

Double Derangement Permutations

Pooya Daneshmand¹, Kamyar Mirzavaziri², Madjid Mirzavaziri³

¹Ferdowsi University of Mashhad, International Campus, Mashhad, Iran ²National Organization for Development of Exceptional Talents (NODET) I, Mashhad, Iran ³Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran Email: pooyadaneshmand@yahoo.com, mirzavaziri@gmail.com, mirzavaziri@um.ac.ir

Received 28 September 2015; accepted 9 April 2016; published 12 April 2016

Copyright © 2016 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

Let *n* be a positive integer. A permutation *a* of the symmetric group S_n of permutations of $[n] = \{1, 2, \dots, n\}$ is called a *derangement* if $a(i) \neq i$ for each $i \in [n]$. Suppose that *x* and *y* are two arbitrary permutations of S_n . We say that a permutation *a* is a *double derangement with respect* to *x* and *y* if $a(i) \neq x(i)$ and $a(i) \neq y(i)$ for each $i \in [n]$. In this paper, we give an explicit formula for $D_n(x, y)$, the number of double derangements with respect to *x* and *y*. Let $0 \le k \le n$ and let $\{i_1, \dots, i_k\}$ and $\{a_1, \dots, a_k\}$ be two subsets of [n] with $i_j \neq a_j$ and $\ell = |\{i_1, \dots, i_k\} \cap \{a_1, \dots, a_k\}|$. Suppose that $\Delta(n,k,\ell)$ denotes the number of derangements *x* such that $x(i_j) = a_j$. As the main result, we show that if $0 \le m \le n$ and *z* is a permutation such that $z(i) \ne i$ for $i \le m$ and

$$z(i) = i \text{ for } i > m \text{, then } D_n(e,z) = \sum_{k=0}^m \sum_{1 \le i_1 \le \cdots \le i_k \le m} (-1)^k \Delta(n,k,\ell(i_1,\cdots,i_k)), \text{ where}$$
$$\ell(i_1,\cdots,i_k) = \left| \{i_1,\cdots,i_k\} \cap \{z(i_1),\cdots,z(i_k)\} \right|.$$

Keywords

Symmetric Group of Permutations, Derangement, Double Derangement

1. Introduction

Let *n* be a positive integer. A *derangement* is a permutation of the symmetric group S_n of permutations of $[n] = \{1, 2, \dots, n\}$ such that none of the elements appear in their original position. The number of derangements of S_n is denoted by D_n or n_i . A simple recursive argument shows that

$$D_n = (n-1)(D_{n-1} + D_{n-2}).$$

The number of derangements also satisfies the relation $D_n = nD_{n-1} + (-1)^n$. It can be proved by the inclusionexclusion principle that D_n is explicitly determined by $n! \sum_{i=0}^n \frac{(-1)^i}{i!}$. This implies that $\lim_{n\to\infty} \frac{D_n}{n!} = \frac{1}{e}$. These facts and some other results concerning derangements can be found in [1]. There are also some generalizations of this notion. The *problème des rencontres* asks how many permutations of the set [n] have exactly k fixed points. The number of such permutations is denoted by $D_{n,k}$ and is given by $D_{n,k} = \binom{n}{k}D_{n-k}$.

Thus, we can say that $\lim_{n\to\infty} \frac{D_{n,k}}{n!} = \frac{1}{k!e}$. Some probabilistic aspects of this concept and the related notions concerning the permutations of S_n is discussed in [2] and [3].

Let *e* be the identity element of the symmetric group S_n , which is defined by e(i) = i for each $i \in [n]$. We can say that a permutation *a* of [n] is a derangement if $a(i) \neq e(i)$ for each $i \in [n]$. We denote this by $a \perp e$. Thus, D_n is the number of *a* with $a \perp e$. If *c* is any fixed element of S_n then the number of $a \in S_n$ with $a \perp x$ is also D_n , since $a \perp x$ if and only if $ax^{-1} \perp e$. In the present paper, we extend the concept of a derangement to a *double derangement* with respect to two fixed elements *x* and *y* of S_n .

2. The Result

In the following, we assume that *n* is a positive integer and the identity permutation of the symmetric group S_n of permutations of [n] is denoted by *e*. Moreover, for two permutations *a* and *b* of S_n , the notation $a \perp b$ means that $a(i) \neq b(i)$ for each $i \in [n]$. We also denote the number of elements of a set *A* by |A|.

Definition 1. Suppose that x and y are two arbitrary permutations of S_n . We say that a permutation a is a double derangement with respect to x and y if $a \perp x$ and $a \perp y$. The number of double derangements with respect to x and y is denoted by $D_n(x, y)$.

Proposition 1. Let $0 \le k \le n$ and let $\{i_1, \dots, i_k\}$ and $\{a_1, \dots, a_k\}$ be two subsets of [n] with $i_j \ne a_j$ and $\ell = |\{i_1, \dots, i_k\} \cap \{a_1, \dots, a_k\}|$. Then $\Delta(n, k, \ell)$, the number of derangements x such that $x(i_j) = a_j$, is determined by

$$\Delta(n,k,\ell) = \begin{cases} \sum_{i=0}^{k-\ell-1} \binom{k-\ell-1}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)} & \text{if } k \neq \ell \text{ and } 2k-\ell \le n \\ D_{n-k} & \text{if } k=\ell \\ 0 & \text{otherwise} \end{cases}$$

Proof. Let $a_r \in \{i_1, \dots, i_k\} \cap \{a_1, \dots, a_k\}$. Thus $a_r = i_s$ for some $s \neq r$. Now there are two cases:

Case 1. $a_s \in \{i_1, \dots, i_k\}$. Let $a_s = i_t$. In this case a derangement x satisfies the condition $x(i_j) = a_j$ if and only if the derangement x' of the set $[n] \setminus \{i_t\}$ satisfies the condition $x'(i_j) = a'_j$ for all $j \neq t$, where $a'_j = a_j$ for $j \neq s$ and $a'_s = a_t$. This provides a one to one correspondence between the derangements x of [n] with $x(i_j) = a_j$ for the given sets $\{i_1, \dots, i_k\}$ and $\{a_1, \dots, a_k\}$ with ℓ elements in their intersections, and the derangements x' of $[n] \setminus \{i_t\}$ with $x_{i_j} = a'_j$ for the given sets $\{i_1, \dots, i_k\} \setminus \{i_t\}$ and $\{a'_1, \dots, a'_k\} \setminus \{a'_t\}$ with $\ell = 1$ elements in their intersections.

Case 2. $a_s \notin \{i_1, \dots, i_k\}$. In this case a derangement x satisfies the condition $x(i_j) = a_j$ if and only if the derangement x' of the set $[n] \setminus \{a_s\}$ satisfies the condition $x'(i_j) = a_j$ for all $j \neq s$. This provides a one to one correspondence between the derangements x of [n] with $x(i_j) = a_j$ for the given sets $\{i_1, \dots, i_k\}$ and $\{a_1, \dots, a_k\}$ with ℓ elements in their intersections, and the derangements x' of $[n] \setminus \{a_s\}$ with $x'(i_j) = a_j$ for the given sets $\{i_1, \dots, i_k\}$ and $\{a_1, \dots, a_k\} \setminus \{i_s\}$ and $\{a_1, \dots, a_k\} \setminus \{a_s\}$ with $\ell - 1$ elements in their intersections.

These considerations show that $\Delta(n,k,\ell) = \Delta(n-1,k-1,\ell-1)$. Iterating this argument, we have

$$\Delta(n,k,\ell) = \Delta(n-1,k-1,\ell-1) = \Delta(n-2,k-2,\ell-2) = \dots = \Delta(n-\ell,k-\ell,0)$$

We can therefore assume that $\ell = 0$. We thus evaluate $\Delta(n, k, 0)$, where $2k \le n$. For k = 0, we obviously have $\Delta(n, 0, 0) = D_n$. For $k \ge 1$, we claim that

$$\Delta(n,k,0) = \Delta(n-1,k-1,0) + \Delta(n-2,k-1,0).$$

For a derangement x satisfying $x(i_j) = a_j$ there are two cases: $x(a_1) = i_1$ or $x(a_1) \neq i_1$. If the first case occurs then we have to evaluate the number of derangements of the set $[n] \setminus \{i_1, a_1\}$ for the given sets $\{i_2, \dots, i_k\}$ and $\{a_2, \dots, a_k\}$ with 0 elements in their intersections. The number is equal to $\Delta(n-2, k-1, 0)$.

If the second case occurs then we have to evaluate the number of derangements of the set $[n] \setminus \{a_1\}$ for the given sets $\{i_2, \dots, i_k\}$ and $\{a_2, \dots, a_k\}$ with 0 elements in their intersections. The number is equal to $\Delta(n-1, k-1, 0)$.

We now use induction on k to show that

$$\Delta(n,k,0) = \sum_{i=0}^{k-1} {\binom{k-1}{i}} \frac{D_{(n+1)-(k+i)}}{n-(k+i)}, \quad 2 \le 2k \le n.$$

For k = 1 we have

$$\Delta(n,1,0) = \Delta(n-1,0,0) + \Delta(n-2,0,0) = D_{n-1} + D_{n-2} = \frac{D_n}{n-1}.$$

Now let the result be true for k-1. We can write

$$\begin{split} \Delta(n,k,0) &= \Delta\big(n-1,k-1,0\big) + \Delta\big(n-2,k-1,0\big) \\ &= \sum_{i=0}^{k-2} \binom{k-2}{i} \frac{D_{n-(k-1+i)}}{(n-1)-(k-1+i)} + \sum_{i=0}^{k-2} \binom{k-2}{i} \frac{D_{(n-1)-(k-1+i)}}{(n-2)-(k-1+i)} \\ &= \sum_{i=0}^{k-2} \binom{k-2}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)} + \sum_{i=1}^{k-1} \binom{k-2}{i-1} \frac{D_{n-(k+i-1)}}{(n-1)-(k+i-1)} \\ &= \frac{D_{(n+1)-k}}{n-k} + \sum_{i=1}^{k-2} \binom{k-2}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)} + \frac{D_{(n+1)-(2k-1)}}{n-(2k-1)} + \sum_{i=1}^{k-2} \binom{k-2}{i-1} \frac{D_{(n+1)-(k+i)}}{n-(k+i)} \\ &= \frac{D_{(n+1)-k}}{n-k} + \sum_{i=1}^{k-2} \left[\binom{k-2}{i} + \binom{k-2}{i-1} \right] \frac{D_{(n+1)-(k+i)}}{n-(k+i)} + \frac{D_{(n+1)-(2k-1)}}{n-(2k-1)} \\ &= \frac{D_{(n+1)-k}}{n-k} + \sum_{i=1}^{k-2} \binom{k-2}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)} + \frac{D_{(n+1)-(2k-1)}}{n-(2k-1)} \\ &= \sum_{i=0}^{k-1} \binom{k-1}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)}. \end{split}$$

Corollary 1. Let k be a positive integer. Then

$$\sum_{i=0}^{k-1} \binom{k-1}{i} \frac{D_{k+1-i}}{k-i} = k !.$$

Proof. Let n = 2k, $i_j = j$ and $a_j = k + j$ for $j = 1, \dots, k$. Then a derangement x satisfies the condition $x(i_i) = a_i$ if and only if x' defined by x'(i) = x(k+i) for $i \in [k]$ is a permutation of [k]. The number of such permutations x' is k!.

The following **Table 1** gives some small values of $\Delta(n,k,0)$. The following lemma can be easily proved.

Lemma 1. Let x and y be two arbitrary permutations and $m \ge 0$ be the number of i's for which $x(i) \ne y(i)$. Then there is a permutation z such that $z(i) \neq i$ for $i \leq m$ and z(i) = i for i > m and $D_n(x, y) = D_n(e, z)$.

Theorem 2. Let $0 \le m \le n$ and let z be a permutation such that $z(i) \ne i$ for $i \le m$ and z(i) = i for i > m. Then

$$D_n(e,z) = \sum_{k=0}^m \sum_{1 \leq i_1 < \cdots < i_k \leq m} (-1)^k \Delta(n,k,\ell(i_1,\cdots,i_k)),$$

Table 1. Values of	$\Delta(n,k,0)$ for $1 \le n$	≤ 10 and $1 \leq 2k \leq n$.			
n\k	1	2	3	4	5
1	0	0	0	0	0
2	1	0	0	0	0
3	1	0	0	0	0
4	3	2	0	0	0
5	11	4	0	0	0
6	53	14	6	0	0
7	309	64	18	0	0
8	2119	362	78	24	0
9	16,687	2428	426	96	0
10	148,329	18,806	2790	504	120

where $\ell(i_1, \dots, i_k) = |\{i_1, \dots, i_k\} \cap \{z(i_1), \dots, z(i_k)\}|$.

Proof. Let E_i be the set of all derangements x for which x(i) = z(i), where $1 \le i \le m$. Then $D_n(e,z) = D_n - \left| \bigcup_{i=1}^m E_i \right|$. We use the inclusion-exclusion principle to determine $\left| \bigcup_{i=1}^m E_i \right|$. For each $0 \le k \le m$ and $1 \le i_1 < \cdots < i_k \le m$ we have

$$\left|E_{i_1}\cap\cdots\cap E_{i_k}\right|=\Delta(n,k,\ell(i_1,\cdots,i_k)),$$

where $\ell(i_1, \dots, i_k) = |\{i_1, \dots, i_k\} \cap \{z(i_1), \dots, z(i_k)\}|$. This implies the result.

Our ultimate goal is to find an explicit formula for evaluating $D_n(e,c)$ for an arbitrary cycle c. Prior to that we need to state two elementary enumerative problems concerning subsets A of the set [n] with k elements and exactly ℓ consecutive members.

Lemma 2. Let $S(n,k,\ell)$ be the number of subsets $A = \{a_1, \dots, a_k\}$ of [n] for which the equation r = s + 1 has exactly ℓ solutions for r and s in A. If $0 \le \ell < k \le n$ then

$$S(n,k,\ell) = \binom{n-k+1}{k-\ell} \binom{k-1}{\ell}.$$

Moreover, S(n,0,0) = 1 and $S(n,k,\ell) = 0$ for other values of n,k,ℓ .

Proof. We can restate the problem as follows: We want to put k ones and n-k zeros in a row in such a way that there are exactly ℓ appearance of one-one. To do this we put n-k zeros and choose $k-\ell$ places of the n-k+1 possible places for putting $k-\ell$ blocks of ones in $\binom{n-k+1}{k-\ell}$ ways. Let the number of ones in the *i*-th block be $r_i \ge 1$. We then must have $r_1 + \cdots + r_{k-\ell} = k$. The number of solutions for the latter equation is $\binom{k-1}{\ell}$.

Now suppose that we write $1, 2, \dots, n$ around a circle. We thus assume that 1 is after n and so n,1 is also assumed to be consecutive. Under this assumption we have the following result.

Lemma 3. Let $C(n,k,\ell)$ be the number of subsets $A = \{a_1, \dots, a_k\}$ of [n] for which the equation $r \equiv s+1 \pmod{n}$ has exactly ℓ solutions for r and s in A. If $0 \leq \ell < k < n$ then

$$C(n,k,\ell) = \frac{n}{k} \cdot \binom{n-k-1}{k-\ell-1} \binom{k}{\ell}.$$

Moreover, C(n,0,0) = C(n,n,n) = 1 and $C(n,k,\ell) = 0$ for other values of n,k,ℓ .

Proof. Similar to the above argument, we want to put k ones and n-k zeros around a circle in such a way that there are exactly ℓ appearances of one-one. At first, we put them in a row. There are four cases:

Case 1. There is no block of ones before the first zero and after the last zero. In this case we put n-k zeros and choose $k-\ell$ places of the n-k-1 possible places for putting $k-\ell$ blocks of ones in $\binom{n-k-1}{k-\ell}$ ways. Let the number of ones in the *i*-th block be $r_i \ge 1$. We then must have $r_1 + \cdots + r_{k-\ell} = k$. The number of solutions for the latter equation is $\binom{k-1}{\ell}$.

Case 2. There is no block of ones before the first zero but there is a block after the last zero. In this case we put n-k zeros and choose $k-\ell-1$ places of the n-k-1 possible places for putting $k-\ell-1$ blocks of ones in $\binom{n-k-1}{k-\ell-1}$ ways. Let the number of ones in the *i*-th block be $r_i \ge 1$. We then must have

 $r_1 + \dots + r_{k-\ell} = k$. The number of solutions for the latter equation is $\binom{k-1}{\ell}$.

Case 3. There is a block of ones before the first zero but there is no block after the last zero. This is similar to the above case.

Case 4. There is a block of ones before the first zero and a block of ones after the last zero. In this case we must have $\ell - 1$ appearance of one-one in the row format, since we want to achieve ℓ appearance of one-one in the circular format. Thus we put n-k zeros and choose $k - (\ell - 1) - 2$ places of the n-k-1 possible places for putting $k - (\ell - 1) - 2$ blocks of ones in $\binom{n-k-1}{k-\ell-1}$ ways. Let the number of ones in the *i*-th block

be $r_i \ge 1$. We then must have $r_1 + \dots + r_{k-(\ell-1)} = k$. The number of solutions for the latter equation is $\binom{k-1}{\ell-1}$.

These considerations prove that

$$C(n,k,\ell) = \binom{n-k-1}{k-\ell} \binom{k-1}{\ell} + 2\binom{n-k-1}{k-\ell-1} \binom{k-1}{\ell} + \binom{n-k-1}{k-\ell-1} \binom{k-1}{\ell-1}$$

A straightforward computation gives the result.

The following Table 2 gives some small values of $C(10, k, \ell)$.

Table 2.	Values of	$C(10,k,\ell)$	for $1 \le k$:	≤ 10 and 1	$\leq \ell \leq k$.						
$k ackslash \ell$	0	1	2	3	4	5	6	7	8	9	10
0	1	0	0	0	0	0	0	0	0	0	0
1	10	0	0	0	0	0	0	0	0	0	0
2	35	10	0	0	0	0	0	0	0	0	0
3	50	60	10	0	0	0	0	0	0	0	0
4	25	100	75	10	0	0	0	0	0	0	0
5	2	40	120	80	10	0	0	0	0	0	0
6	0	0	25	100	75	10	0	0	0	0	0
7	0	0	0	0	50	60	10	0	0	0	0
8	0	0	0	0	0	0	35	10	0	0	0
9	0	0	0	0	0	0	0	0	10	0	0
10	0	0	0	0	0	0	0	0	0	0	1

Theorem 3. Let *c* be be a cycle of length $m \le n$. Then

$$D_n(e,c) = \sum_{0 \le \ell \le 2k-\ell \le m} (-1)^k C(m,k,\ell) \Delta(n,k,\ell).$$

Proof. Let c_m be the cycle defined by $c_m(j) = j+1$ for $1 \le j \le m-1$, $c_m(m) = 1$ and $c_m(i) = i$ for $m+1 \le i \le n$. Then $D_n(e,c) = D_n(e,c_m)$.

Using the notations of Theorem 2, $\ell(i_1, \dots, i_k) = \ell$ if and only if the subset $A = \{i_1, \dots, i_k\}$ of [m] has exactly ℓ solutions for the equation $r \equiv s+1 \pmod{n}$ for r, s in A. Thus the number of $\{i_1, \dots, i_k\}$ with the property $\ell(i_1, \dots, i_k) = \ell$ is $C(m, k, \ell)$. Applying Theorem 2, we have the result.

Example 1. We evaluate $D_5(e,c_5)$ and $D_5(e,c_3)$. Applying Theorem 3 with m = 5 we have $D_5(e,c_5) = C(5,0,0)\Delta(5,0,0) - C(5,1,0)\Delta(5,1,0) + C(5,2,0)\Delta(5,2,0)$ $+ C(5,2,1)\Delta(5,2,1) - C(5,3,1)\Delta(5,3,1) - C(5,3,2)\Delta(5,3,2)$ $+ C(5,4,3)\Delta(5,4,3) - C(5,5,5)\Delta(5,5,5)$ $= C(5,0,0)\Delta(5,0,0) - C(5,1,0)\Delta(5,1,0) + C(5,2,0)\Delta(5,2,0)$ $+ C(5,2,1)\Delta(4,1,0) - C(5,3,1)\Delta(4,2,0) - C(5,3,2)\Delta(3,1,0)$ $+ C(5,4,3)\Delta(2,1,0) - C(5,5,5)\Delta(0,0,0)$ $= 1 \times 44 - 5 \times 11 + 5 \times 4 + 5 \times 3 - 5 \times 2 - 5 \times 1 + 5 \times 1 - 1 \times 1 = 13$,

and (x(1), x(2), x(3), x(4), x(5)) for the 13 double derangements x with respect to e and c_5 are

(3,1,5,2,4),(3,4,5,1,2),(3,5,1,2,4),(3,5,2,1,4),(4,1,5,2,3),(4,1,5,3,2),(4,5,1,2,3),(4,5,1,3,2),(4,5,2,1,3),(5,1,2,3,4),(5,4,1,2,3),(5,4,1,3,2),(5,4,2,1,3).

Applying Theorem 3 with m = 3 we have

$$D_{5}(e,c_{3}) = C(3,0,0)\Delta(5,0,0) - C(3,1,0)\Delta(5,1,0) + C(3,2,1)\Delta(5,2,1) - C(3,3,3)\Delta(5,3,3) = 1 \times 44 - 3 \times 11 + 3 \times 3 - 1 \times 1 = 19,$$

and (x(1), x(2), x(3), x(4), x(5)) for the 19 double derangements with respect to e and c_3 are

$$(3,4,5,1,2),(3,5,4,1,2),(3,4,5,2,1),(3,5,4,2,1),(4,5,2,1,3),(5,4,2,1,3),(4,5,2,3,1),(5,4,2,3,1),(4,1,5,2,3),(5,1,4,2,3),(4,1,5,3,2),(5,1,4,3,2),(3,5,2,1,4),(3,4,2,5,1),(3,1,5,2,4),(3,1,4,5,2),(5,1,2,3,4),(4,1,2,5,3),(3,1,2,5,4).$$

The above example shows that how can we evaluate $D_n(e,c)$ for a cycle c. Moreover, Theorem 2 gives a formula for evaluating $D_n(e,z)$ for any permutation z. Applying Lemma 1, we can compute $D_n(x, y)$ for any permutations x and y.

References

- [1] Graham, R.L., Knuth, D.E. and Patashnik, O. (1988) Concrete Mathematics. Addison-Wesley, Reading.
- Pitman, J. (1997) Some Probabilistic Aspects of Set Partitions. American Mathematical Monthly, 104, 201-209. <u>http://dx.doi.org/10.2307/2974785</u>
- [3] Knopfmacher, A., Mansour, T. and Wagner, S. (2010) Records in Set Partitions. *The Electronic Journal of Combinatorics*, **17**, R109.