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ABSTRACT 

Olkin [1] proposed a ratio estimator considering p auxiliary variables under simple random sampling. As is expected, 
Simple Random Sampling comes with relatively low levels of precision especially with regard to the fact that its vari-
ance is greatest amongst all the sampling schemes. We extend this to stratified random sampling and we consider a case 
where the strata have varying weights. We have proposed a Multivariate Ratio Estimator for the population mean in the 
presence of two auxiliary variables under Stratified Random Sampling with L strata. Based on an empirical study with 
simulations in R statistical software, the proposed estimator was found to have a smaller bias as compared to Olkin’s 
estimator. 
 
Keywords: Ratio Estimator; Stratification; Auxiliary Variables; Lagrange’s Multiplier 

1. Introduction 

Auxiliary variables have been used to increase precision 
of estimators especially in regression and ratio estimators 
[2]. This is particularly so in cases of complex surveys, 
more so in situations where some information on the 
survey variable might be missing [3]. 

These classical methods of estimation are based on di-
rect estimators, i.e., those which use the response vari-
able, y and information provided by an auxiliary variable, 
x, highly correlated with the main variable [4]. 

2. Review of Multivariate Ratio Estimators 

Olkin [1] proposed a multivariate generalization of the 
ratio estimator. Olkin proposed an estimator for the 
population total, denoted by M̂RY , and defined as 

1 1 2 2
ˆ

1 2
MR

y y
Y W X W X  p p

p

y
W X

x x x
 

1 21 2
ˆ ˆ+

    (2.1) 

which in other context can also be written as; 
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 is a straight 
line going through the origin. The population totals for 
the auxiliary variables X  must be explicitly known. 

3. The Proposed Estimator 

Consider a population which has been divided into L 
strata, with the strata being disjoint, the sample elements 
from each stratum are sampled and when the measure-
ment hi  is done, measurement for the  unit in the 

 stratum, two auxiliary variables, say, 
y thi
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random sampling scheme for the population total. MREY
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is therefore defined as; 
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where the individual components are defined as follows: 
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 ··· for the 1st stratum. 

 ··· for the 2nd stratum. 
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 ··· for Lth the stratum. 

This can further be represented in a single equation as 
follows; 

R hh
MRh h h RY W Y W Y 
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          (2.4) 

  are the various strata. where 
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4. Variance of the Proposed Estimator 

To compute the values of the weights, the general Equa-
tion (2.4) is used and this will cater for each stratum by 
just changing the value of h in respective strata. Sub-
tracting h  to the right hand side and left hand side of 
equation (2.4) yields 

Y
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But it is known that the sum of the weights in each 
stratum is 1, so . This implies that  

              (2.6) 

Replacing Equation (2.6) to the right hand side of 
Equation (2.5), yields  
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Collecting the like terms with respect to weights yields 
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Squaring each side and taking Expectation on either 
side, assuming negligible bias, Equation (2.7) leads to 
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Equation (2.8) can be written in notation as follows, 
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To achieve this, we form a function  which has the 
variance and the linear constraint mentioned above. 
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with   being the Lagrange’s Multiplier. 
From Equation (2.9), 
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replacing this into Equation (2.10) yields; 
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To minimize this function with respect to the weights 

1h  and 2hW , we differentiate partially the function   
with respect to these weights each at a time. 
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For optimization, we equate the partial derivative 
Equations (2.11) and (2.12), each to zero. These yields; 
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It follows that Equations (2.13) and (2.14) are equal, 
then 
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The 2 is common and can be cancelled out. We pro-
ceed to collect like terms with respect to the weights and 
this yield 
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Then it follows, by making W  the subject of the 
formula, 
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Opening the brackets in the denominator yields 
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To get the value of weight , we use the linear 
constraint   
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which may be written as, 
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Equations (2.16) and (2.17) give the weights that mini-  

 ˆmize the variance MRhV Y  for stratum h. 
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pulation total. The ten strata were again joined together 
to form one huge stratum, index-wise sample of size 1000, 
was selected and then using Olkin’s model, the popula-
tion total was estimated. The procedure above was re-
peated for 1000 samples and the population totals using 
each model was recorded. 

These weights can now be substituted in the proposed 
model to get the population total. 

5. Empirical Study 

An empirical study was carried out to estimate the popu-
lation total of a simulated population and compare the 
performance of the proposed model to that of Olkin [1]. 

8. Simulation Results 
6. Description of the Study Population The population total estimates of the two methods were 

compared to that of the true population (simulated) total. 
The True population total is 28,235,645. Table 1 sum-
marizes the statistics corresponding to each estimator. 
Figures 1 and 2 show the plotted values of the popula-
tion total estimates of proposed model and Olkin’s model, 
respectively, repeated for 1000 simulations each. 

In this section we simulated a population (yi, x1i and x2i), 
which has 10 strata  in which each stratum 
differs from others. This difference was achieved by us-
ing different error terms i  while generating the  us- 
ing 1 2i i i i i i . The coefficients i  and i  are 
randomly generated from a uniform distribution while 

1 2i i i are randomly gene-rated from normal dis-
tribution with different parameters. 

y a x b x 

, and x  y x In order to show the difference in variability between 
the two methods, the two plots above are now combined 
into one graph using a common scale in the Figure 3. 

7. Computational Procedure 
9. Conclusions 

A sample of size 300 was selected randomly from the 
simulated population index-wise, that is if index i is se-
lected then the sample elements will have 1 2i i i . 
This was repeated for all the ten strata, the selected sam- 
ple was used in the proposed model to estimate the po- 

From the summary table above, it can be seen that the 
proposed estimator gives a total with a very small bias as 
compared to the Olkin’s. Also, the proposed model can 
be seen to have a small Root Mean Square Error (RMSE) 

 
Table 1. Summary statistics for each method. 

 Min. Median 3rd Qrt Max Mean Bias RMSE 

Proposed Method 2,821,006 2823185 2,823,565 2823987 2,825,123 2,823,579 144.53 

Olkin’s Method 2,746,765 2805085 2,822,892 2840866 2,903,358 2,822,799 7659.34 

 

 

Figure 1. Plot of the population totals with proposed model for the 1000 samples. 
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Figure 2. Plot of the population totals without stratification for the 1000 samples. 
 

 

Figure 3. Figures 1 and 2 plotted on a common scale. 
 
as compared to Olkin’s estimator. 

The combined graph also shows that the population 
total estimate is more variable in Olkin’s as compared to 

the proposed model. 
The limiting condition to allow the use of this estima-

tor is the requirement of existence of linear relationship 
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through the origin between the variable of interest, y, and 
the auxiliary variables. 
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