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ABSTRACT 

Analytical solutions of temperature distributions and the Nusselt numbers in forced convection are reported for flow 
through infinitely long parallel plates, where the upper plate moves in the flow direction with constant velocity and the 
lower plate is kept stationary. The flow is assumed to be laminar, both hydro-dynamically and thermally fully devel- 
oped, taking into account the effect of viscous dissipation of the flowing fluid. Both the plates being kept at specified 
and at different constant heat fluxes are considered as thermal boundary conditions. The solutions obtained from energy 
equation are in terms of Brinkman number, dimensionless velocity and heat flux ratio. These parameters greatly influ- 
ence and give complete understanding on heat transfer rates that has potentials for designing and analyzing energy 
equipment and processes. 
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1. Introduction 

Flow of Newtonian fluids through various channels is of 
practical importance and heat transfer is dependent on 
flow conditions such as flow geometry and physical pro- 
perties. Investigations in heat transfer behavior through 
various channels showed that the effect of viscous dissi-
pation cannot be neglected for some applications, such as 
flow through micro-channels, small conduits and extru-
sion at high speeds. The thermal development of forced 
convection through infinitely long fixed parallel plates, 
both plates having specified constant heat flux had been 
investigated [1-5]. For the same but filled by a saturated 
porous medium, heat transfer analysis was done where 
the walls were kept at uniform wall temperature with the 
effect of viscous dissipation and axial conduction taken 
into account [6]. In [7], it was concluded that in a porous 
medium, the absence of viscous dissipation effect can 
have great impact. For the horizontal double passage 
channel, uniform wall temperature with asymmetric and 
symmetric heating and the effect of viscous dissipation 
had been investigated [8]. 

For the pipe flow, where the walls are kept either at 
constant heat flux or constant wall temperature, analyti- 
cal solution is obtained for both hydro-dynamically and 

thermally fully developed and thermally developing 
Newtonian fluid flow, considering the effect of viscous 
dissipation [9,10].  

Analytical solution with the effect of viscous dissipa- 
tion was derived for Couette-Poiseuille flow of nonlinear 
visco-elastic fluids and with the simplified Phan-Thien- 
Tanner fluid between parallel plates, with stationary plate 
subjected to constant heat flux and the other plate mov- 
ing with constant velocity but insulated [11-13]. Nu- 
merical solution of fully developed laminar heat transfer 
of power-law non-Newtonian fluids in plane Couette 
flow, with constant heat flux at one wall with other wall 
insulated had been investigated [14] and analytical solu- 
tion was derived for Newtonian fluid [15].  

A numerical investigation had been done to find the 
heat transfer for the simultaneously developing steady 
laminar flow, where the fluid was considered to be vis- 
cous non-Newtonian described by a power-law model 
flowing between two parallel plates with several different 
thermal boundary conditions [16]. When a thin slab was 
symmetrically heated on both sides, the hyperbolic heat 
conduction equation was solved analytically [17]. Con- 
sidering the effect of viscous dissipation and pressure 
stress work of the fluid, the steady laminar boundary 
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layer flow along a vertical stationary isothermal plate 
was studied. The variation of wall heat transfer and wall 
shear stress along the plate was discussed [18].  

The Bingham fluid was assumed to be flowing in be- 
tween two porous parallel plates. With the slip effect at 
the porous walls, the analytical solutions were obtained 
for the Couette-Poiseuille flow [19]. Numerical evalua- 
tion for developing temperature profiles by a finite-dif- 
ference method were carried out for non-Newtonian fluid 
through parallel plates and circular ducts. The effects of 
viscous dissipation and axial heat conduction were taken 
into account. Graphical representation of Nusselt num- 
bers were noted for various parameters [20]. The thermal 
entrance region of a horizontal parallel plate channel, 
where the lower plate was heated isothermally and the 
upper plate was cooled isothermally was considered. 
Numerical results were found on the onset of instability 
for longitudinal vortices, with effect of viscous dissipa- 
tion [21]. A numerical analysis was carried out, taking 
viscous dissipation into account for pseudo-plastic non- 
Newtonian fluids aligned with a semi-infinite plate [22].  

From the literature survey, it is observed that heat 
transfer analysis with effect of viscous dissipation is not 
found for the Couette-Poiseuille flow with both the plates 
being kept at specified but different constant heat fluxes. 
The heat transfer analysis with one plate moving is a 
different fundamental problem worth pursuing. This 
study is necessary specifically in the design of special 
heat exchangers and other devices where the dimensions 
have to be kept very small. Hence, the case of lower plate 
being fixed and the upper plate moving with constant 
velocity, both being imposed to different but constant 
heat fluxes is considered. The energy equation is solved 
leading to expressions in temperature profiles and Nus- 
selt number, that could be useful to industrial applica- 
tions.  

2. Statement of Problem and Mathematical 
Formulation  

Consider two flat infinitely long parallel plates distanced 
W or 2 apart, where the upper plate is moving with con- 
stant velocity U and the lower plate is fixed. The coordi- 
nate system chosen is shown in Figure 1. The flow 
through the plates is considered at a sufficient distance 
from the entrance such that it is both hydro-dynamically 
and thermally fully developed. The axial heat conduction 
in the fluid and through the wall is assumed to be negli- 
gible. The fluid is assumed to be Newtonian and with 
constant properties. The thermal boundary conditions are 
the upper plate is kept at constant heat flux while the 
lower plate at different constant heat flux. 

The momentum equation in the x-direction is de- 
scribed as 

 

Figure 1. Notation to the problem. 
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where u is the velocity of the fluid,  is the dynamic 
viscosity, P is the pressure. 

The velocity boundary conditions are u = 0 when y = 0 
and u = U when y = W. 

Using the following dimensionless parameters: 

,
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the well-known velocity-distribution is [15], 
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where the mean velocity (um) is given by 
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For the above equation, expression for u is obtained by 
solving the momentum Equation (1). 

The energy equation, including the effect of viscous 
dissipation, is given by 
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where the second term on the right-hand side is the vis-
cous-dissipative term. In accordance to the assumption of 
a thermally fully developed flow with uniformly heated 
boundary walls, the longitudinal conduction term is ne- 
glected in the energy equation [23]. Following this, the 
temperature gradient along the axial direction is inde- 
pendent of the transverse direction and given as 

1d d

d d

T TT 2

x x x


 


,               (6) 

where 1  and 2T  are the upper and lower wall tem- 
peratures, respectively.  

T

By taking pk c  , introducing the non-dimen- 
sional quantity 
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and defining a dimensionless constant  , 
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 ,              (8) The thermal boundary conditions are 
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and modified Brinkman number  as 
1qBr

1

2

12
m

q

u
Br

Wq


 ,                 (9) 

The solution of Equation (10) under the above thermal 
boundary conditions can be obtained as Equation (5) can be written as 
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can be expressed as To evaluate   in the above equation, a third bound-

ary condition is required: 2
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Therefore, the solution of Equation (10) under the 
above thermal boundary conditions can be written in a 
simplified form as By substituting Equation (13) into Equation (12),    
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where Using Equations (3) and (15), the numerator of Equa- 

tion (17) can be found. Therefore the dimensionless mean 
temperature is given by 

2
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    .            (19) In fully developed flow, it is usual to utilize the mean 

fluid-temperature, m , rather than the centerline tem- 
perature, when defining the Nusselt number. Thus mean 
or bulk temperature is given by  

T

At this point, the convective heat transfer coefficient 
can be evaluated by the equation 
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Defining Nusselt number to be 
with cA  the cross-sectional area of the channel and the 
denominator on the right-hand side of Equation (17) can 
be written as   
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he expression for Nusselt number can be shown to be t 
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When q2 = 0, 
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agreeing with reference [15].  

Explicit expressions for Nusselt number for various 
values of U*,  and 

1qBr 2 1q q  are given in the follow- 
ing discussions. 

3. Graphical Results and Discussions 

For the purpose of discussion on the behavior of the 
Couette-Poiseuille flow, two types of graphs based on the 
analytical solutions are made. The temperature profile in 
the channel is plotted with variations of various parame- 
ters to indicate the heated region, and the Nusselt number 
is plotted to reveal the heat transfer characteristics of the 
flow. 

3.1. Temperature Profiles against the Channel 
Width for Various Parameters 

3.1.1. Temperature Profiles for the Case of Insulated 
Lower Plate   

Figure 2 shows the dimensionless temperature profiles of 
  versus Y, where the lower plate is insulated at five 
dimensionless velocities U* = −1.0, −0.5, 0.0, 0.5 and 1.0, 
and at six selected 

1q  values from −0.01 to 0.5, as 
shown in (a) to (f). The temperature distributions have 
similar pattern but different shapes, and all the curves 
converge at Y = 1, θ equal to 0, by definition. At Y = 0, the 
curves are vertical to satisfy the insulated condition. As 
expected, generally the motion of the upper plate tends to 
impart more heat into the fluid layers that are dragged 
along, unless off-set by the viscous dissipation effects. It 
is observed that when 

1q  = −0.01, 0.0, 0.01 and 0.1, 
the temperature distribution is negative which implies 
there is decrease in heat transfer, whereas when 

1q  = 
−0.1 and 0.5, θ manifests in a different way such that θ 
takes both negative and positive values. 

Br

Br

Br

3.1.2. Temperature Profiles for a Fixed Brinkman 
Number for Various Heat Flux Ratios 

The effect of viscous dissipation is seen in the value of 

modified Brinkman number. It is interesting to observe 
the behavior of the temperature profiles for various heat 
flux ratios for a fixed modified Brinkman number and 
hence to note the effect of viscous dissipation. In Figure 
3, for a 

1q  value of 0.01, the temperature distribution 
is investigated at U* = −1.0, −0.5, 0.0, 0.5 and 1.0 for 
various heat flux ratios. When 

Br

2 1 0 and 0.5q q  , the 
values of theta are all negative. For the equal heat fluxes, 
for U* = −1.0, −0.5 and 0.0, theta takes only negative 
values, but for , theta takes both positive 
as well as negative values. When 

0.5 and 1U  
2 1 2.0q q   and 10.0, 

theta takes both positive as well as negative values. For 

2 1 50q q  , when the upper plate moves in the negative 
direction with values U* = −1.0, −0.5, theta takes both 
positive as well as negative values and when the upper 
plate is fixed and moves in the positive direction with 
values U* = 0.5 and 1.0, theta takes positive values. As 
expected again, all the curves converge at Y = 1. 

3.2. Nusselt Number Variations 

Figure 4 shows the plots of Nusselt number versus the 
heat flux ratio 2 1q q  at U* = −1.0, −0.5, 0.0, 0.5 and 
1.0 at various 

1q  values. The hyperbolic curves have 
asymptotes occurring at different 

Br

2 1q q  values. It is 
observed that, for the specified values of , when 

1q  
= −0.01, 0.0, 0.01 and 0.1, the asymptotes fall to the 
positive direction of 

U  Br

2 1q q , whereas when 
1qBr 0.1   

at , the asymptote falls at 0.5U    2 1 0.6536q q    
and when , the asymptote falls at 

1
0.5q at 1.0U Br 

2 1 0.7458q q   , as given in Table 1. 

4. Conclusion 

Heat transfer with the effect of viscous dissipation has 
been analysed. Analytical expressions for Nusselt num- 
ber have been obtained for fully developed Newtonian 
fluid flow between infinitely long parallel plates, where 
the lower plate is fixed and the upper plate is moving 
with constant velocity. Wh kept at  en both plates are  
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(a)                                                            (b) 

  
(c)                                                           (d) 

  
(e)                                                           (f) 

Figure 2. Temperature profiles at U* = −1.0, −0.5, 0.0, 0.5 and 1.0 at various for the case of q2/q1 = 0. (a) Brq1 = −0.01; (b) 
Brq1 = −0.10; (c) Brq1 = 0.00; (d) Brq1 = 0.01; (e) Brq1 = 0.10; (f) Brq1 = 0.50. 
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(a)                                                            (b) 

  
(c)                                                            (d) 

  
(e)                                                            (f) 

Figure 3. Temperature profiles at U* = −1.0, −0.5, 0.0, 0.5 and 1.0 at various q2/q1, for the case of Brq1 = 0.01. (a) q2/q1 = 0.0; (b) 
q2/q1 = 0.50; (c) q2/q1 = 1.0; (d) q2/q1 = 2.0; (e) q2/q1 = 10.0; (f) q2/q1 = 50.0. 
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(a)                                                        (b) 

  
(c)                                                         (d) 

  
(e)                                                         (f) 

Figure 4. Nusselt number versus q2/q1, at U* = −1.0, −0.5, 0.0, 0.5, and 1.0, at various Brq1. Vertical lines are asymptotes. (a) 
Brq1 = −0.01; (b) Brq1 = −0.10; (c) Brq1 = 0.00; (d) Brq1 = 0.01; (e) Brq1 = 0.10; (f) Brq1 = 0.50.   
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Table 1. Values of q2/q1 at various Brq1 and U*. 

Brq1 
U* 

−0.01 −0.1 0.0 0.01 0.1 0.5 

−1.0 2.8594 1.3807 3.0237 3.1881 4.6668 11.2392

−0.5 3.2563 −0.6536 3.6907 4.1252 8.0351 25.4124

0.0 2.7689 1.6889 2.8889 3.0089 4.0889 8.8889

0.5 2.3609 2.4783 2.3478 2.3348 2.2174 1.6957

1.0 2.0203 2.5085 1.9661 1.9119 1.4237 −0.7458

Nusselt number versus constant heat flux ratio. 

 
different constant heat fluxes, the dimensionless tempera- 
ture distribution is given by Equation (15), and the Nus- 
selt number by Equation (22) and they are in terms of 
U  , 2 1q q  and Various dim

 as −1.0, −0.5, 0.0, 0.5, and 1.0, constant heat flux 
ratios 0, 0.5, 1.0, 2.0, 10.0 and 50.0 and modified 
Brinkaman numbers −0.01, −0.1, 0.0, 0.01, and 1.0 are 
considered in the analysis. The behaviour of the tem- 
perature distribution and the Nusselt number against 
these parameters are discussed. The Brinkman Number, 
the speed of the moving plate and different values of heat 
fluxes at both the plates have significant impact in the 
thermal development. 
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