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Abstract 
Tactical decisions on natural resource management require accurate and up to 
date spatial information for sustainable forest management. Remote sensing 
devices by the use of multispectral data obtained from satellites or airborne 
sensors, allow substantial data acquisition that reduce cost of data collection 
and satisfy demands for continuous precise data. Forest height and Diameter 
at Breast Height (DBH) are crucial variables to predict volume and biomass. 
Traditional methods for estimation of tree heights and biomass are time con-
suming and labour intensive making it difficult for countries to carry out pe-
riodic National forest inventories to support forest management and REDD+ 
activities. This study assessed the applicability of LiDAR data in estimating 
tree height and biomass in a variety of forest conditions in Londiani Forest 
Block. The target forests were natural forest, plantation forests and other scat-
tered forests analysed in a variety of topographic conditions. LiDAR data were 
collected by an aircraft flying at an elevation of 1550 m. The LIDAR pulses 
hitting the forest were used to estimate the forest height and the density of the 
vegetation, which implied biomass. LiDAR data were collected in 78 sampling 
plots of 15 m radius. The LiDAR data were ground truthed to compare its ac-
curacy for above ground biomass (AGB) and height estimation. The correla-
tion coefficients for heights between LiDAR and field data were 0.92 for the 
pooled data, 0.79 in natural forest, 0.95 in plantation forest and 0.92 in other 
scattered forest. AGB estimated from LiDAR and ground truthed data had a 
correlation coefficient of 0.86 for the pooled data, 0.78 in natural forest, 0.84 
in plantation forest and 0.51 in other scattered forests. This implied 62%, 84% 
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and 89% accuracy of AGB estimation in natural forests, other scattered forests 
and plantation forests respectively. The even aged conditions of plantation fo-
rests might have resulted to better estimates of height and AGB as compared to 
uneven aged natural forests and scattered forests. The results imply the reliabil-
ity of using Airborne LIDAR scanning in forest biomass estimates in Kenya and 
are an option for supporting a National Forest Monitoring System for REDD+. 
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1. Introduction 

Forest operations require reliable information on forest status and its evolution 
(Ruiz et al., 2014). The main intention of forest inventories is to define the ex-
tent, assess the composition and condition of forest resources to ensure sustain-
able forest management, which calls for an up to date forest inventory. Forest 
inventory estimation begun in the middle ages (McRoberts et al., 2010). Timber 
users (Loetsch & Haller, 1973; Davis et al., 2001) conducted the initial forest in-
ventories, focused on estimating growing stock volume. The role of forest have 
changed over time altering the demands of forest information and hence broa-
dening the scope of National Forest Inventory. 

The manual methods of forest inventories involved consumed time and cost, 
as an aid to this the Remote Sensing technology has been used. This technology 
has been used in various applications around the world: natural resource man-
agement (forest ecosystem management) for many years (Chen et al., 2005), 
mapping, modeling and understanding of the ecosystem (Lefsky et al., 2002) 
among others. Conventional applications of remote sensing used images from 
passive sensors (Goward & Williams 1997) though topographical covers and 
weather condition influence them. In few cases, RADARSAT, obtained from ac-
tive radar sensors, has been used (Waring et al., 1995).  

Light detection and Ranging (LiDAR), also known as Laser altimetry is an ac-
tive remote sensing technique that is similar to radar but uses laser light pulses 
instead of radio waves (NOAA Coastal Services Center, 2012) has been used to 
minimize the challenges. This technology determines ranges (distances) by tak-
ing the product of the speed of light and the time taken for an emitted laser to 
travel to a target object. The elapsed time from when a laser is emitted from a 
sensor and intercepts an object can be measured using either; pulsed ranging, or 
continuous wave ranging, where the phase change in a transmitted sinusoidal 
signal produced by a continuously emitting laser is converted into travel time 
(Lim et al., 2003). 

LiDAR systems have been used in different applications namely: flood risk 
mapping, bird population modeling, ice sheet mapping, pesticide application, 
econometric modeling, terrain modeling, and land cover classification, as well as 
an array of atmospheric and extra-terrestrial applications (Lim et al., 2003). In  
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forestry, LiDAR remote sensing has been used in estimating forest attributes 
such as stand heights, biomass, crown cover density, ground elevation below the 
forest canopy among others. LiDAR systems produce point clouds representing 
the height distribution of the forest canopy, which enables one to obtain differ-
ent characteristics of a complex forest stand and provide valuable information. 
This has led to a successful creation of forest inventories at reduced costs (Ruiz 
et al., 2014). In Kenya, Kinyanjui et al. (2015) demonstrated that LiDAR data can 
be used to classify the montane forests to show height variations among agro 
climatic zones and human use zones. However, their work was not ground 
truthed and gave an estimate of tree heights in the different forests. This study 
was done in Londiani forest block of the Mau Ecosystem with the objective of 
testing the applicability of using LIDAR data in developing forest inventory data 
for Kenya to ease the process of collecting data using conventional forest inven-
tory techniques which are time consuming and costly. 

2. Methods 
2.1. Study Area 

The Mau Forest Complex which covers approximately 400,000 Ha forms the 
largest closed canopy forest ecosystem in Kenya (Kinyanjui et al., 2014). This 
complex with a variety of montane forest vegetation is subdivided into 22 blocks. 
Londiani forest block, one of the blocks, covers an approximate area of 18,938 
hectares and Nakuru, Kericho and Baringo Counties. Figure 1 shows the study 
area which is located between 35˚31'58"E, 35˚46'50"E, and latitudes 0˚10'30"S, 
0˚0'10"N. The forest block borders Tinderet, Maji mazuri and Western Mau for-
est blocks of the Mau complex. 

Londiani Forest block is a montane forest which ranges from 2000 m to 2900 
m ASL. The Average temperatures are between 8.6˚C and 23.31˚C. The area has 
two rainy seasons; the long rains occurring in the months of March to May with 
average rainfall level of 750 mm and the short rains in October to December 
with an average rainfall of 423 mm. The driest months are January to February 
and August to September.  

2.2. Data Acquisition 

Data sets used in this study include ALS LiDAR data, Aerial image and Ground 
data from field measurements. The LiDAR data and the Aerial image were cap-
tured in February 2014 with a scanner on flight of altitude 1550 m above ground 
level, point density 2 pts/m2 in nadir and the ground sample distance 12 cm. 
This data was used to generate the Canopy Height Model (CHM), Digital Sur-
face Model (DSM) and the Digital Elevation Model (DEM) for the study area. 

2.3. Sampling Design 

Stratified sampling was used based on the elevation and different forest cover 
types. A grid over the study area was generated with a cell size of 26.5 × 26.5 m. 
The cell size corresponds to the area of a reference sample plot of radius 15 m.  
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Figure 1. The location of Londiani Forest Block. 
 

The allocation and selection of sampling plots was based on the elevation, forest 
cover types and differences in tree heights.  

a) Image classification 
The infrared aerial image (Figure 2) was classified into four forest cover 

classes namely; natural forest, Plantation Forest, and the other scattered forest 
(Figure 3). Sample plots were located in each of the classes. 

b) Topography /Elevation 
Digital Elevation Model was stratified using heights above sea level where 

sample points were placed within an interval of 200 m, categorizing them into 
high and low elevation. Low elevation falling between 2000 m to 2400 m and 
high elevation between 2400 m to 2800 m above sea level (Figure 4). 

c) Canopy Height 
Canopy Height Model was used to classify the area in to two categories using 

the Kenyan forest definition of forests (KFS, 2010b), vegetation below 2 meters 
was eliminated from the analysis. These were the areas with vegetation types 
such as agriculture, Grassland and short Shrubs. Figure 5 shows the categories 
of different canopy heights. Those plots that had an average height below 10 m 
and above 2 m were analyzed as one group while those with heights above 10 m 
as another group. 
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Figure 2. Aerial image used in the classification. 

 

 
Figure 3. Classified image. 
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Figure 4. Digital Elevation Model (m), black dots represent the GPS points. 

 

 
Figure 5. Canopy Heights (m), red dots represent GPS Points. 
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2.4. Field Data Collection 

The biometric field data was manually collected using the ICFRA approved me-
thodology (REF) for field inventories in Kenya in the period January-April 2015. 
A circular plot with a radius of 15 m equivalent to the one of the generated grid 
size of 26.5 × 26.5 m was used. The aim of field measurements was to capture (i) 
the actual forest heights (ii) the total amount of woody vegetation (biomass) on 
the sample plots. All trees within the sample plot with diameter at breast height 
(DBH) of at least 5 cm were measured. Parameters taken for each tallied tree 
were Diameter at Breast Height (DBH) and the species type. For the sample tree, 
which was the fifth tree additional features such as Bole height, total height, 
Stamp height, stamp diameter, species and the tree health, were recorded. The 
parameters were to aid the estimation of the forest biomass. In total, data was 
collected from 78 plots. 

2.5. Data Processing 

The LiDAR output had infrared image (Figure 6) and point cloud data. The ALS 
LiDAR point cloud data in las file format, 2.5 × 2.5 km blocks in the Kenyan 
coordinate system (Arc 1960/UTM zone 37 s), was classified as ground, noise 
and unclassified; heights were calculated above the reference ellipsoid. LiDAR 
data processing was performed using lastools (http://rapidlasso.com/lastools/). A 
Digital Canopy model (DCM) was generated from the first returns (Figure 7). 
The individual tree positions and heights were extracted from the DCM by ap-
plying watershed delineation method where the tree picks become “ponds” and 
the tree branches/crowns become watersheds for all the sample plots (Figure 8). 

 

 
Figure 6. Aerial Photograph. 

 

 
Figure 7. Digital Canopy Model. 

http://rapidlasso.com/lastools/
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Figure 8. Extracted tree positions. 

2.6. Data Analysis 
2.6.1. Tree Height Estimation 
Tree heights from field observation, were measured only from the sample trees 
while the diameters at breast heights were measured for all the counted trees in 
the sample plot. Lauri Mehtätalo’s lmfor-package in R software (Mehtätalo, 
2008) that uses the Curtis model was used to estimate unmeasured tree heights. 
The model used the measured heights and diameters at breast height measured 
for the estimation and compared the results with LiDAR data. Curtis model: h 
(d) = bh + a (d/(1 + d))b, Where, h = tree height d = tree diameter at breast 
height bh = breast height and a, b= parameters of the equation generated by fit-
ting a linear model. 

Tree heights from LiDAR data were extracted from the Canopy Height Model 
(CHM) using plot center coordinates with a radius of 15 m., where heights be-
low 2 m were excluded. This was the plot radius where all measurements were 
taken. The extracted values were then averaged to obtain average tree height in 
the plot from LiDAR. 

2.6.2. Above Ground Biomass (AGB) Estimation 
The AGB for each sample plot was calculated using allometric equations 
(Ketterings et al., 2001) sourced from Kinyanjui et al. (2014) who interrogated a 
variety of allometric equations from different sources in Kenya using dummy 
values for a realistic and unbiased biomass estimation.  

The Above Ground Biomass (AGB) of the individual trees was estimated us-
ing field measured tree heights and the Diameter at Breast Height (DBH). The 
ABG for the trees was calculated as follows, 

i) Indigenous trees AGB = exp(2.18435 * log10(D1.3)) − (0.20922 * log10(D1.3)) − 
1.13559) (Bradley 1988). 

ii) Other trees ( )( )( )20.93 log * 2.97
AGB e

d h∗ −
=  (Chidumayo, 2012) (where AGB— 

Above Ground Biomass, D1.3—Diameter at Breast Height at 1.3 m and H— 
Height.  

The Total plot level AGB was calculated from the tree-level biomass values per 
hectare using R Statistical tool.  

AGB using LiDAR data was also estimated using tree heights from the Canopy 
Height Model and plot level DBH estimated using a model generated from the 
measured parameters in the field data. The model used was y = 12.167x1.0621  



F. K. Mutwiri et al. 
 

263 

 
Figure 9. Scatter plots for relationship between measured parameters of Dbh and height. 

 
(Figure 9). The LiDAR estimated AGB was then calculated using the estimated 
DBH and the generated tree heights from the Canopy Model. The same models 
(Allometric equations) used in the estimation of AGB in the field data were used 
to ensure harmony of AGB estimates. The Total plot level AGB was calculated 
from the tree-level biomass values per hectare and were therefore compared with 
the estimation from field data.  

2.7. Statistical Analysis 

Single factor analysis of variance (ANOVA) at 95% confidence level, correlation 
and regression analysis were subjected to the data. Scatter plots from the rela-
tionships between the two set of variables and the difference in means were gen-
erated. The first was the relationship between tree measurements from the 
ground (field measurements) and trees estimated from LiDAR and the second 
set of variables was the biomass estimated from field measurements and that 
from LiDAR. The ground-based data (biometric data) was used as check for the 
ALS data to determine the usage of the ALS in estimating the height and bio-
mass in absence of the ground data. The statistical analysis results were used to 
evaluate the accuracy based on Root Mean Square Error between the variables 
under different conditions namely different topographic heights, different ca-
nopy heights and different forest cover heights. The same evaluation was done 
under different topographic conditions to ensure that no bias in LiDAR height 
and AGB estimates are attributed to slope conditions in a forest. 

3. Results 
3.1. Tree Heights Estimation 

1) Forest Types 
From the best line of fit, the Coefficient of determination (R2) which describes 

the relationship between the predictor (field height) and predicted values (Li-
DAR height) was established as 0.840, 0.600, 0.899 and 0.836 for all forest types, 
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natural forest, plantation forest and other scattered forest respectively as shown 
in Table 1. 

The overall estimated height relationship of field measured height and LiDAR 
estimated height is good. However, it is noted that the plantation area has the 
best relationship as compared to other forest types. 

2) Topography 
Low elevation areas shows a very good relationship in comparison to high 

elevation areas (Table 2). 
3) Canopy Heights 
Table 3 shows a summary of the relationship results indicating a better rela-

tionship in the taller trees than the short ones. 
ANOVA RESULTS:  
Tables 4-6 show the results from ANOVA in different forest types, elevation 

and canopy heights respectively. 

3.2. Above Ground Biomass Estimation 

Linear relationships using the AGB results from biometric data and LiDAR data 
was calculated. A similar analysis to the heights comparison was done for the 
forest categories, differences in elevation and canopy heights. Tables 7-9 show a 
summary of the results. 

 
Table 1. Summary statistics for the field height and Airborne LiDAR height (Forest types). 

Regression Statistics All forest types Natural Plantation Other 

Correlation Coefficient 0.917 0.785 0.950 0.918 

Adjusted R Square 0.840 0.600 0.899 0.836 

Standard Error 2.476 3.369 2.079 1.701 

Root Mean Square Error (m) 3.350 3.819 2.926 3.265 

Observations (plots) 78 25 26 27 

 
Table 2. Summary statistics for the field height and Airborne LiDAR height (Topography). 

Regression Statistics High Elevation Low Elevation 

Correlation Coefficient 0.863 0.955 

Adjusted R Square 0.738 0.909 

Standard Error 2.908 2.019 

Root Mean Square Error (m) 3.688 2.973 

Observations 39 39 

 
Table 3. Summary statistics for the field height and Airborne LiDAR height (canopy height). 

Regression Statistics Height <10 m> 2 m Height > 10 m 

Correlation coefficient 0.804 0.840 

Adjusted R Square 0.633 0.700 

Standard Error 1.258 2.997 

Root Mean Square Error (m) 2.862 3.607 

Observations 29 49 
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Table 4. Summary of Single Factor ANOVA for LiDAR and Field measured heights 
(Forest types). 

Land cover F-calculated F-tabulated Comments 

Overall 5.991 3.903 The heights differ 

Natural Forest 2.334 4.043 No height difference 

Plantation Forest 1.481 4.034 No height difference 

Other land cover 5.384 4.027 Minimal height difference 

 
Table 5. Summary on Single Factor ANOVA for LiDAR and Field measured heights in 
Different Elevation. 

Elevation (m) F-calculated F-tabulated Comments 

2000 - 2400 (low Elevation) 2.298 3.967 No difference 

2400 - 2800 (High Elevation) 4.019 3.967 Minimal difference 

 
Table 6. Summary of Single Factor ANOVA for LiDAR and Field measured heights in 
different canopy heights. 

Tree Heights (m) F-calculated F-tabulated Comments 

2 - 10 26.59724 4.01297 Heights differ 

Above 10 4.32675 3.94016 Minimal difference 

 
Table 7. Summary statistics for LiDAR and Field estimated AGB in different forest types. 

Regression Statistics All forest types Natural Forest Plantation forest Other forest 

Correlation Coefficient 0.863 0.782 0.839 0.509 

Adjusted R Square 0.741 0.594 0.692 0.229 

Standard Error 127.441 116.39 168.876 42.301 

Root Mean Square Error (m) 206.112 172.75 307.678 62.713 

Observations 78 25 26 25 

 
Table 8. Summary statistics for LiDAR and Field estimated AGB in different topography. 

Regression Statistics High Elevation Low elevation 

Correlation Coefficient 0.830 0.899 

Adjusted R Square 0.681 0.803 

Standard Error 104.304 135.01 

Root Mean Square Error (m) 163.602 241.242 

Observations 39 39 

 
Table 9. Summary statistics for LiDAR and Field estimated AGB in different canopy heights. 

Regression Statistics Heights <10 m> 2 m  Heights > 10 m 

Correlation Coefficient 0.540 0.812 

Adjusted R Square 0.266 0.652 

Standard Error 45.633 156.463 

Root Mean Square Error (m) 71.383 254.181 

Observations 29 49 
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Table 10. Summary of Single Factor ANOVA for LiDAR and Field estimated AGB (For-
est types). 

Land cover F-calculated F-tabulated Comments 

Overall 18.65 3.90 Variation in AGB estimated 

Natural Forest 8.82 4.04 Variation in AGB estimated 

Plantation Forest 12.94 4.03 Variation in AGB estimated 

Other land cover 23.14 4.02 Variation in AGB estimated 

 
Table 11. Summary on Single Factor ANOVA for LiDAR and Field estimated AGB in 
Different Elevation. 

Elevation (m) F-calculated F-tabulated Comments 

2000 - 2400 (low Elevation) 8.00 3.97 No difference in AGB 

2400 - 2800 (High Elevation) 12.39 3.97 Minimal difference in AGB 

 
Table 12. Summary of Single Factor ANOVA for LiDAR and Field estimated AGB in 
different canopy heights. 

Tree Heights (m) F-calculated F-tabulated Comments 

2 - 10 28.17 4.01 AGB differ 

Above 10 19.26 3.94 Minimal difference in AGB 

 
A single factor ANOVA was used to evaluate the variance of the means be-

tween the estimated AGB from the estimated heights in the field and LiDAR da-
ta. The AGB underwent a similar analysis as the tree height estimates. This was 
to test if there are any variations in the estimation of AGB under different condi-
tions. Tables 10-12 show a summary of the results. 

4. Discussions 
4.1. Tree Height Measurements 

The study assumed that the heights obtained from field measurements were ac-
curate and were used to determine the accuracy of estimated heights from Li-
DAR data. Several previous studies have indicated a high correlation between 
tree measurements derived from LiDAR and those measured from the field. 
However, in this study the correlation was tested under different conditions at a 
plot level. 

The overall correlation of all the plots indicated a high correlation with a value 
of R2 as 0.840, RMSE of 3.350 m and correlation coefficient of 0.917. A further 
analysis that was conducted to check the correlation of the estimated heights 
under different forest types indicated that the plantation forest had the highest 
correlation with a correlation coefficient of 0.950, a R2 value of 0.899 with a 
RMSE of 2.926 m. This is in comparison with Natural forest and other forest. 

The high correlation in plantation could be attributed to homogeneity in the 
canopy height and species types. For the natural forest, there are mixed species 
with different growth rate and variation in crown shape. This type of forest has 
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complex shape at the tree-top with overlapping crown, which makes it a chal-
lenge to target the tree-top than the plantation forest (Zhen et al., 2016) and may 
have contributed to the lower correlation as reported.  

From the ANOVA results, there was a significance difference in the heights 
estimated in both high and low elevation areas. However, using the linear re-
gression, low elevation areas that were generally flat showed a better correlation 
than the high-elevated areas. Slope and angle in the hilly (high-elevation) may 
have contributed this. A study conducted by (Khosravipour et al., 2015), indicate 
that treetop displacements vary with terrain steepness. A complex slope lowers 
the accuracy of LiDAR in treetop detection hence the same on CHM generated. 

From this study, regression analysis indicate that the height of the trees does 
not affect the accuracy of LiDAR though there was significance difference using 
ANOVA in shorter trees.  

4.2. Above Ground Biomass Estimation 

Field measured AGB was calculated using allometric equation for individual 
trees then sum of the trees gave plot AGB. DBH used in LiDAR estimation was 
generated using a model from actual field measurements of DBH and tree height 
in the field. The two results at a plot level were compared using regression anal-
ysis and ANOVA to determine whether there was any relationship or significant 
variation in the results obtained from both methods. 

An overall comparison showed a 0.863 correlation coefficient and a R2 of 
0.741 which indicated a good relationship. However, sorting by forest types gave 
lower correlations with a R2 of 0.692 in Plantation forest and 0.594 in the natural 
forest.  

Relationships of measured AGB and LiDAR estimated AGB in high and low 
elevation show a correlation coefficient of 0.830 and 0.899, with a R2 value of 
0.681 and 0.803 respectively. A further scrutiny in the canopy height difference, 
showed poorer relationships in forests with short trees of less than 10 m with a 
correlation coefficient of 0.54 and R2 of 0.27 in comparison to the canopy heights 
above 10 m which had R2 of 0.65 and a correlation coefficient of 0.81. 

ANOVA results for all the categories show that there is a significant difference 
in AGB estimation among ground measurements and LiDAR measurements. 
The difference is attributed to the accuracy of height estimation which has been 
described as inaccurate in many forestry inventories (Kinyanjui et al., 2015). In 
addition to this error was propagated into the AGB calculation for LiDAR data 
because the model used to estimate AGB using ALS was calibrated using ground 
data.  

5. Conclusions and Recommendation  
5.1. Conclusions 

LiDAR technology offers a great capability and ability in estimating vegetation 
parameters that aid in estimating above ground biomass in instances where 
ground measurements cannot be actualized. This is critical in addressing impor-
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tant programs such as REDD+ and national forest inventories where data may 
not be available for inaccessible forests.  

The study has illustrated that LiDAR measurements are more accurate in 
harmonious forests like even aged monocultures. This is because the tree archi-
tecture is harmonized unlike the uneven aged natural forests. It is noted that 
most of the forests in Kenya are uneven aged and existing in mixed stands where 
the trees have a variety of architectural make ups. In such conditions, LiDAR 
measurements have to be supplemented with ground data and the best way to 
use this method would be to complement it with sparse ground data collection 
points.  

5.2. Recommendation 

Use of LiDAR with high-density point cloud data would be recommended to 
improve the accuracy in estimation. This has been proposed world over as a 
method to enhance the accuracy of LiDAR data (Chen et al., 2005). Secondly, the 
15 m radius plot used to confirm the ground data can be tested for accuracy 
versus costs. A smaller plot provides information at a cheaper cost since the 
ground trothing team can collect the information over a shorter period. Howev-
er, this should be assessed against the ability to capture more accurate informa-
tion which might be realized on a bigger plot.  

Finally, the availability of the GLAS data for Kenya which covers many forest 
blocks of Kenya and has many data points (Kinyanjui et al., 2015) should be 
correlated to this work to find the possibility of estimating biomass on these fo-
rests covered by the GLAS data and this would reduce the cost of carrying out a 
national forest inventory. 
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