A Note on the Relationship between the Pearson Product-Moment and the Spearman Rank-Based Coefficients of Correlation

Todd Christopher Headrick

Department of CQMSE (Quantitative Methods-Statistics), Southern Illinois University, Carbondale, USA

Email: headrick@siu.edu

Abstract

This note derives the relationship between the Pearson product-moment coefficient of correlation and the Spearman rank-based coefficient of correlation for the bivariate normal distribution. This new derivation shows the relationship between the two correlation coefficients through an infinite cosine series. A computationally efficient algorithm is also provided to estimate the relationship between the Pearson product-moment coefficient of correlation and the Spearman rank-based coefficient of correlation. The algorithm can be implemented with relative ease using current modern mathematical or statistical software programming languages e.g. R, SAS, Mathematica, Fortran, et al. The algorithm is also available from the author of this article.

Keywords

Bivariate Normal Distribution, Product-Moment Correlation, Rank-Based Correlation, Gibbs Phenomenon

1. Introduction

The Pearson product-moment coefficient of correlation can be interpreted as the cosine of the angle between variable vectors in n dimensional space (e.g. [1] and [2], p. 702). Pearson [3] showed that the relationship of turning Spearman rank-based correlation coefficients (ρ_s) for the bivariate normal distribution into Pearson product-moment correlations (ρ), which was contrived based on the so-called correlation of grades, for large samples to be:

$$\rho_s = (6/\pi)\sin^{-1}\left((1/2)\rho\right).$$

 DOI: 10.4236/ojs.2016.66082 November 17, 2016
For finite (small) samples, Moran [4] derived the relationship between the Pearson and Spearman coefficients of correlation for the bivariate normal distribution, which also appears in Headrick [5] p. 114], to be:

$$\rho_s = (6/\pi)\left\{ \left(1/(n+1)\right) \sin^{-1}\left(1/(2)\rho\right) + \left(1/(n+1)\right) \sin^{-1}(\rho) \right\}. \quad (2)$$

Taking the limit as \(n \to \infty \) in Equation (2) will reduce Equation (2) to Equation (1). We would also note that Höffding [6] demonstrated that the Spearman rank correlation tends to normality for any given parent population.

2. Mathematical Development

In view of the above, this note derives the relationship between the Pearson product-moment correlation coefficient and the Spearman rank-based correlation coefficient for the bivariate normal distribution, in a different manner from either the Pearson [3] or the Moran [4] derivations, through the following infinite cosine series:

$$\sum_{n=1}^{\infty} \cos(nx)/n. \quad (3)$$

Specifically, if we let \(z = \cos(x) + i\sin(x) \), then

$$\sum_{n=1}^{m} z^{n-1}z^n = \left\{ z \left(1 - (yz)^n\right) \right\} / (1 - yz) \quad (4)$$

where it follows that for \(|z| < 1 \), that

$$\sum_{n=1}^{\infty} y^{n-1} \left(\cos(nx) + i\sin(nx)\right) = \left(\cos(x) + i\sin(x)\right) / (1 - y\cos(x) - yi\sin(x)) \quad (5)$$

$$= \left(\cos(x - y) + i\sin(x)\right) / (1 - 2y\cos(x) + y^2).$$

Thus, from Equation (5) we have:

$$\sum_{n=1}^{\infty} y^{n-1} \cos(nx) = \left(\cos(x) - y\right) / (1 - 2y\cos(x) + y^2). \quad (6)$$

The series associated with Equation (6) is uniformly convergent for all values of \(y \) and for \(|y| \leq p < 1 \). As such, integrating with respect to \(y \), where \(0 < y < 1 \) yields:

$$\sum_{n=1}^{\infty} y^n \cos(nx)/n = \int_0^p \left(\cos(x) - t\right) / (1 - 2t\cos(x) + t^2) \, dt$$

$$= (-1/2) \ln \left(1 - 2y\cos(x) + y^2\right). \quad (7)$$

Let \(x \) neither be zero nor a multiple of \(2\pi \). As such, it necessarily follows that the series in Equation (3) is convergent. Hence, for \(0 \leq y \leq 1 \); \(y^n \) is positive, monotonic, decreasing, and bounded. Whence, the series

$$\sum_{n=1}^{\infty} y^n \cos(nx)/n \quad (8)$$

is, therefore, uniformly convergent for \(0 \leq x \leq 1 \). Subsequently letting \(y \to 1 \), noting again that \(x \) is neither zero nor a multiple of \(2\pi \), it follows that Equation (3) can be expressed as

$$\sum_{n=1}^{\infty} \cos(nx)/n = (-1/2) \ln \left(2 - 2\cos(x)\right) = -\ln \left(2\sin((1/2) x)\right). \quad (9)$$
3. Main Result and Conclusions

Setting \(x = (\pi/3) \rho_s \) in Equation (9), and through subsequent inverse exponentiation \((1/e)\) of Equation (9), yields the relationship (for large samples) between the Pearson product-moment correlation and the Spearman rank-based correlation coefficients as

\[
\rho = 2 \sin \left(\frac{\pi}{6} \rho_s \right)
\]

(10)

for the bivariate normal distribution. In conclusion, the algorithm provided below in Equation (11), which has an oscillating effect of the Gibbs phenomenon \([7]\), to demonstrate the analytical derivation above is given as:

\[
\hat{\rho} = \left(1 - \frac{1}{k}\right) \sum_{n=1}^{k} \cos \left(n \left(\frac{\pi}{3} \rho_s \right) / n \right)
\]

(11)

where \(0 \leq |\rho_s| \leq 1, \) \(k \) is finite, and where Equation (11) converges to Equation (10) as \(k \to \infty \). Finally, in terms of the error associated with Equation (11), it is straightforward to see through real analysis, that \(\rho_s \) and \(\rho \) have a maximum absolute deviation when \(\rho_s = 0.566467 \cdots \) and hence Equation (10) would result in \(\rho = 0.584543 \cdots \). As such, at this maximum point of deviation, given that \(k = 10000 \) in Equation (11), that the absolute error is less than \(5.42 \times 10^{-5} \) when juxtaposed with Equation (10).

References

Submit or recommend next manuscript to SCIRP and we will provide best service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact ojs@scirp.org