
Open Journal of Discrete Mathematics, 2016, 6, 105-107 
Published Online April 2016 in SciRes. http://www.scirp.org/journal/ojdm 
http://dx.doi.org/10.4236/ojdm.2016.62011  

How to cite this paper: Li, Y.K., Wang, Q.N. and Wang, X.L. (2016) The Rupture Degree of Graphs with k-Tree. Open Journal 
of Discrete Mathematics, 6, 105-107. http://dx.doi.org/10.4236/ojdm.2016.62011  

 
 

The Rupture Degree of Graphs with k-Tree 
Yinkui Li, Qingning Wang, Xiaoling Wang 
College of Mathematics and Statistics, Qinghai Nationalities University, Xining, China 

  
 
Received 14 February 2016; accepted 19 April 2016; published 22 April 2016 

 
Copyright © 2016 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
A k-tree of a connected graph G is a spanning tree with maximum degree at most k. The rupture 
degree for a connected graph G is defined by  
( ) ( ) ( ) ( ) ( ){ }r G G X X m G X X V G G Xmax : , 1= − − − − ⊂ − >ω ω , where ( )m G X−  and ( )G X−ω , 

respectively, denote the order of the largest component and number of components in G X− . In 
this paper, we show that for a connected graph G, if ( ) ( ) ( )r G k X m G X3 2≤ − − − +  for any 

cut-set ( )X V G⊂ , then G has a k-tree. 
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1. Introduction 
Throughout this paper, We consider only finite undirected graphs without loops and multiple edges. A graph 

( ),G V E=  always means a simple connected graph with vertex set ( )V G  and edge set ( )E G . Let ∆  
denote the maximum degree of G, and [ ]G S  denote the subgraph of G induced by a subset S of ( )V G . We 
by ( )Gd v  denote the degree of a vertex v in a graph G and ( )GN v  the neighbor vertex set of v. Further for a  
nonempty subset S of ( )V G , we put ( ) ( )G Gu Sd S d u

∈
= ∑  and ( ) ( ) ( ){ }i GN S v V G N v S i= ∈ ∩ = . 

A k-tree of a connected graph G is a spanning tree with maximum degree k. Clearly, if 2k = , it reduces to 
that of a Hamiltonian path in G. Since every tree with maximum degree ∆  has a ∆ -tree, thus here we doesn’t 
consider trees. 

A nonempty set S of independent vertices of G is called a frame of G, if G S ′−  is connected for any 
S S′ ⊆ . If S k=  then S is called a k-frame. 

In [1] and [2], Win, Aung and Kyaw gave the ore-type condition and Fan-type condition for k tree as fellows 
(Theorem A and B). 
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Theorem A. If ( ) 1Gd S n≥ −  for every independent set S of k vertices of graph G, then G has a k tree. 

Theorem B. Let ( ) ( ) 1| G
nV v V G d v

k
− = ∈ < 

 
  and suppose, either V = ∅  or G V  

  is a complete  

graph, then G has a k tree. 
Further, Kyaw in [3] gave a stronger result for k tree as theorem C. 

Theorem C. Let G be a connected graph and ( )2k ≥  an integer. If ( ) ( ) ( )
1

2
1

k

G i
i

d S k i N S n
+

=

+ − ≥ −∑  for  

every 1k + -frame S in G, then G has a k tree. 
The rupture degree of a graph G is introduced in [4], which is an important parameter for measuring the 

structure characteristics of the connected graph G and defined as  

( ) ( ) ( ) ( ) ( ){ }max : , 1r G G X X m G X X V G G Xω ω= − − − − ⊂ − >  

where ( )m G X−  and ( )G Xω − , respectively, denote the order of the largest component and the number of 
components in G X− . 

In this paper, we consider the rupture degree and existence of k-tree in a connected graph G and thus give a 
new sufficient condition for a graph to have k tree. 

Any undefined terms can be found in the standard references on graph theory, including Bondy and Murty 
[5]. 

2. Main Result   
Let G be a connected graph and k an integrity with 2 k≤ ≤ ∆ . Now, we by proving the following theorem to 
discuss the relationship between the rupture degree and existence of k-tree in graph G.  

Theorem 1. Let G be a connected graph but not a tree. If ( ) ( ) ( )3 2r G k X m G X≤ − − − +  for any cut-set 
( )X V G⊂ , then G has a k-tree.  

Let H be an induced subgraph of G and with maximal order among all subgraphs containing k-tree, and let A 
be a set adjacent to some vertices in G but not in ( )V H . Clearly, if A = ∅ , then G has k-tree. Now, we 
suppose that ( ) ( ) ( )3 2r G k X m G X≤ − − − +  for any cut-set ( )X V G⊂  and A is nonempty for connected 
graph G. We by finding a contradiction to prove the above theorem. Firstly, we prove the following claims.  

Claim 1. Let T be a k-tree of H. Then ( )Td x k=  for x A∈ .  
Proof. Let T be a k-tree of H, which has maximal order among all the induced subgraphs of G having a k-tree. 

On the contrary, suppose that if there exist some vertex x A∈  such that ( )Td x k< , then H could be expanded 
by joining xy for a neighbor y of x which is not in H. This is contradictive to the maximality of H. Thus 

( )Td x k=  for any x A∈ .  
Let T be a k-tree of H and x A∈ . Since ( )Td x k= , we suppose that 1 2, , , kC C C  are all components of 

T x− .  
Claim 2. If there exist an edge ( )m nu u E H∈  for ( ), 1m m n nu C u C m n k∈ ∈ ≤ ≠ ≤ , then ( )T md u k=  and 
( )T nd u k= .  

Proof. Suppose that ( )T md u k<  (or ( )T nd u k< ) for m mu C∈  (or n nu C∈ ). Since ( )m nu u E H∈ , we 
may obtain a new k-tree T ∗  from T of H by deleting one of the edges joining x to components nC  (or mC ) 
from T and adding the edge m nu u  in T. Clearly, we obtain another k-tree of H and in the latter k-tree, x has 
degree less than k. Then H could be expanded and this is contradictive to the maximality of H. So the conclusion 
holds.  

Claim 3. Let T be a k-tree of H and M is subset of ( )V T  with degree k. Then M is non-empty and satisfies 
the following property: Let i , 1 i r≤ ≤ , be the components of T M− . If for some i and j with ji ≠ , the 
vertex ix  of i  is adjacent in H to the vertex jx  of j , then ix  and jx  has degree k and 

( ),i jx x N V T∈ ⊂ .  
Proof. Since A is nonempty and for every x A∈  with ( )Td x k= , M is non-empty. By Claim 2, the property 

holds with r k=  because the way in which we have picked the vertices nu  or mu  which go into N. Clearly, 
M N∪  be a subset of the set of vertices of T of degree k in T. At the same time, we find that a vertex v of T 
adjacent to a vertex in G but not in ( )V H  is in M N∪ .  

Let T be a k-tree of H with as many k degree vertices as possible and ,M N  be subsets of ( )V T  with 
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degree k as above. Suppose that i  is one component of T M− . If ( )iN V∩   is nonempty, we select 
( )iy N V∈ ∩   and suppose that ij , 1 i s≤ ≤ , be the components of { }T M y− − .  

Claim 4. For m and n, with 1 m n s≤ ≠ ≤ , if there exists a vertex my  of im  adjacent to a vertex ny  of 
in  in H. Then ( )T md y k=  and ( )T nd y k= .  
Proof. Suppose that ( )T md y k<  (or ( )T nd y k< ) for m imy ∈  (or n iny ∈ ). Since ( )m ny y E H∈ , we 

may obtain a new k-tree T ∗∗  from T of H by deleting one of the edges joining ( )iy N V∈ ∩   to components 
in  (or im ) from T and adding the edge ( )m ny y E H∈  in T. Clearly, y has degree less than k in k-tree T ∗∗  

of H. Then combine ( )iy N V∈ ∩   we know this is contradictive to Claim 3. The conclusion holds.  
By taking , ,T M N  as the claims and let M N∪  be maximal, then we obtain the follows claim as a 

straightforward consequence.  
Claim 5. Let T be a k-tree of H with maximal number of k degree vertices. Then, there is no edge of H joining 

any components of T M N− ∪ .  
Proof. Given our choice of T, M and N as above, we derive a contradiction by assuming that there is an edge 

yz of H with endpoints y and z joining two components of T M N− ∪ . If the path in T joining y and z contains 
a vertex of M, then by claim 3, either y or z is in N which is absurd. Then this path contains no vertex of M and y 
and z are therefore in the same component i  of T M−  for some i with 1 i r≤ ≤ . Now let w be a vertex of 
N on the path in T joining y and z and let ij , 1 j s≤ ≤ , be the components of { }i w− . Now let 0N  be the set 
of all vertices of { }i w−  having property of claim 4. Further, let { }M M w∗ = ∪  and { }0N N N w∗ = ∪ − . 
Since 0N  contains y or z, claim 2 holds with M ∗  and N ∗  replacing M and N, respectively. Moreover, 
M N∗ ∗∪  is greater than M N∪ . But this contradicts to our choice of ,T M  and N. This shows that there 

is no edge in H joining any components of T M N− ∪ .  
Now we are ready for the proof of theorem 2.1. 
The proof of theorem 2.1. Since A is nonempty and thus H is an induced proper subgraph of G, we have 
( ) ( ) 1G M N H M Nω ω− ∪ ≥ − ∪ + . By claim 5 we know that ( ) ( )H M N T M Nω ω− ∪ = − ∪ . At the 

same time, we know that ( )T M Nω − ∪  reaches minimum when [ ]T M N∪  is itself a tree. Thus we have  

( ) ( ) ( )
( ) ( )

1 1

2 1 1 2 3

G M N H M N T M N

k M N M N k M N

ω ω ω− ∪ ≥ − ∪ + = − ∪ +

≥ ∪ − ∪ − + = − ∪ +
 

On the other hand, since ( ) ( ) ( )3 2r G k X m G X≤ − − − +  for any cut-set ( )X V G⊂  we have  

( ) ( ) ( ) ( )3 2G X X m G X k X m G Xω − − − − ≤ − − − +  

and,  

( ) ( )2 2G X k Xω − ≤ − +  

This is a contradiction. Therefore A is empty and the proof is completed. 
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