
Open Journal of Modelling and Simulation, 2013, 1, 27-29
http://dx.doi.org/10.4236/ojmsi.2013.13005 Published Online July 2013 (http://www.scirp.org/journal/ojmsi)

Interrelation of Languages of Colored Petri Nets and
Some Traditional Languages

Goharik R. Petrosyan1, Andrey M. Avetisyan2, Lilit A. Ter-Vardanyan1
1Faculty of Mathematics, Physics and Informatics, Armenian State Pedagogical University after Kh. Abovyan, Yerevan, Armenia

2Seismology, Institute of Geophysics and Engineering Seismology after A. Nazarov of NAS RA, Gyumri, Armenia
Email: petrosyan_gohar@list.ru, lilit@sci.am

Received January 29, 2013; revised February 28, 2013; accepted March 7, 2013

Copyright © 2013 Goharik R. Petrosyan et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

The article studies the interrelation of Languages of Colored Petri Nets and Traditional formal languages. The author
constructed the graph of Colored Petri Net, which generates L* Context-free language. This language may not be mod-
eled using standard Petri Nets [1]. The Venn graph and diagram that the author modified [1], show the interrelation be-
tween languages of Colored Petri Nets and some Traditional languages. Thus the class of languages of Colored Petri
Nets is supposed to include an entire class of Context-free languages.

Keywords: Petri Nets; Colored Petri Nets; Context-Free Languages; Context-Sensitive Languages; Regular Languages

1. Introduction

Petri Nets (PN) is a graphical tool for the formal descrip-
tion of the flow of activities in complex systems. With
respect to other more popular techniques of graphical
system representation (like block diagrams or logical
trees), PN is particularly suited to represent logical inter-
actions among parts or activities in a system in a natural
way.

PN used for modeling real systems is sometimes re-
ferred to as Condition/Events nets. Places identify the
conditions of the parts of the system (working, idling,
queuing, and failing), and transitions describe the pas-
sage from one condition to another (end of a task, failure,
repair...). An event occurs (a transition fires) when all the
conditions are satisfied (input places are marked) and
give concession to the event. Occurrence of the event
completely or partially modifies the status of the condi-
tions (marking). The number of tokens in a place can be
used to identify the number of resources lying in the
condition denoted by that place. The following examples
illustrate typical situations of interaction of activities
arising in system modeling [1,2].

The formal definition of a standard Petri nets:
Petri Net  ,M C  pair, where is

the network structure and
 C P,T, I,O

 is the network condition.
In structure C of a P-positions, T-transitions are finite

sets. : , :I T P O T P    are the input and output
functions, respectively, where are all possible col- P

lections (repetitive elements) of P. 0: P N 
0,1, }

 is the
function of condition, where 0 is the set of
integers. We determine (in a known manner) the allowed
transitions of Petri Nets and the transitions from one state
to another, as well as the set of reachable states [1,2].

={N

Coloured Petri Nets (CPN) is a graphical oriented
language for design, specification, simulation and verifi-
cation of systems [3-8]. It is in particular well-suited for
systems that consist of a number of processes which
communicate and synchronize. Typical examples of ap-
plication areas are communication protocols, distributed
systems, automated production systems, work flow ana-
lysis and VLSI chips.

The CPN language allows the model to be represented
as a set of modules, allowing complex nets (and systems)
to be represented in a hierarchical manner.

In the classical or traditional Petri Net tokens do not
differ from each other, we can say that they are colorless.
Unlike standard Petri nets in colored, Petri Net of a po-
sition can contain tokens of arbitrary complexity, for
example, lists, etc., that enables modeling be more reli-
able.

2. Definition

The mathematical definition of Colored Petri Net: CPN
is a nine-tuple

 , , , , , , , ,CPN P T A N C G E I 

Copyright © 2013 SciRes. OJMSi

G. R. PETROSYAN ET AL. 28

where:
1) is a finite set of non-empty types, also called

color sets. In the associated CPN Tool, these are des-
cribed using the language CPN-ML [9]. A token is a
value belonging to a type.



2) P is a finite set of places. In the associated CPN
Tool these are depicted as ovals/circles.

3) T is a finite set of transitions. In the associated CPN
Tool these are depicted as rectangles.

4) A is a finite set of arcs. In the associated CPN Tool
these are depicted as directed edges. The sets of places,
transitions, and arcs are pairwise disjoint, that is

P T P A T A       .

5) N is a node function. It is defined from A into
. In the associated CPN Tool this depicts

the source and sink of the directed edge.
P T T P  

6) C is a color function, . :C P 

7) G is a guard function. It is defined from T into ex-
pressions such that:

      : &t T Type G t B Type Var G t  
 

8) E is an arc expression function. It is defined from A
into expressions such that:

  
     

:

&
MS

a A Type E a

C p Type Var E a

  
  

where p is the place of  N A and  MS
C p
 C p

 denotes
the multi-set type over the base type .

9) I is an initialization function. It is defined from P
into closed expressions so that:

    :
MS

p P Type I p C p   . 

In the CPN Tool this is represented as initial marking
next to the associated place.

The distribution of tokens, called marking, in the
places of a CPN determines the state of a system being
modeled. The dynamic behavior of a CPN is described in
terms of the firing of transitions. The firing of a transition
takes the system from one state to another. A transition is
enabled if the associated arc expressions of all incoming
arcs can be evaluated to a multi-set, compatible with the
current tokens in their respective input places, and its
guard is satisfied. An enabled transition may fire by re-
moving tokens from input places specified by the arc
expression of all the incoming arcs and depositing tokens
in output places specified by the arc expressions of out-
going arcs.

One of the most studied simple class of formal lan-
guages is the class of Regular languages. It is known that
any Regular language is the language of Petri Nets [1,10].
It’s possible to construct Petri Net, which generates

 1n na b n  a Context-free language, which is not Regu-
lar [1]. Not all the languages of Petri Nets are Con-
text-free, built a network that generates  0n n na b c n 
a Context-sensitive language, which is not Context-free
language [1]. Unlike Regular languages, which are the
languages of Petri Nets, there are Context-free languages,
which are not languages of Petri Nets. Such examples of
Context-freе language we are noted the following:

 ,R   L L LL LLL     (in particular,

 1n na b n ). This fact illustrates the limitation of Petri

Net as a tool, that generates the languages [1].
In Petri Nets is not possible to remember arbitrarily

long sequence of arbitrary characters. In Petri Nets the
sequence of limited length can be remembered (this is
also possible in finite automata) [1].

However, Petri Nets do not have the “capacity of
pushdown memory” which is necessary for the gene-
ration of Context-free languages. The interrelation of
languages of Petri Nets with other classes of languages
investigated Ven [1], this is shown in Figure 1 in the
form of a diagram.

3. Results

We modeled *L L LL LLL    language (star Klin)
by CPN, in particular  1n nL a b n  .

The Figure 2 shows a Colored Petri Net, which gener-
ates the language that is, Colored Petri Net is a more
powerful tool than the classical Petri Net. To understand
types of data which are used in a figure, it is necessary to
give a declaration.

*L

In the figure introduced two positions of count of type
and marked as first and second. In the figure, two transi-
tions marked with the symbol a that are generating sym-
bol a, and a transition marked with the symbol b, which
generates the symbol b.

In the figure position of count of type remembers the
number of transitions are fired and regulates, so the
number of appearances a symbol b was equal to the
number of appearances a symbol a.

In fact, when the marked with a transition is fired,
generates the symbol a, if the marked with b transition is
fired, generates the symbol b. To the transitions are at-
tached logical expressions (guards):  0, 1ct ct n   ,
if the logical expression is true, then the transition is al-
lowed, and if false, then the transition is not allowed. If
the first position of count of type value of token is equal
to one, the marked with a first transition is fired. The
value of n must be fixed advance.

Let n = 2, then is fired marked with a the first transi-
tion, and ct = 2, then is fired marked with a the second
transition, are generated by aa symbols, in this case sec-
ond position of count of type value of token is equal to

Copyright © 2013 SciRes. OJMSi

G. R. PETROSYAN ET AL.

Copyright © 2013 SciRes. OJMSi

29

CS

T - O

Figure1. Interrelation of Petri nets and trad onaiti l lan-
guages (T-0—the General type of languages, CS—Context-
sensitive languages, PNL—Petri nets languages, CF—Con-
text-free languages, BCF—bonded Context-free languages,
R—Regular languages).

Figure 2. Modeling language by * L L LL LLL  
Colored Petri Net.

Figure 3. Interrelation of Colored Petri Nets nd traditional

o: count= 2, and twice is fired marked with b the tran-

al ex-
pr

he
gi

REFERENCES
[1] J. L. Peterson, d the Modeling of

lica-

 a

languages. CPNL (language of Colored Petri Net).

tw
sition, are generated by bb, when the value of the first

counter is equal to one, cycle will be repeated, etc.
Many properties of colored Petri nets, as logic
essions, types of markers, the expression of the arcs,

etc., which are used to control the transition firing [3].
In Figure 2 Colored Petri Net is constructed for t
ven language, which supposes following interrelation

of languages of Colored Petri Net with some of tradi-
tional languages classes (Figure 3).

 “Petri Net Theory an
Systems,” Prentice Hall, Upper Saddle River, 1981.

[2] T. Murata, “Petri Nets: Properties, Analysis and App
tions,” Proceedings of the IEEE, Vol. 77, No. 4, 1989, pp.
541-580. doi:10.1109/5.24143

[3] K. Jensen, “Coloured Petri Nets: Basic Concepts, Analy-
sis Methods and Practical Use,” Springer-Verlag, Berlin,
1992. doi:10.1007/978-3-662-06289-0

[4] K. Jensen, “Coloured Petri Nets: Basic Concepts, Analy-

Petri Nets: Basic Concepts, Analy-

: Basic Concepts, Analy-

Petri Nets: A High-level Language

Coloured Petri Nets: A High-level Language

ce-

ory of Parsing, Transla-

sis Methods and Practical Use. Volumn 1. Basic Concepts.
Monographs in Theoretical Computer Science,” Springer-
Verlag, Berlin, 1997.

[5] K. Jensen, “Coloured
sis Methods and Practical Use. Volumn 2. Analysis Me-
thods Monographs in Theoretical Computer Science,”
Springer-Verlag, Berlin, 1997.

[6] K. Jensen, “Coloured Petri Nets
sis Methods and Practical Use. Volumn 3. Practical Use.
Monographs in Theoretical Computer Science,” Springer-
Verlag, Berlin, 1997.

[7] K. Jensen, “Coloured
for System Design and Analysis,” In: G. Rozenberg, Ed.,
Advances in Petri Nets 1990, Lecture Notes in Computer
Science, Vol. 483, Springer-Verlag, Berlin, 1991, pp.
342-416.

[8] K. Jensen, “
for System Design and Analysis,” In: K. Jensen and G.
Rozenberg, Eds., High-Level Petri Nets. Theory and Ap-
plication, Springer-Verlag, Berlin, 1991, pp. 44-122.

[9] J. D. Ullman, “Elements of ML Programming,” Prenti
Hall, Upper Saddle River, 1998.

[10] A. V. Aho and J. D. Ullman, “The
tion, & Compiling,” Prentice Hall, Upper Saddle River,
1973.

http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1109/5.24143
http://dx.doi.org/10.1007/978-3-662-06289-0
http://dx.doi.org/10.1007/978-3-662-06289-0

