymptotic properties which already appear in the literature are 
restated emphasizing bases and projections of the score functions. We also discuss 
numerical implementation of the MEEL methods using penalty function ap-
proach as given by Luong [7]. Section 5 illustrates the use of the methods by 
conducting a limited simulation study with a bivariate compound Poisson model 
as proposed by Partrat [2] (pp. 220-223). With the range of parameters as con-
sidered, we observe that the MEEL estimators are two to four time more efficient 
than MM estimators and at the same time provide a chi-square goodness of fit test 
statistics for model selection. A base of nine elements is chosen in the study and 
there is no major numerical difficulty encountered on implementation using the 
penalty function approach. The methods avoid the use of the covariance matrix of 
the elements of the base as required for the optimum generalized moment 
methods (GMM) as discussed in Luong [7], the expressions for this optimum 
covariance matrix can be complicated.  

In the next section, we shall give some examples to illustrate that in many 
situations we end up working with bivariate distributions with closed form BLT or 
closed from BMGF but without a closed form for distributions functions or den-
sity functions. 

2. Some Examples 

Example 1 
The following bivariate distribution introduced by Partrat [2] (pp. 220-222) is 

nonnegative and continuous in general but it is discrete at the origin where there is 
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a mass assigned to it. It can be created from compounding using a bivariate 
Poisson distribution and has closed form BLT and suitable for modelling two 
claim amounts from two types of claim in actuarial sciences. The vector of claim 
amount will have two components and each component can be expressed as a 
random sum as in the univariate case but the two components will be correlated 
due to the two numbers of claims given by the vector ( )1 2,N N ′=N  are dependent 
and follow a bivariate Poisson distribution. More precisely, the claim amount is a 
vector ( ),Y Z ′=X . Each of the components of X can be expressed each as a ran-
dom sum. Note that 1

1
N

iiY U
=

= ∑ , the random variables { }, 1, 2,iU i = �  are in-
dependent and identically distributed as 0U ≥  which is a nonnegative con-
tinuous random variable with LT, ( )UL s . Similarly, 1

1
N

iiZ V
=

= ∑ , the random 
variables { }, 1, 2,iV i = �  are independent and identically distributed as 0V ≥  
which is a nonnegative continuous random variable with LT, ( )VL t . The 
random variables { }, 1, 2,iU i = � , { }, 1, 2,iV i = � , { }1 2,N N  are assumed to be 
independent and with other related independence assumptions as given by H1-H7 
in Partrat [2] (pp. 220-221) leads to the BLT of the vector X expressible as  

( ) ( ) ( )( ), ,U VL s t g L s L t=X , see Partrat [2] (p. 221). 

The bivariate probability generating function (BPGF) for ( )1 2,N N N ′=  is 

denoted by ( ),g s t  and if ( )1 2,N N N ′=  follows a bivariate Poisson distribution 

then its PGF is given as ( ) ( ) ( ) ( )1 2 12ф 1 ф 1 ф 1, e s t stg s t − + − + −= , see Partrat [2] (p. 222).  

The parameters 1 2 12ф ,ф ,ф  are all nonnegative. This is the only bivariate 
Poisson distribution which is infintely divisble(ID), see Dwass and Teicher [10]. 
Now if U and V are also ID then with property of the bivariate Poisson PGF, it can 
be seen that 

( ) ( )( )
1

, n
U Vg L s L t    

is a BLT for each positive integer n, using the remarks given by Abate and Whitt [4] 
based on results given by Feller [11] (p. 176, 449). Consequently, we can conclude 
that X is also ID. As BLT is closely related to BMGF, a similar conclusion can be 
made using BMGF instead of BLT. Also In many circumsstances by inspecting the 
BLT or BMGF which has a closed form expression, we can infer the property of 
infinitely divisibility of the distribution without having to use more sophisticated 
methods such as the one based on the Lévy-Khintchine representation, see Dwass 
and Teicher [10] for this representation which is general but very technical to 
characterize ID distribution and Lévy process.  

Clearly, we can differentiate ( ),XL s t  or using a conditioning argument with 
the random sums representations to obtain the first two moments of the vector X 
and these first two moments will be icluded in the set of moment conditions for 
MEEL methods developed subsequently in section 4. The following example gives 
a model which is used in finance. 

Example 2 
Ruijter and Oosterlee [1] (p. B658) consider joint modelling of returns of two 
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assets in a period of time. The return random vector is ( ),Y Z ′=X  and is 
representable as 

1
N

ii== +∑X B J , 

with B following a bivariate normal distribution, ( )~ ,N µB Σ . 

The mean vector ( )1 2,µ µ ′=µ  and the covariance matrix 11 12

12 22

σ σ
σ σ
 

=  
 

Σ , the 

random vector B is independent of the random sum 1
N

ii=∑ J , the iJ ’s are 
independent and identically dsitributed as J which follows a bivariate normal 

distribution, ( )~ , JN ΣJJ µ  with  

 ( ) 11 12
1 2

12 22

, ,
J J

J J
J J

σ σ
µ µ

σ σ
 ′= =  
 

J JΣµ  

This is a jump-diffusion model with the diffusion part given by B and the jump 
part by the random sum 1

N
ii=∑ J . Also, the Ji’s, B, Z and N are independent with 

N following a Poisson distribution with parameter λ. Comparing to a bivariate 
normal model, the bivariate jump diffusion model has an extra jump component. 
Ruijter and Oosterlee [1] (p. B658) show that by letting ( ),s t ′=s , the BMGF for 
W is given by 

( )
1 1
2 2, e exp e 1 , ,

J J

M s t s tλ
′ ′ ′ ′+ +  

= − −∞ < < ∞      
⋅

s s s s s s

X

Σ Σµ µ
. 

The domain of ( ),M s tX  is the entire plane due to the use of the Poisson and 
normal distributions. Clearly, this an ID BMGF and the corresponding jump 
diffusion process is a bivariate Lévy process. Also, the first two moments of the 
vector X can be extracted from the BMGF. For this model, MEEL methods can be 
used for estimation and model testing. The class of bivariate normal mean 
variance mixture as described by McNeil et al [12] (pp. 77-78) is another example 
where bivariate MEEL methods might be suitable. 

Furthermore, MEEL methods can also be used for testing the null composite 
hypothesis which specifies that the parametric model fits the data. The test 
statistics based on MEEL methods can be constructed in a unified way and 
obtained simultaneously with the estimation procedures. This feature is useful 
for doing applied works and the test statistics is less complicated than statistics 
based on the Mahanolobis distance, see Mc Assey [13], Muldhokar et al. [14] for 
statistics based on such a distance. The unique asymptotic chi-square distribution 
that the statistics follows across the composite hypothesis make them suitable 
statistics to replace the traditional chi-square test statistics as proposed by 
Moore and Stubblebine [15] which require closed form bivariate density 
functions. Model testing procedure is easy to implement if it is based on a statistics 
with a unique asymptotic distribution for all 0 ∈Ωβ , the parameter space is 
denoted by Ω. The main requirement is the model BLT has a closed form 
expression.  
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These properties of bivariate MEEL methods are similar to properties of 
univariate MEEL methods as discussed by Luong [7] and will be further discussed 
in section 4. Note that asymptotic theory for empirical likelihood methods as 
developed by Qin and Lawless [16] (p302-308) is not restricted to univariate 
distribution and the same can be said for the maximum entropy version. In fact, 
asymptotic theory for empirical likelihoods is well established for model with 
multivariate observations which are independent and identically distributed using 
a set of fixed moment conditions. The example 2 as given by Qin and Lawless [16] 
(pp. 311-312) is an example of the use of empirical likelihood methods for a 
bivariate model. In practice, we would like to choose the moment conditions so 
that high efficiencies can be achieved and handle the procedures numerically. We 
focus on these points for a class of distributions with closed form BLT or BMGF 
and do not emphasize asymptotic theory in the paper.  

3. Distributions Created Using the BLTPM Operator 
3.1. The BLTPM Operator 

The Laplace transform power mixture operator (LTPM) has been introduced in 
the literature for creating univariate non-negative distribution and can be viewed 
as a continuous type of compounding operator and it makes use of LT of a dis-
tribution and the LT of a mixing random variable to create a new distribution 
specified by its LT. It is due to Abate and Whitt [4] (pp. 92-93). They use the ac-
ronym PM but to emphasize the explicitly use of LTs with this operator we shall 
use the acronym LTPM and to distinguish it with a similar power mixture op-
erator introduced by Marshall and Olkin [6] (pp. 834-836) which make explicitly 
use of distributions instead of LTs. Abate and Whitt [4] also point out that a new 
ID can be obtained if we start with an ID distribution and the mixing distribution 
is non-negative continuous and ID. They also give an elegant and insightful in-
terpretation when instead of ID distribution we can consider the corresponding 
Lévy process behind. The new ID distribution is related to a new Lévy process 
constructed from a Lévy process subject to a change time process induced by the 
mixing random variable and since it is ID, the change time process is also a Lévy 
process. To summarize, we can say that starting with a Lévy process and subject 
this process to another non-negative Lévy process used as a change of time process 
then a new Lévy process can be created or equivalently a new ID non-negative 
distribution is created which is the distribution of the increments of the newly 
created Lévy process. Observe that the LTPM operator can be used to generate 
new distributions in general and with further conditions imposed on the proce-
dures, the new distribution can be ID. Consequently, it appears to be natural to 
generalize this operator to a bivariate version to create bivariate distributions 
using two univariate LTs and the LT of a mixing random variable, this is the 
bivariate power mixture operator (BLTPM). Clearly, it is natural extension of the 
LTPM operator which is used to create univariate distribution. This operator is 
similar to another power mixture operator which makes use of distributions or 
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survival functions instead of LTs given by Marshall and Olkin [6] (p. 835), we shall 
use the acronym BDSPM for this operator.  

For illustrations, some examples of new bivariate distribution specified by BLT 
and created using the BLTPM operator will be given for illustrations in section 3.2. 
The BLTPM operator can also be used to create new distribution with one mar-
ginal distribution which is discrete and the other marginal being continuous. 
These types of bivariate distributions appear to be useful for actuarial science and 
possibly for other fields as well.  

Often, we need to know whether a function can be considered as LT of some 
univariate random variable, the notion of completely monotonicity of a function 
is useful for characterizing a function to be a proper LT of a random variable and 
can be found in Feller [11] (pp. 439-440) but it is reproduced here for completeness 
as Definition and Theorem below. 

Definition 
A function ( )ф s  with the domain given by 0s ≥  is completely monotone (CM) 

if it possesses derivatives ( )ф n  of all order and ( ) ( ) ( )1 ф 0n n s− ≥ . 
Theorem 
A function ( )ф s  with the domain given by 0s ≥  is the LT of a random vari-

able if and only if it is CM. 
Now if we assume that the LT of a random variable 𝑋𝑋is ( )f̂ s  so that ( )f̂ sα  is 

a proper LT, also suppose that the LT of another random variable Y is ( )ĝ t  so 
that ( )ĝ tα  is a proper LT and α is a non-negative random variable with distri-
bution function H and LT ( )ĥ u . Furthermore, we assume that conditioning on a 
realized value α, the LT ( )f̂ sα  which is the LT of a random variable denoted by 

( )X α  and the LT ( )ĝ tα  which is the LT of a random variable denoted by ( )Y α  
are independent but when integrate out with respect to the distribution of α will 
give a new bivariate LT for a vector ( ),Y Z ′=X , 

 ( ) ( ) ( ) ( )
0

ˆˆ, d .gL s t f s t Hα α α
∞

= ⋅∫X                 (1) 

Using the LT of α, it can be re-expressed as 

 ( ) ( )( ) ( )( )( )ˆ, log ˆ ˆlog .L s t h s tf g= − −X                (2) 

Expression (2) gives a definition of the BLTPM operator and it generalizes ex-
pression (6.1) given by Abate and Whitt [4] (p. 92) for the univariate LTPM op-
erator. Similarly, if MGFs are used instead and they are given respectively by 
� ( )Mf s , � ( )Mg t  and � ( )Mh u , a new bivariate distribution with BMGF can be 

created similarly. 

 ( ) � � ( )( ) � ( )( )( ), log log .X M M MM s t h f s g t= +
            

 (3) 

Observe that if ( ) ( ),X Yα α  are ID and 0α ≥  is continuous and ID then the new 
bivariate distribution created is also ID. We can interpret this property using Lévy 
processes, as two independent Lévy processes subject to the same time change 
Lévy process is a bivariate Lévy process. This generalizes the argument used for the 
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univariate case given by Abate and Whitt [4] (p. 92). 
A form of bivariate PM operator, the BSDPM has been used in the literature but 

with the use of distribution functions or survival functions, see the seminal works 
of Marshall and Olkin [6] and a class of survival or distribution copula functions 
are also obtained. This class is defined using a generator which is based on the LT 
of some nonnegative random variable which forms a subclass of the Archimedean 
class and will be further discussed in section 3.2. Due to the analogy between the 
BLTPM operator and BDSPM operator, these distribution or survival copula 
functions subject to some conditions are also LT copulas. For the Archimedean 
class, see Klugman et al. [17] (pp. 187-213). 

In section 3.2, we shall see that additional requirements are needed when 
working with LT’s instead of distribution functions or survival functions for the 
use of these copulas traditionally used to create new bivariate distribution func-
tion using prescribed marginal distributions.  

This is due to the conditions ( )( )1
1фe L sα −−  and ( )( )1

2фe 0,L tα α
−− >  are proper LT 

are more difficult to verify than the corresponding conditions, ( )( )1
1фe F xα −−  and 

( )( )1
2фe F yα −−  are proper distribution functions with ( )1F x  and ( )2F y  being 

distribution functions when the BDSPM operator is used, see Marshall and Olkin 
[6] (p. 834). 

We shall give a few examples below to illustrate the use of the BLTPM operator 
to create bivariate ID distribution using the LT of a gamma mixing random 
variable. The same procedure can be used with other mixing random variables 
such as the inverse Gaussian random variable or the exponential mixture inverse 
Gaussian (EMIG) random variable. The EMIG distribution as studied by Abate 
and Whitt [4] (pp. 95-96) is also ID, continuous and nonnegative. This distribution 
has not received much attention in the statistical literature despite it is used 
frequently in queueing theory.  

3.2. Some Examples 

Example 3 
For modeling two type of claims in insurance for one period of time, we might 

want to construct a joint continuous model using the BLTPM operator with the 
mixing random variable following a gamma distribution with LT  
( ) ( )ˆ 1 , 0h u u τ τ−= + > , ( )f̂ s  and ( )ĝ t  are LT of inverse Gaussian 

distributions with LTs given respectively by 

( )
2

1 1

1 1

2ˆ exp 1 1 sf s θ µ
µ θ

  
  = − +

    
 and ( )

2
2 2

2 2

2exp 1ˆ 1 tg t θ µ
µ θ

  
  = − +

    
, 

0,, 1, 2i i iθ µ > =  see Klugman et al. [18] (p. 472) for LT of an inverse Gaussian 
distribution. 

Apply the BLTBPM operator using these LTs, this will give a new bivariate 
continuous distribution for a random vector ( ),Y Z ′=X  which is ID and 
nonnegative with its BLT given by 
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( )
2 2

1 1 2 2

1 1 2 2

2 2, 1 1 1 1 1s tL s t

τ

θ µ θ µ
µ θ µ θ

−
    
    = − − + − − +

        
X . 

From ( ),L s tX , the Pearson product moment correlation coefficient can be 
obtained and the coefficient can be used to study the dependence between Y and Z. 
Other depence measures can also be used to study associativity and dependence, 
see Chapter 4 of the book by Balakrishnan and Lai [19] (pp. 141-173) and for total 
positivity dependence, see Barlow and Proschan [20] (pp. 142-150) but we do not 
go into details into these dependence studies for distributions created using the 
BLTPM operator as the main focus of the paper are on statistical inference 
methods using BLTs or BMGFs.  

Example 4 
Bivariate mixed models with one marginal for counts and the other one for claim 

amounts appear to be useful in actuarial science. These models can also be 
constructed using the BLTPM operator. For example, let the random vector 

( ),Y Z ′=X  with Y being discrete and Z being continuous and nonnegative. We 
might specify ( ) ( )ˆ 1 , 0h u u τ τ−= + > , ( ) ( )( )ˆ exp e 1sf s λ −= −  which is the LT of 
a Poisson random variable with 0λ > , let and  

( )
22exˆ p 1 1tg tθ µ

µ θ

  
  = − +

    
, θ  and 0µ >  which is the LT of an inverse 

Gaussian distribution. 
The BLT of the random vector ( ),Y Z ′=X  created using the BLTPM operator is 

( ) ( )
22, 1 e 1 1 1s tL s t

τ

θ µλ
µ θ

−

−
  
  = − − − − +

    
X . 

Setting 0t =  we obtain the marginal LT of Y which is given by  

( ) ( )( )1 e 1s
YL s

τ
λ

−
−= − − . One can recognize that this is a LT of a negative 

binomial distribution and for this distribtion, the corresponding probability  
generating function (PGF) ( ) ( )( )1 1YP s s

τ
λ

−
= − − , see Klugman et al. [17] (p. 83) 

for the PGF of a negative binomial distribution.  

The marginal ( )
221 1 1Z
tL t

τ

θ µ
µ θ

−
  
  = − − +

    
 is the LT of a continuous 

random variable. 
Example 5 
In this example we shall obtain a bivariate negative binomial distribution using  

the BLTPM operator. Let ( ) ( )ˆ 1 , 0h u u τ τ−= + > , ( ) ( )( )1
ˆ exp e 1sf s λ −= −  and  

( ) ( )( )2ex e 1ˆ p stg λ −= − , 1λ  and 2 0λ > . Apply the BLTPM operator this gives a  

joint distribution for ( ),Y Z ′=X  with BLT given by 

( ) ( ) ( )( )1 2, 1 e 1 e 1s sL s t
τ

λ λ
−

− −= − − − −X . 

This is a BLT of a bivariate negative binomial distribution which is also ID. In 
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the literature, this distribution has been constructed using various methods and by 
many authors, see Mardia [21] (p. 84). We can see that the BLTPM operator is very 
useful for constructing bivariate distribution with the property being ID. This 
property is useful in finance and actuarial sciences as the corresponding bivariate 
process is a bivariate Lévy process with stationary and independent increments. 
This property often leads to nice results in risk theory and pricing formulas in 
finance. Simulation of sample paths from these processes are also simplified using 
this property.  

We briefly mention on how to simulate from bivariate distribution with a 
specified ( ),L s tX  created by the BLTPM operator. The procedures are similar to 
the procedures described in section 5 and given by Marshall and Olkin [6] (p. 840) 
but the inverse transform method might not be necessary explicitly.  

For the inverse transform method, see Ross [22] (pp. 69-70). 
The main steps are: 
1) Generate an observation for the mixing random variable α from the distri-

bution H which has LT ( )ˆ .h u  
2) Use the observed value α, generate an observation ( )X α  from a distribution 

with LT ( )f̂ sα . Often from the expression of ( )f̂ sα , we have a procedure to 
simulate from this distribution and the inverse method might not be needed ex-
plicitly at this step. 

3) Use the same observed value α, simulate another observation ( )Y α  which is 
independent of ( )X α  obtained from 2) from a distribution with LT ( )ĝ tα . 

The pair of observations ( ) ( )( ),X Yα α ′  obtained will follow a bivariate distribu-
tion with BLT as specified by ( ),L s tX .  

3.3. LT Copulas 

Observe that the BLTPM operator given by expression (2) is similar to the BDSPM 
operator given by expression 2.2 in Marshall and Olkin [6] (p834) where a class of 
distribution or survival copulas can be obtained, it is considered below. Without 
loss of generality we consider distribution copulas which are related to the BDSPM 
operator. By using the specified marginal distributions 1F  and 2F , a new 
bivariate distribution ( ),F x y  can be constructed with these two specified mar-
ginals which is given by 

 ( ) ( )( ) ( )( )( )1 1
1 2, ф ф фF x y F x F y− −= + ,              (4) 

ф  is a univariate LT and its inverse given by 1ф− . 

If we let ( )ф 1 s τ= +  which is a LT of a gamma distribution, its inverse is given 

by 
1

1ф 1s τ
−− = − , then we will have the classical distribution or survival  

distribution Clayton copula as shown in example 4.2 given by Marshall and Olkin 
[6] (p. 837). For other copulas of the form given by expression (4), see Shih and 
Louis [5]. 

For new bivariate distribution constructed using the BLTPM, we restrict the 
attention to nonegative distributions. Note that if the marginal distributions are 
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specified respectively using LTs and given by ( )1L s  and ( )2L t  and subject to 
the two functions ( )( )1

1фe L sα −−  and ( )( )2
1фe L tα −−  are proper LT, a BLT of a new 

distribution with marginal LTs given respectively by ( )1L s  and ( )2L t  can also 
be obtained as 

 ( ) ( )( ) ( )( )( )1 1
1 2, ф ф фXL s t L s L t− −= + ,              (5) 

which is similar to the procedure as given by expression (4) using distribution or 
survival functions. This also means that some of the distribution or survival 
copulas of the class given by expression (4) can also be used as LT copulas. But the 
drawback of this approach using LT copula here is even by specifying the 
marginals ( )1L s  and ( )2L t  being LT of ID distributions, ( ),L s tX  constructed 
using expression (5) might not necessary be a BLT of a bivariate ID distribution. 

 It is also more difficult to simulate from a BLT ( ),L s tX  obtained using the LT 
copula as given by expression (5). Despite the algorithm used to generate a pair of 
observations from a specified BLT procedure is already given as above but when 
apply the procedures here we encounter the difficulty on how to simulate from 
distributions with LTs given by ( ) ( )( )1

1ф
1 e L sK s α −−=  and ( ) ( )( )1

2
2

фe L tK t α −−=  as we 
might not be able to recognize these distributions.The inverse transform method 
can be applied by using the approximate quantile function based on moment 
generating functions ( ) ( )( )1

1ф
1 e L sM s α −− −=  and ( ) ( )( )1

2ф
2 e L tM s α −− −=  to obtain a 

simulated sample with some accuracy. The approximate quantile functions based 
on moment generating functions can be obtained explicitly using the saddle point 
technique and it is given by Arevelillo [23]. If these univariate MGFs do not exist, 
these LTs can be converted to characteristic functions and the numerical methods 
based on the inverse method and the approximate quantile functions as described 
by Glasserman and Liu [24] (pp. 1613-1615) can also be used to generate a pair of 
observations with some degree of accuracies.  

There is a vast literature on survival or distribution copula, we just mention a few 
here. For a good general review on distribution or survival copula models with 
emphasis on goodness-of-fit test statistics, see Genest et al. [25] and for a good 
review of inference methods based on survival copulas used in actuarial science, 
see Klugman et al. [17] (pp. 187-213), Frees and Valdez [26]. 

As mentioned earlier, asymptotic theory for Maximum entropy empirical 
likelihood (MEEL) and empirical likelihood (EL) for models where we have 

1, , nX X�  a sample of multivariate observations independent and identically 
distributed (iid) as X  which follows a d-variate multivariate distribution 

( )1, , , pF β β ′= �β β  are well established but assuming a set of moment conditions 
or constraints has been chosen, see Qin and Lawless [16], Schennach [27], Owen 
[28], Mittelhammer et al. [29]; also see discussions in section 3.2 by Luong [7] (pp. 
471-472).  

For applications, the question on how to choose moment conditions or 
equivalently bases so that MEEL methods have high efficiencies is a relevant one 
and we would like to address mainly this issue here for models with closed form 
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BLTs or BMGFs as introduced in previous sections. The moment conditions are 
viewed as constraints and can be identifed with elements of a chosen basis used to 
project the true score functions as in the univariate case, see Luong [7] (pp. 461-467). 
Beside estimation, empirical likelihood type methods also give a chi-square test 
statistics for model testing which is useful for practical applications. We shall 
emphasize moment conditions and focus on how to choose constraints for models 
with closed form BLTs or BMGFs in the next section as asymptotic theory is similar 
to the univariate case and already discussed in section 3.2 as given by Luong [7]. 

4. MEEL Methods  

Let 1, , nX X�  be sample of bivariate observations and they are independent and 
identically distributed as ( ),Y Z ′=X  which follows a bivariate distribution 

( )1, , , pF β β ′= �β β , Fβ  has no closed from but its BLT or BMGF has a closed 
form expression and given respectively by ( ),L s tβ  or ( ),M s tβ .The true vector of 
parameters is denoted by 0 ∈Ωβ .The parameter space Ω is assumed to be 
compact. 

Suppose that we can identify k constraints of the form ( ) ( )1 ; , , ;kg x g x�β β  
where these functions ( ); , 1, ,ig x i k= �β  are unbiased estimating functions with 
the property ( )( ); 0, 1, ,iE g x i kβ = = �β , these functions also form a basis 

( ) ( ){ }1 ; , , ;kB g x g x= �β β  used to project the true score functions and MEEL 
estimators can be viewed as equivalent to quasilikelihood estimators based on the 
projected score functions, see Luong [7] (pp. 466-468). Therefore, the constraints 
are linked to a basis and the ability to obtain projected score functions close to the 
true score functions for some restricted but useful parameter space will make 
MEEL estimators have high efficiencies in practice. 

4.1. Choice of Bases  

In this section, we shall recommend a base when using a model BLT to extract 
moment conditions which can be used as a guideline for forming other bases if 
needed for applying bivariate MEEL methods.  

We shall define the first five gi’s as follows which make use of the first two 
moments of X, i.e., 

( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( ) ( )( ) ( )
( ) ( )( ) ( )( ) ( )

1 2

2 2
3 4

5

; , ;

; , ; ,

; , .

g x y E z g x z E z

g x y E y V z g x z E z V z

g x y E y z E z Cov y z

= − = −

= − − = − −

= − − −

β β

β β β β

β β β

β β

β β

β

   (6) 

The variances of y and z are given respectively by ( )V yβ  and ( )V zβ , the 
covariance between y and z is denoted by ( ),Cov y zβ . Subsequently we will pick 
the gi’s directly using the model BLT ( ),L s tβ . We shall choose first four points of 
the BLT ( ),L s tβ , ( ) ( ) ( ) ( )1 1 2 2 3 3 4 4, , , , , , ,s t s t s t s t  which belong to a circle of radius 

1 0.01r =  in the nonnegative quadrant and centered at the origin, i.e., let 

( ) ( ) ( )( ) ( )1 1 1 2 2 1
π π, cos 0 ,sin 0 , , cos ,sin
6 6

s t r s t r     = =     
    
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( ) ( )3 3 1 4 4 1
2π 2π 3π 3π, cos ,sin , , cos ,sin
6 6 6 6

s t r s t r          = =          
          

 

which lead to define 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 1 2 2

3 3 4 4

6 1 1 7 2 2

8 3 3 9 4 4

; e , , ; e , ,

; e , , ; e , .

s y t z s y t z

s y t z s y t z

g x L s t g x L s t

g x L s t g x L s t

+ +

+ +

= − = −

= − = −

β β

β β

β β

β β
 

We might want to add another 4 points on the part of the circle of radius 

2 0.02r =  of the nonnegative quadrant and centered at the origin by letting 

( ) ( ) ( )( ) ( )5 5 2 6 6 2
π π, cos 0 ,sin 0 , , cos ,sin
6 6

s t r s t r     = =     
    

 

( ) ( )7 7 1 8 8 2
2π 2π 3π 3π, cos ,sin , , cos ,sin
6 6 6 6

s t r s t r          = =          
          

 

which leads to define 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 5 6 6

7 7 8 8

10 1 1 11 6 6

12 7 7 13 8 8

; e , , ; e , ,

; e , , ; e , .

s y t z s y t z

s y t z s y t z

g x L s t g x L s t

g x L s t g x L s t

+ +

+ +

= − = −

= − = −

β β

β β

β β

β β
 

If needed, pick another 4 points on the circle of radius radius 3 0.03r =  of the 
nonnegative quadrant centered at the origin by letting  

( ) ( ) ( )( ) ( )9 9 3 10 10 3
π π, cos 0 ,sin 0 , , cos ,sin
6 6

s t r s t r     = =     
    

 

( ) ( )11 11 3 12 12 3
2π 2π 3π 3π, cos ,sin , , cos ,sin
6 6 6 6

s t r s t r          = =          
          

 

which leads to define  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

9 9 10 10

11 11 12 12

14 9 9 15 10 10

16 11 11 17 12 12

; e , , ; e , ,

; e , , ; e , .

s y t z s y t z

s y t z s y t z

g x L s t g x L s t

g x L s t g x L s t

+ +

+ +

= − = −

= − = −

β β

β β

β β

β β
 

With all these gi’s, the basis can be formed and given by 

( ) ( ){ }1 ; , , ; , 17.LT kB g x g x k= =�β β
               

 (7) 

Therefore, if the number of parameters m in the model, m k< , bivariate MEEL 
methods can be used for estimation and model testing using this basis to generate 
constraints. Note that the choice of ( ); , 1, ,17ig x i = �β  do not put restrictions 
on the parameter space as the model BLT is well defined on the nonnegative 
quadrant for all values of the vector ( ),s t ′=s . This might not be the case with the 
use of the BMGF ( ),M s tβ  where the domain of s might depend on β . We have 
to be ensured that if restrictions are imposed, the restricted parameter space is all 
we need for applications. The choice of points are based on the intuitve ground 
that the BLT contains more information at points near the origin and obviously 
there is some arbitrairiness on the choice of points or equivalently moment 
conditions for using MEEL methods. 

If we use moment conditions based on the BMGF such as estimation for the 
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jump-diffusion model as given by example 2, in general we might want to keep the 
first five ( );ig x β ’s as given by expression (6) for BLT and add 12 additional gi’s 
with chosen points on the circle of radius 0.01r =  centered at the origin without 
restricting on the first quadrant and define  

( ) π π, cos ,sin , 0,1, 2, ,11
6 6j j
j js t r j    = =    

    
�  which leads to define 

( ) ( )
( ) ( )

( ) ( )

0 1 0 2

1 1 1 2

11 1 11 2

6 0 0

7 1 1

17 11 11

; e , ,

; e , ,

; e , .

s z t z

s z t z

s z t z

g x M s t

g x M s t

g x M s t

+

+

+

= −

= −

= −

�

β

β

β

β

β

β

 

Consequently, the base  

( ) ( ) ( ) ( ){ }1 5 6 17; , , ; , ; , , ;MGFB g x g x g x g x= � �β β β β
       

 (8) 

which makes use of the model BMGF ( ),M s tβ  can be used for generating 
constraints.  

Note that the BMGF for the jump-diffusion model as given by example 2 is well 
defined for all points ( ),s t ′=s . Note that with a basis of 17k =  elements, it will 
allow the number of parameters 17p < .It appears that such a base gives a good 
balance between efficiency and numerically tractability for the MEEL methods 
and can be used as a guideline to form other bases if necessary in practice. 

4.2. Estimation and Model Testing 

Asymptotic properties for Multivariate MEEL methods and for EL methods for 
models with independent and identically distributed of vector of observations are 
well established, see Qin and Lawless, Mittelhammer et al. [29] (p. 323), Schennach 
[27]. Now if we use the constraints as defined using a basis { }1, , kB g g= � , MEEL 
estimators are obtained as the vector β̂  which maximizes the entropy or mini-
mizes 

( ) ( )* *
1 lnn

i ii π π
=∑ β β                       (9) 

with 

( ) ( )( )( )
( ) ( )( )( )

1 1*

1 1 1

exp ;
, 1, ,

exp ;

k n
j j ij i

i n k n
j j ii j i

g x
i n

g x

λ
π

λ

= =

= = =

−
= =

−

∑ ∑

∑ ∑ ∑
�

β β

β β
       (10) 

subject to 

 ( ) ( )( )*
1 , ; 0, 1, ,n

i j ii g x j kπ
=

= =∑ �λ β β .             (11) 

The λj's depend on β  and are only implicitly defined using expression (11).  
Using standard regularity conditions as indicated in the references just listed, 

also see section 3.2 given by Luong [7] (pp. 471-472), we then have consistency 
and asymptotic normality for the MEEL estimators given by β̂ , i.e.,  

0
ˆ p→β β , 0β  is the vector of the true parameters,  
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( ) ( )0
ˆ 0,pn N− → Ωβ β , 

 
( ) ( ) ( ) ( )

00 0

11
, ,

, ,
g x g x

E E g x g x E

−−

== =

     ∂ ∂ ′    =     ′ ∂ ∂         
Ω

β ββ β β β

β β
β β

β β
, (12) 

( ) ( ) ( )( ) ( ) ( ) ( )
0

1 0, , , , , , , , .kg x g x g x E g x g xβ
=

 ′ ′= Σ =   
�

β β

β β β β β  

An estimator Ω̂  for Ω  is given below, 

( ) ( ) ( )

( )

1

1 1 ˆˆ

1

1
ˆ

,ˆ ˆ ˆ , ,

,
ˆ

n ni
i i i ii i

n i
ii

g x
g x g x

g x

π π

π

−

= =
==

−

=
=

 ∂  ′ =  ∂    

 ∂
 ⋅

∂   

∑ ∑

∑

Ω
β ββ β

β β

β
β β

β

β
β

 

( )* ˆˆ , 1, ,i i i nπ π= = �β . If we let 
1ˆ , 1, ,i i n
n

π = = � , we have another consistent  

estimator for Ω . The asymptotic results are very similar to the ones for the 
univariate case as given by Luong [7] but for completeness they are reproduced to 
make the paper easier to follow. 

For model testing, it is viewed as testing the validity of the moment conditions, 
i.e., tesing the null hypothesis ( )( )0 : , 1, ,jH E g x j k= �β  just as in the univariate 
case, the expectations are under the true parametric model. 

The following test statistics given below is a chi-square test statistics which has 
an asymptotic chi-square distribution with r k p= −  degree of freedom, i.e., 

( )( ) ( ) ( )( ) ( )* * * 2
1

1ˆ ˆ ˆ2 , 2 log logn L
n i iinKL p n k p

n
π π π χ

=

   = − → −      
∑β β β . (13) 

This test might be useful for testing bivariate normality in empirical finance and 
it is based on the MEEL estimators β̂  and since the basis used spans the true 
score functions of the bivariate normal model which makes β̂  as efficient as the 
maximum likelihood estimator �MLβ , as the projected score functions are iden-
tical to the score functions. Furthermore, the asymptotic chi-square distributions 
are practical for the use of these test statistics and we do not need intensive 
simulations to implement model testing procedures as in other methods. Also, 
MEEL methods can be applied for model with a singular part in the domain 
provided that the model BLT has a closed form expression. 

4.3. Numerical Implementations 

As for the univariare case, a penalty approach can be used which means that we 
can perform unconstrained minimization using the following objective function 
with respect to ( )1, , kλ λ ′= �λ  and 1, , pβ β� , 

( ) ( )
( ) ( )( ) ( ) ( )( )

* *
1

2 2
* *

11 1

, ln ,

, , , ,
2

n
i ii

n n
i i i k ii i

K g x g x

π π

π π

=

= =
    + + +     

∑
∑ ∑�

λ β λ β

λ β β λ β β
 (14) 
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The penalty constant K is a large positive value, direct search agorithms which 
are derivative free are recommended and these direct search algorithms are also 
more stable. 

It is important to note that only a local minimizer is found each time using these 
algorithms, some strategies are needed to identify the global minimizer. Often, we 
might need a starting vector being close to the vector of the estimators to initialize 
the algorithm, this is important when working with real data and bivariate models 
might have many parameters. We might want to adopt the following strategy to 
look for a good starting vector. Using the two submodels based on the two 
marginal distributions of the model separately we can fit using univariate MEEL 
methods using { }, 1, ,iy i n= �  and { }, 1, ,iz i n= �  as described in Luong [7] to 
obtain respectively ( )�0

1β  the vector which estimates the vector of parameters 1β  
of the first marginal model and similarly obtain ( )�0

2β  which estimates the vector 
of parameters 2β  of the second marginal model.The vector of parameters of the 
bivariate model is β  and β  can be partitioned into three components,i.e., 

( )1 2 3, , ′=β β β β . Now if we apply MEEL methods with the bivariate model but 
fixing 

( )� ( )�0 0
1 1 2 2,= =β β β β  and only estimate 3β , the vector which estimates 3β  is 

denoted by ( )�0
3β . We can construct the following starting vector 

( ) ( )� ( )� ( )�( )0 0 0 0
1 2 3

ˆ , ,
′

=β β β β , ( ) ( )0ˆ 0, ,0= �λ  and fit the bivariate model using 

penalty method by minimizing jointly with respect to the vector λ  and the vector 
β  the objective function as given by expression (14). 

5. A Simulation Study 

In this section we perform a limited simulation study for model given by example 
1. We compare the performance of the Method of moment(MM) estimators with 
the MEEL estimators using the following basis MEELB  with 9k =  elements 
which is formed using the first 9 elements of the basis given by expression (7) as 
the model only has five parameters given by the vector  

( )1 2 12 1 2ф ,ф ,ф , ,β β ′=β  and these parameters will be introduced below. Using the 
model in example 1 by specifying an exponential distribution for U with  

density function ( ) 1
1 1

1

1; e , 0
u

f u ββ β
β

−

= >  and specifying another exponential 

distribution for V with density function ( ) 2
2 2

2

1; e , 0
u

f v ββ β
β

−

= > . The random  

vector ( )1 2,N N ′=N  follows a bivariate Poisson distribution with parameters 

1 2 12ф ,ф ,ф  and these parameters all all positive. We have n independent and 
identically distributed observations 

( ), , 1, 2, ,i i iY Z i n′= =X � . They have the same distributions as ( ),Y Z ′=X  and 
using the model as specified, the following first two moments of X can be obtained, 
they are also given by Partrat [2] (p. 221), 
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( ) ( ) ( ) ( ) ( )2 2
1 21 1 2 2 1 2 12 1 2ф , ф , 2ф , 2ф , , фE Y E Z V Y V Z Cov Y Zβ β β β β β= = = = =  (15) 

where ( ) ( ). , .E V  and ( ).Cov  denote respectively the mean, the variance and 
covariance of the expression inside the parenthesis. Now if we replace ( )E Y , 
( )E Z , ( )V Y , ( )V Z  and ( ),Cov Y Z  by their sample counterparts which are 

given by 2 2, , ,Y ZY s sZ  and YZs  in expression (15) and by solving the system of 
equation,it will give us the MM estimators given by the vector  

� � � � �( )1 2 12 1 2ф ,ф ,ф , ,β β ′=�β  with 

� � �
�
�

�
�
��

2 2

1 2 1 2 12
1 2 1 2

, , ф , ф , ф
2 2

Y Z YZs s sY Z
Y Z

β β
β β β β

= = = = =  

 For MEEL methods we use the basis { }1 9, ,MEELB g g= �  and we only keep the 
first 9 elements of the basis B as given by expression (7).  

The model BLT is 

 ( ) 1 2 12
1 2 1 2

1 1 1 1, exp ф 1 ф 1 ф 1
1 1 1 1XL s t

s t s tβ β β β
      

= − + − + −       + + + +      
,  

see Partrat [2] (p. 221) and example 1 in section (2). For efficiency, observe that 
the quasi-score functions of the MM estimators belong to the linear space spanned 
by 1 5, ,g g�  and based on asymptotic theory MEEL estimators will be more 
efficient than MM estimators for large samples already as 1 5, ,g g�  belong the 
basis used for MEEL methods, see Luong [7] for quasi-score functions related to 
MEEL estimation. Another advantage of the MEEEL methods over methods of 
moments (MM) is that a chi-square statistics with four degree of freedom is 
available for model testing as the methods provide a unified approach to 
estimation and model testing. 

 We conduct a limited simulation study using this model, to simulate an ob-
servation from the bivariate Poisson distribution we use a trivariate reduction 
technique which is based on the following representation in distribution. We 
simulate first an observation 12R  from a Poisson distribution with parameter 12λ  
then simulate an independent observation 1R  which follows a Poisson distribution 
with parameter 1λ  and another observation which is independent of the first 
two observations which follows a Poisson distribution with parameter 2λ . 
Finally, we construct the vector of observations obtained by simulations as  

( )1 2,N N ′=N  with its components given by 1 1 12
dN R R= +  with  

2 2 12
dN R R= +  and the equalities hold in distribution. The vector ( )1 2,N N ′=N  

will follow a bivariate Poisson distribution with parameters 1 1 12ф λ λ= + , 

2 2 12ф λ λ= + , 12 12ф λ= , see Johnson et al. [30] (pp. 124-126) for this represen- 
tation. To simulate an observation ( ), , 1, ,i i iY Z i n= =X �  we can use the 
random sum representations of iY  and iZ  and therefore it suffices to simulate 
from exponential distributions and perform the appropriate summations. 

We use M = 100 samples and each of the sample is of size 1000n = . For the 
range of parameters we fix 1 2β β=  and let 1β  varies from 1, 2, …, 10. For the 
parameters of the bivariate Poisson distribution we fix 12ф 0.1= , 1 2ф ф=  and 
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let 1 1.1,3.1, 4.1,5.1,6.1,8.1, 1ф 10.= . Similarly, we fix 1 2β β=  and let 1β  varies 
from 1, 2, …, 10 and we fix 12ф 0.2= , 1 2ф ф=  and let  

1 1.2,3.2, 4.2,5.2,6.2,8.2, 2ф 10.= . 
The mean square errors (MSE) are estimated using simulated samples. The 

mean square error of an estimator π̂  for 0π  is defined as  
( ) ( )2

0ˆ ˆMSE Eπ π π= − . We use the following criterion for comparison between 
the efficiencies of MEEL estimators versus MM estimators  

�( ) �( ) �( ) �( ) �( )
�( ) �( ) �( ) �( ) �( )

1 2 12 1 2

1 2 12 1 2

ф ф ф

ф ф ф

MSE MSE MSE MSE MSE
ARE

MSE MSE MSE MSE MSE

β β

β β

+ + + +
=

+ + + +
 

The results are displayed in Table 1 where we observe that overall the MEEL 
estimators are two to four time more efficient than MM estimators with the ARE 
estimated using simulated samples. We also observe that each individual estimate 
MSE is smaller for MEEL estimators than their counterpart for MM estimators. 
Furthermore, we also have a chi-square goodness-of-fit statistics for model se-
lection for a model without closed form density function. This model testing 
statistics can be useful for applications in general. Despite the study is limited as 
 
Table 1. Overall relative efficiency of MEEL estimators versus MM estimators. 

�( ) �( ) �( ) �( ) �( )
�( ) �( ) �( ) �( ) �( )

1 2 12 1 2

1 2 12 1 2

ф ф ф

ф ф ф

MSE MSE MSE MSE MSE
ARE

MSE MSE MSE MSE MSE

β β

β β

+ + + +
=

+ + + +
 

( )12 1 2 1 2ф 0.1,ф ф ,β β= = =  

1 1ф β  1 2 3 4 5 6 8 10 

1.1 0.5335 0.4046 0.3099 0.3170 0.2127 0.1783 0.1514 0.1941 

3.1 0.5033 0.4405 0.4408 0.4868 0.4508 0.3161 0.2532 0.2392 

4.1 0.3655 0.4629 0.4102 0.3506 0.2924 0.3418 0.2921 0.2859 

5.1 0.4405 0.4374 0.3374 0.3913 0.3246 0.3063 0.3119 0.2887 

6.1 0.3717 0.3741 0.4499 0.3476 0.3316 0.3269 0.2876 0.3398 

8.1 0.3920 0.3778 0.3682 0.3296 0.2768 0.3011 0.2322 0.2613 

10.1 0.3221 0.3597 0.2950 0.3032 0.3414 0.2836 0.2186 0.2562 

( )12 1 2 1 2ф 0.2,ф ф ,β β= = =  

1 1ф β  1 2 3 4 5 6 8 10 

1.2 0.4735 0.5555 0.4253 0.3800 0.4123 0.4077 0.4708 0.7260 

3.2 0.4654 0.5085 0.3709 0.3865 0.4153 0.4300 0.3662 0.4414 

4.2 0.3899 0.4755 0.3437 0.2910 0.3252 0.3526 0.3929 0.2642 

5.2 0.3817 0.4329 0.3574 0.3301 0.2530 0.3645 0.3737 0.4066 

6.2 0.3910 0.3654 0.4597 0.3235 0.3505 0.2529 0.3301 0.3078 

8.2 0.5020 0.3809 0.3976 0.3671 0.3014 0.3129 0.2254 0.2506 

10.2 0.4410 0.4415 0.3799 0.2931 0.3213 0.2506 0.2382 0.2700 
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we do not have large computing resources but it does confirm the asymptotic 
results on efficiencies of MEEL estimators. More works need to be done for as-
sessing the efficiencies of MEEL methods by using various parametric models 
especially in finite samples. 

6. Conclusion 

MEEL estimators using the proposed moment conditions or bases appear to have 
the potential of higher efficiencies than MM estimators in general. The methods 
also provide chi-square goodness-of-fit test statistics for model testing. These 
features make the methods useful for inferences for bivariate distributions with 
closed form BLTs or BMGFs without closed form for the bivariate density func-
tions. For these distributions, the implementation of likelihood methods might be 
difficult. 
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