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Abstract 
Let n be a positive integer. A permutation a of the symmetric group nS  of permutations of 
[ ] { }n n1, 2, ,=   is called a derangement if ( )a i i≠  for each [ ]i n∈ . Suppose that x and y are two 
arbitrary permutations of nS . We say that a permutation a is a double derangement with respect 
to x and y if ( ) ( )a i x i≠  and ( ) ( )a i y i≠  for each [ ]i n∈ . In this paper, we give an explicit for- 
mula for ( )nD x y, , the number of double derangements with respect to x and y. Let k n0 ≤ ≤  and 

let { }ki i1 , ,  and { }ka a1 , ,  be two subsets of [ ]n  with j ji a≠  and { } { }k ki i a a1 1, , , ,=    . 

Suppose that ( )n k, ,∆   denotes the number of derangements x such that ( )j jx i a= . As the main 

result, we show that if m n0 ≤ ≤  and z is a permutation such that ( )z i i≠  for i m≤  and 

( )z i i=  for i m> , then ( ) ( ) ( )( )∑ ∑
k

m k
n k

k i i m
D e z n k i i

1
1

01
, 1 , , , , ,

= ≤ < < ≤

= − ∆


   where  

( ) { } ( ) ( ){ }k k ki i i i z i z i1 1 1, , , , , ,=     . 
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1. Introduction 
Let n be a positive integer. A derangement is a permutation of the symmetric group nS  of permutations of 
[ ] { }1, 2, ,n n=   such that none of the elements appear in their original position. The number of derangements 
of nS  is denoted by nD  or n¡. A simple recursive argument shows that  
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( ) ( )1 21 .n n nD n D D− −= − +  

The number of derangements also satisfies the relation ( )1 1 n
n nD nD −= + − . It can be proved by the inclusion-  

exclusion principle that nD  is explicitly determined by ( )
0

1
!

!

i
n
in

i=

−
∑ . This implies that 1lim

!
n

n
D
n e→∞ = .  

These facts and some other results concerning derangements can be found in [1]. There are also some 
generalizations of this notion. The problème des rencontres asks how many permutations of the set [ ]n  have  

exactly k fixed points. The number of such permutations is denoted by ,n kD  and is given by ,n k n k

n
D D

k −
 

=  
 

. 

Thus, we can say that , 1lim
! !

n k
n

D
n k e→∞ = . Some probabilistic aspects of this concept and the related notions  

concerning the permutations of nS  is discussed in [2] and [3]. 
Let e be the identity element of the symmetric group nS , which is defined by ( )e i i=  for each [ ]i n∈ . We 

can say that a permutation a of [ ]n  is a derangement if ( ) ( )a i e i≠  for each [ ]i n∈ . We denote this by 
a e⊥ . Thus, nD  is the number of a with a e⊥ . If c is any fixed element of nS  then the number of na S∈  
with a x⊥  is also nD , since a x⊥  if and only if 1ax e− ⊥ . In the present paper, we extend the concept of a 
derangement to a double derangement with respect to two fixed elements x and y of nS . 

2. The Result  
In the following, we assume that n is a positive integer and the identity permutation of the symmetric group nS  
of permutations of [ ]n  is denoted by e. Moreover, for two permutations a and b of nS , the notation a b⊥  
means that ( ) ( )a i b i≠  for each [ ]i n∈ . We also denote the number of elements of a set A by A .  

Definition 1. Suppose that x and y are two arbitrary permutations of nS . We say that a permutation a is a 
double derangement with respect to x and y if a x⊥  and a y⊥ . The number of double derangements with 
respect to x and y is denoted by ( ),nD x y .  

Proposition 1. Let 0 k n≤ ≤  and let { }1, , ki i  and { }1, , ka a  be two subsets of [ ]n  with j ji a≠  and 
{ } { }1 1, , , ,k ki i a a=    . Then ( ), ,n k∆  , the number of derangements x such that ( )j jx i a= , is determined 

by  

( )

( ) ( )

( )
1

1

0

1
if   and 2

, ,
if  

0 otherwise

k
n k i

i

n k

Dk
k k n

i n k i
n k

D k

− −
+ − +

=

−

 − − 
≠ − ≤   − +  ∆ = 
=



∑




 





 

Proof. Let { } { }1 1, , , ,r k ka i i a a∈    . Thus r sa i=  for some s r≠ . Now there are two cases: 
Case 1. { }1, ,s ka i i∈  . Let s ta i= . In this case a derangement x satisfies the condition ( )j jx i a=  if and 

only if the derangement x′  of the set [ ] { }\ tn i  satisfies the condition ( )j jx i a′ ′=  for all j t≠ , where 
j ja a′ =  for j s≠  and s ta a′ = . This provides a one to one correspondence between the derangements x of 

[ ]n  with ( )j jx i a=  for the given sets { }1, , ki i  and { }1, , ka a  with   elements in their intersections, 
and the derangements x′  of [ ] { }\ tn i  with 

ji jx a′=  for the given sets { } { }1, , \k ti i i  and { } { }1, , \k ta a a′ ′ ′
  

with 1−  elements in their intersections. 
Case 2. { }1, ,s ka i i∉  . In this case a derangement x satisfies the condition ( )j jx i a=  if and only if the 

derangement x′  of the set [ ] { }\ sn a  satisfies the condition ( )j jx i a′ =  for all j s≠ . This provides a one to 
one correspondence between the derangements x of [ ]n  with ( )j jx i a=  for the given sets { }1, , ki i  and 
{ }1, , ka a  with   elements in their intersections, and the derangements x′  of [ ] { }\ sn a  with ( )j jx i a′ =  
for the given sets { } { }1, , \k si i i  and { } { }1, , \k sa a a  with 1−  elements in their intersections. 

These considerations show that ( ) ( ), , 1, 1, 1n k n k∆ = ∆ − − −  . Iterating this argument, we have  

( ) ( ) ( ) ( ), , 1, 1, 1 2, 2, 2 , , 0 .n k n k n k n k∆ = ∆ − − − = ∆ − − − = = ∆ − −       

We can therefore assume that 0= . We thus evaluate ( ), , 0n k∆ , where 2k n≤ . For 0k = , we obviously 
have ( ), 0, 0 nn D∆ = . For 1k ≥ , we claim that  
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( ) ( ) ( ), ,0 1, 1,0 2, 1,0 .n k n k n k∆ = ∆ − − + ∆ − −  

For a derangement x satisfying ( )j jx i a=  there are two cases: ( )1 1x a i=  or ( )1 1x a i≠ . 
If the first case occurs then we have to evaluate the number of derangements of the set [ ] { }1 1\ ,n i a  for 

the given sets { }2 , , ki i  and { }2 , , ka a  with 0 elements in their intersections. The number is equal to 
( )2, 1,0n k∆ − − . 
If the second case occurs then we have to evaluate the number of derangements of the set [ ] { }1\n a  for the 

given sets { }2 , , ki i  and { }2 , , ka a  with 0 elements in their intersections. The number is equal to 
( )1, 1,0n k∆ − − . 
We now use induction on k to show that  

( ) ( ) ( )

( )
1 1

0

1
, ,0 , 2 2 .

k n k i

i

Dk
n k k n

i n k i

−
+ − +

=

− 
∆ = ≤ ≤  − + 

∑  

For 1k =  we have  

( ) ( ) ( ) 1 2,1,0 1,0,0 2,0,0 .
1

n
n n

D
n n n D D

n− −∆ = ∆ − + ∆ − = + =
−

 

Now let the result be true for 1k − . We can write 
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Corollary 1. Let k be a positive integer. Then  
1

1

0

1
!.

k
k i

i

k D k
i k i

−
+ −

=

− 
=  − 

∑  

Proof. Let 2n k= , ji j=  and ja k j= +  for 1, ,j k=  . Then a derangement x satisfies the condition 
( )j jx i a=  if and only if x′  defined by ( ) ( )x i x k i′ = +  for [ ]i k∈  is a permutation of [ ]k . The number of 

such permutations x′  is !k .  
The following Table 1 gives some small values of ( ), , 0n k∆ . 
The following lemma can be easily proved.  
Lemma 1. Let x and y be two arbitrary permutations and 0m ≥  be the number of i’s for which ( ) ( )x i y i≠ . 

Then there is a permutation z such that ( )z i i≠  for i m≤  and ( )z i i=  for i m>  and ( ) ( ), ,n nD x y D e z= .  
Theorem 2. Let 0 m n≤ ≤  and let z be a permutation such that ( )z i i≠  for i m≤  and ( )z i i=  for 

i m> . Then  

( ) ( ) ( )( )
1

1
01

, 1 , , , , ,
k

m k
n k

k i i m
D e z n k i i

= ≤ < < ≤

= − ∆∑ ∑
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Table 1. Values of ( ), ,0n k∆  for 1 10n≤ ≤  and 1 2k n≤ ≤ .                                                             

n\k 1 2 3 4 5 

1 0 0 0 0 0 

2 1 0 0 0 0 

3 1 0 0 0 0 

4 3 2 0 0 0 

5 11 4 0 0 0 

6 53 14 6 0 0 

7 309 64 18 0 0 

8 2119 362 78 24 0 

9 16,687 2428 426 96 0 

10 148,329 18,806 2790 504 120 

 
where ( ) { } ( ) ( ){ }1 1 1, , , , , ,k k ki i i i z i z i=     .  

Proof. Let iE  be the set of all derangements x for which ( ) ( )x i z i= , where 1 i m≤ ≤ . Then  

( ) 1
, m

n n ii
D e z D E

=
= −



. We use the inclusion-exclusion principle to determine 
1

m
ii

E
=

. For each 0 k m≤ ≤   

and 11 ki i m≤ < < ≤  we have  

( )( )1 1, , , , ,
ki i kE E n k i i= ∆    

where ( ) { } ( ) ( ){ }1 1 1, , , , , ,k k ki i i i z i z i=     . This implies the result.  

Our ultimate goal is to find an explicit formula for evaluating ( ),nD e c  for an arbitrary cycle c. Prior to that 
we need to state two elementary enumerative problems concerning subsets A of the set [ ]n  with k elements and 
exactly   consecutive members.  

Lemma 2. Let ( ), ,S n k   be the number of subsets { }1, , kA a a=   of [ ]n  for which the equation 
1r s= +  has exactly   solutions for r and s in A. If 0 k n≤ < ≤  then  

( )
1 1

, , .
n k k

S n k
k
− + −  

=   −  


 

 

Moreover, ( ), 0, 0 1S n =  and ( ), , 0S n k =  for other values of , ,n k  .  
Proof. We can restate the problem as follows: We want to put k ones and n k−  zeros in a row in such a way 

that there are exactly   appearance of one-one. To do this we put n k−  zeros and choose k −   places of  

the 1n k− +  possible places for putting k −   blocks of ones in 
1n k

k
− + 

 − 

 ways. Let the number of ones in  

the i-th block be 1ir ≥ . We then must have 1 kr r k−+ + =


 . The number of solutions for the latter equation is  
1k − 

 
 

.  

Now suppose that we write 1, 2, , n  around a circle. We thus assume that 1 is after n and so ,1n  is also 
assumed to be consecutive. Under this assumption we have the following result.  

Lemma 3. Let ( ), ,C n k   be the number of subsets { }1, , kA a a=   of [ ]n  for which the equation 
1r s≡ +  (mod n) has exactly   solutions for r and s in A. If 0 k n≤ < <  then  

( )
1

, , .
1

n k knC n k
kk
− −  

= ⋅   − −  


 

 

Moreover, ( ) ( ), 0, 0 , , 1C n C n n n= =  and ( ), , 0C n k =  for other values of , ,n k  .  
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Proof. Similar to the above argument, we want to put k ones and n k−  zeros around a circle in such a way 
that there are exactly   appearances of one-one. At first, we put them in a row. There are four cases: 

Case 1. There is no block of ones before the first zero and after the last zero. In this case we put n k−  zeros  

and choose k −   places of the 1n k− −  possible places for putting k −   blocks of ones in 
1n k

k
− − 

 − 

  

ways. Let the number of ones in the i-th block be 1ir ≥ . We then must have 1 kr r k−+ + =


 . The number of  

solutions for the latter equation is 
1k − 

 
 

. 

Case 2. There is no block of ones before the first zero but there is a block after the last zero. In this case we 
put n k−  zeros and choose 1k − −  places of the 1n k− −  possible places for putting 1k − −  blocks of  

ones in 
1
1

n k
k
− − 

 − − 

 ways. Let the number of ones in the i-th block be 1ir ≥ . We then must have  

1 kr r k−+ + =


 . The number of solutions for the latter equation is 
1k − 

 
 

. 

Case 3. There is a block of ones before the first zero but there is no block after the last zero. This is similar to 
the above case. 

Case 4. There is a block of ones before the first zero and a block of ones after the last zero. In this case we 
must have 1−  appearance of one-one in the row format, since we want to achieve   appearance of one-one 
in the circular format. Thus we put n k−  zeros and choose ( )1 2k − − −  places of the 1n k− −  possible  

places for putting ( )1 2k − − −  blocks of ones in 
1
1

n k
k
− − 

 − − 

 ways. Let the number of ones in the i-th block 

be 1ir ≥ . We then must have ( )1 1kr r k− −+ + =


 . The number of solutions for the latter equation is 
1
1

k − 
 − 

. 

These considerations prove that  

( )
1 1 1 1 1 1

, , 2 .
1 1 1

n k k n k k n k k
C n k

k k k
− − − − − − − − −        

= + +        − − − − − −        


     

 

A straightforward computation gives the result.  
The following Table 2 gives some small values of ( )10, ,C k  . 
 

Table 2. Values of ( )10, ,C k   for 1 10k≤ ≤  and 1 k≤ ≤ .                                                                

k\ 0 1 2 3 4 5 6 7 8 9 10 

0 1 0 0 0 0 0 0 0 0 0 0 

1 10 0 0 0 0 0 0 0 0 0 0 

2 35 10 0 0 0 0 0 0 0 0 0 

3 50 60 10 0 0 0 0 0 0 0 0 

4 25 100 75 10 0 0 0 0 0 0 0 

5 2 40 120 80 10 0 0 0 0 0 0 

6 0 0 25 100 75 10 0 0 0 0 0 

7 0 0 0 0 50 60 10 0 0 0 0 

8 0 0 0 0 0 0 35 10 0 0 0 

9 0 0 0 0 0 0 0 0 10 0 0 

10 0 0 0 0 0 0 0 0 0 0 1 
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Theorem 3. Let c be be a cycle of length m n≤ . Then  

( ) ( ) ( ) ( )
0 2

, 1 , , , , .k
n

k m
D e c C m k n k

≤ ≤ − ≤

= − ∆∑
 

   

Proof. Let mc  be the cycle defined by ( ) 1mc j j= +  for 1 1j m≤ ≤ − , ( ) 1mc m =  and ( )mc i i=  for 
1m i n+ ≤ ≤ . Then ( ) ( ), ,n n mD e c D e c= . 

Using the notations of Theorem 2, ( )1, , ki i =    if and only if the subset { }1, , kA i i=   of [ ]m  has 
exactly   solutions for the equation 1r s≡ +  (mod n) for ,r s  in A. Thus the number of { }1, , ki i  with the 
property ( )1, , ki i =    is ( ), ,C m k  . Applying Theorem 2, we have the result.  

Example 1. We evaluate ( )5 5,D e c  and ( )5 3,D e c . Applying Theorem 3 with 5m =  we have  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )
( )

5 5, 5,0,0 5,0,0 5,1,0 5,1,0 5, 2,0 5, 2,0

5, 2,1 5, 2,1 5,3,1 5,3,1 5,3, 2 5,3, 2

5, 4,3 5, 4,3 5,5,5 5,5,5

5,0,0 5,0,0 5,1,0 5,1,0 5, 2,0 5, 2,0

5, 2,1 4,1,0 5,3,1 4, 2,0 5,3, 2 3,1,0

5, 4,3 2,1,

D e c C C C

C C C

C C

C C C

C C C

C

= ∆ − ∆ + ∆

+ ∆ − ∆ − ∆

+ ∆ − ∆

= ∆ − ∆ + ∆

+ ∆ − ∆ − ∆

+ ∆( ) ( ) ( )0 5,5,5 0,0,0
1 44 5 11 5 4 5 3 5 2 5 1 5 1 1 1 13,

C− ∆

= × − × + × + × − × − × + × − × =

 

and ( ) ( ) ( ) ( ) ( )( )1 , 2 , 3 , 4 , 5x x x x x  for the 13 double derangements x with respect to e and 5c  are  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

3,1,5, 2, 4 , 3, 4,5,1, 2 , 3,5,1, 2, 4 , 3,5, 2,1, 4 , 4,1,5, 2,3 ,

4,1,5,3, 2 , 4,5,1, 2,3 , 4,5,1,3, 2 , 4,5, 2,1,3 , 5,1, 2,3, 4 ,

5, 4,1, 2,3 , 5, 4,1,3, 2 , 5, 4, 2,1,3 .

 

Applying Theorem 3 with 3m =  we have  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

5 3( , ) 3,0,0 5,0,0 3,1,0 5,1,0

3, 2,1 5, 2,1 3,3,3 5,3,3
1 44 3 11 3 3 1 1 19,

D e c C C

C C

= ∆ − ∆

+ ∆ − ∆

= × − × + × − × =

 

and ( ) ( ) ( ) ( ) ( )( )1 , 2 , 3 , 4 , 5x x x x x  for the 19 double derangements with respect to e and 3c  are  

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

3, 4,5,1, 2 , 3,5, 4,1, 2 , 3, 4,5, 2,1 , 3,5, 4, 2,1 , 4,5, 2,1,3 ,

5, 4, 2,1,3 , 4,5, 2,3,1 , 5, 4, 2,3,1 , 4,1,5, 2,3 , 5,1, 4, 2,3 ,

4,1,5,3, 2 , 5,1, 4,3, 2 , 3,5, 2,1, 4 , 3, 4, 2,5,1 , 3,1,5, 2, 4 ,

3,1, 4,5, 2 , 5,1, 2,3, 4 , 4,1, 2,5,3 , 3,1, 2,5, 4 .

 

The above example shows that how can we evaluate ( ),nD e c  for a cycle c. Moreover, Theorem 2 gives a 
formula for evaluating ( ),nD e z  for any permutation z. Applying Lemma 1, we can compute ( ),nD x y  for 
any permutations x and y. 
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