Double Derangement Permutations

Pooya Daneshmand ${ }^{1}$, Kamyar Mirzavaziri ${ }^{2}$, Madjid Mirzavaziri ${ }^{3}$
${ }^{1}$ Ferdowsi University of Mashhad, International Campus, Mashhad, Iran
${ }^{2}$ National Organization for Development of Exceptional Talents (NODET) I, Mashhad, Iran
${ }^{3}$ Department of Pure Mathematics, Ferdowsi University of Mashhad, Mashhad, Iran
Email: pooyadaneshmand@yahoo.com, mirzavaziri@gmail.com, mirzavaziri@um.ac.ir

Received 28 September 2015; accepted 9 April 2016; published 12 April 2016
Copyright © 2016 by authors and Scientific Research Publishing Inc.
This work is licensed under the Creative Commons Attribution International License (CC BY).
http://creativecommons.org/licenses/by/4.0/

Abstract

Let n be a positive integer. A permutation a of the symmetric group S_{n} of permutations of $[n]=\{1,2, \cdots, n\}$ is called a derangement if $a(i) \neq i$ for each $i \in[n]$. Suppose that x and y are two arbitrary permutations of S_{n}. We say that a permutation a is a double derangement with respect to x and y if $a(i) \neq x(i)$ and $a(i) \neq y(i)$ for each $i \in[n]$. In this paper, we give an explicit formula for $D_{n}(x, y)$, the number of double derangements with respect to x and y. Let $0 \leq k \leq n$ and let $\left\{i_{1}, \cdots, i_{k}\right\}$ and $\left\{a_{1}, \cdots, a_{k}\right\}$ be two subsets of $[n]$ with $i_{j} \neq a_{j}$ and $\ell=\left|\left\{i_{1}, \cdots, i_{k}\right\} \cap\left\{a_{1}, \cdots, a_{k}\right\}\right|$. Suppose that $\Delta(n, k, \ell)$ denotes the number of derangements x such that $x\left(i_{j}\right)=a_{j}$. As the main result, we show that if $0 \leq m \leq n$ and z is a permutation such that $z(i) \neq i$ for $i \leq m$ and $z(i)=i$ for $i>m$, then $D_{n}(e, z)=\sum_{k=01 \leq i_{1}<\cdots<i_{k} \leq m}^{m}(-1)^{k} \Delta\left(n, k, \ell\left(i_{1}, \cdots, i_{k}\right)\right)$, where $\ell\left(i_{1}, \cdots, i_{k}\right)=\left\{\left\{i_{1}, \cdots, i_{k}\right\} \cap\left\{z\left(i_{1}\right), \cdots, z\left(i_{k}\right)\right\} \mid\right.$.

Keywords

Symmetric Group of Permutations, Derangement, Double Derangement

1. Introduction

Let n be a positive integer. A derangement is a permutation of the symmetric group S_{n} of permutations of $[n]=\{1,2, \cdots, n\}$ such that none of the elements appear in their original position. The number of derangements of S_{n} is denoted by D_{n} or n_{i}. A simple recursive argument shows that

$$
D_{n}=(n-1)\left(D_{n-1}+D_{n-2}\right) .
$$

The number of derangements also satisfies the relation $D_{n}=n D_{n-1}+(-1)^{n}$. It can be proved by the inclusionexclusion principle that D_{n} is explicitly determined by $n!\sum_{i=0}^{n} \frac{(-1)^{i}}{i!}$. This implies that $\lim _{n \rightarrow \infty} \frac{D_{n}}{n!}=\frac{1}{e}$. These facts and some other results concerning derangements can be found in [1]. There are also some generalizations of this notion. The problème des rencontres asks how many permutations of the set [n] have exactly k fixed points. The number of such permutations is denoted by $D_{n, k}$ and is given by $D_{n, k}=\binom{n}{k} D_{n-k}$. Thus, we can say that $\lim _{n \rightarrow \infty} \frac{D_{n, k}}{n!}=\frac{1}{k!e}$. Some probabilistic aspects of this concept and the related notions concerning the permutations of S_{n} is discussed in [2] and [3].

Let e be the identity element of the symmetric group S_{n}, which is defined by $e(i)=i$ for each $i \in[n]$. We can say that a permutation a of [n] is a derangement if $a(i) \neq e(i)$ for each $i \in[n]$. We denote this by $a \perp e$. Thus, D_{n} is the number of a with $a \perp e$. If c is any fixed element of S_{n} then the number of $a \in S_{n}$ with $a \perp x$ is also D_{n}, since $a \perp x$ if and only if $a x^{-1} \perp e$. In the present paper, we extend the concept of a derangement to a double derangement with respect to two fixed elements x and y of S_{n}.

2. The Result

In the following, we assume that n is a positive integer and the identity permutation of the symmetric group S_{n} of permutations of [n] is denoted by e. Moreover, for two permutations a and b of S_{n}, the notation $a \perp b$ means that $a(i) \neq b(i)$ for each $i \in[n]$. We also denote the number of elements of a set A by $|A|$.

Definition 1. Suppose that x and y are two arbitrary permutations of S_{n}. We say that a permutation a is a double derangement with respect to x and y if $a \perp x$ and $a \perp y$. The number of double derangements with respect to x and y is denoted by $D_{n}(x, y)$.

Proposition 1. Let $0 \leq k \leq n$ and let $\left\{i_{1}, \cdots, i_{k}\right\}$ and $\left\{a_{1}, \cdots, a_{k}\right\}$ be two subsets of [n] with $i_{j} \neq a_{j}$ and $\ell=\left|\left\{i_{1}, \cdots, i_{k}\right\} \cap\left\{a_{1}, \cdots, a_{k}\right\}\right|$. Then $\Delta(n, k, \ell)$, the number of derangements x such that $x\left(i_{j}\right)=a_{j}$, is determined by

$$
\Delta(n, k, \ell)= \begin{cases}\sum_{i=0}^{k-1-1}\binom{k-\ell-1}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)} & \text { if } k \neq \ell \text { and } 2 k-\ell \leq n \\ D_{n-k} & \text { if } k=\ell \\ 0 & \text { otherwise }\end{cases}
$$

Proof. Let $a_{r} \in\left\{i_{1}, \cdots, i_{k}\right\} \cap\left\{a_{1}, \cdots, a_{k}\right\}$. Thus $a_{r}=i_{s}$ for some $s \neq r$. Now there are two cases:
Case 1. $a_{s} \in\left\{i_{1}, \cdots, i_{k}\right\}$. Let $a_{s}=i_{t}$. In this case a derangement x satisfies the condition $x\left(i_{j}\right)=a_{j}$ if and only if the derangement x^{\prime} of the set $[n] \backslash\left\{i_{t}\right\}$ satisfies the condition $x^{\prime}\left(i_{j}\right)=a_{j}^{\prime}$ for all $j \neq t$, where $a_{j}^{\prime}=a_{j}$ for $j \neq s$ and $a_{s}^{\prime}=a_{t}$. This provides a one to one correspondence between the derangements x of [n] with $x\left(i_{j}\right)=a_{j}$ for the given sets $\left\{i_{1}, \cdots, i_{k}\right\}$ and $\left\{a_{1}, \cdots, a_{k}\right\}$ with ℓ elements in their intersections, and the derangements x^{\prime} of $[n] \backslash\left\{i_{t}\right\}$ with $x_{i_{j}}=a_{j}^{\prime}$ for the given sets $\left\{i_{1}, \cdots, i_{k}\right\} \backslash\left\{i_{t}\right\}$ and $\left\{a_{1}^{\prime}, \cdots, a_{k}^{\prime}\right\} \backslash\left\{a_{t}^{\prime}\right\}$ with $\ell-1$ elements in their intersections.

Case 2. $a_{s} \notin\left\{i_{1}, \cdots, i_{k}\right\}$. In this case a derangement x satisfies the condition $x\left(i_{j}\right)=a_{j}$ if and only if the derangement x^{\prime} of the set $[n] \backslash\left\{a_{s}\right\}$ satisfies the condition $x^{\prime}\left(i_{j}\right)=a_{j}$ for all $j \neq s$. This provides a one to one correspondence between the derangements x of $[n]$ with $x\left(i_{j}\right)=a_{j}$ for the given sets $\left\{i_{1}, \cdots, i_{k}\right\}$ and $\left\{a_{1}, \cdots, a_{k}\right\}$ with ℓ elements in their intersections, and the derangements x^{\prime} of $[n] \backslash\left\{a_{s}\right\}$ with $x^{\prime}\left(i_{j}\right)=a_{j}$ for the given sets $\left\{i_{1}, \cdots, i_{k}\right\} \backslash\left\{i_{s}\right\}$ and $\left\{a_{1}, \cdots, a_{k}\right\} \backslash\left\{a_{s}\right\}$ with $\ell-1$ elements in their intersections.

These considerations show that $\Delta(n, k, \ell)=\Delta(n-1, k-1, \ell-1)$. Iterating this argument, we have

$$
\Delta(n, k, \ell)=\Delta(n-1, k-1, \ell-1)=\Delta(n-2, k-2, \ell-2)=\cdots=\Delta(n-\ell, k-\ell, 0) .
$$

We can therefore assume that $\ell=0$. We thus evaluate $\Delta(n, k, 0)$, where $2 k \leq n$. For $k=0$, we obviously have $\Delta(n, 0,0)=D_{n}$. For $k \geq 1$, we claim that

$$
\Delta(n, k, 0)=\Delta(n-1, k-1,0)+\Delta(n-2, k-1,0)
$$

For a derangement x satisfying $x\left(i_{j}\right)=a_{j}$ there are two cases: $x\left(a_{1}\right)=i_{1}$ or $x\left(a_{1}\right) \neq i_{1}$.
If the first case occurs then we have to evaluate the number of derangements of the set $[n] \backslash\left\{i_{1}, a_{1}\right\}$ for the given sets $\left\{i_{2}, \cdots, i_{k}\right\}$ and $\left\{a_{2}, \cdots, a_{k}\right\}$ with 0 elements in their intersections. The number is equal to $\Delta(n-2, k-1,0)$.
If the second case occurs then we have to evaluate the number of derangements of the set $[n] \backslash\left\{a_{1}\right\}$ for the given sets $\left\{i_{2}, \cdots, i_{k}\right\}$ and $\left\{a_{2}, \cdots, a_{k}\right\}$ with 0 elements in their intersections. The number is equal to $\Delta(n-1, k-1,0)$.

We now use induction on k to show that

$$
\Delta(n, k, 0)=\sum_{i=0}^{k-1}\binom{k-1}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)}, \quad 2 \leq 2 k \leq n .
$$

For $k=1$ we have

$$
\Delta(n, 1,0)=\Delta(n-1,0,0)+\Delta(n-2,0,0)=D_{n-1}+D_{n-2}=\frac{D_{n}}{n-1} .
$$

Now let the result be true for $k-1$. We can write

$$
\begin{aligned}
\Delta(n, k, 0) & =\Delta(n-1, k-1,0)+\Delta(n-2, k-1,0) \\
& =\sum_{i=0}^{k-2}\binom{k-2}{i} \frac{D_{n-(k-1+i)}}{(n-1)-(k-1+i)}+\sum_{i=0}^{k-2}\binom{k-2}{i} \frac{D_{(n-1)-(k-1+i)}}{(n-2)-(k-1+i)} \\
& =\sum_{i=0}^{k-2}\binom{k-2}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)}+\sum_{i=1}^{k-1}\binom{k-2}{i-1} \frac{D_{n-(k+i-1)}}{(n-1)-(k+i-1)} \\
& =\frac{D_{(n+1)-k}}{n-k}+\sum_{i=1}^{k-2}\binom{k-2}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)}+\frac{D_{(n+1)-(2 k-1)}}{n-(2 k-1)}+\sum_{i=1}^{k-2}\binom{k-2}{i-1} \frac{D_{(n+1)-(k+i)}}{n-(k+i)} \\
& =\frac{D_{(n+1)-k}}{n-k}+\sum_{i=1}^{k-2}\left[\binom{k-2}{i}+\binom{k-2}{i-1}\right] \frac{D_{(n+1)-(k+i)}}{n-(k+i)}+\frac{D_{(n+1)-(2 k-1)}^{n-(2 k-1)}}{n-(2 k-1)} \\
& =\frac{D_{(n+1)-k}}{n-k}+\sum_{i=1}^{k-2}\binom{k-2}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)}+\frac{D_{(n+1)-(2 k-1)}}{n-(2 k} \\
& =\sum_{i=0}^{k-1}\binom{k-1}{i} \frac{D_{(n+1)-(k+i)}}{n-(k+i)} .
\end{aligned}
$$

Corollary 1. Let k be a positive integer. Then

$$
\sum_{i=0}^{k-1}\binom{k-1}{i} \frac{D_{k+1-i}}{k-i}=k!.
$$

Proof. Let $n=2 k, i_{j}=j$ and $a_{j}=k+j$ for $j=1, \cdots, k$. Then a derangement x satisfies the condition $x\left(i_{j}\right)=a_{j}$ if and only if x^{\prime} defined by $x^{\prime}(i)=x(k+i)$ for $i \in[k]$ is a permutation of $[k]$. The number of such permutations x^{\prime} is $k!$.

The following Table 1 gives some small values of $\Delta(n, k, 0)$.
The following lemma can be easily proved.
Lemma 1. Let x and y be two arbitrary permutations and $m \geq 0$ be the number of i 's for which $x(i) \neq y(i)$. Then there is a permutation z such that $z(i) \neq i$ for $i \leq m$ and $z(i)=i$ for $i>m$ and $D_{n}(x, y)=D_{n}(e, z)$.

Theorem 2. Let $0 \leq m \leq n$ and let z be a permutation such that $z(i) \neq i$ for $i \leq m$ and $z(i)=i$ for $i>m$. Then

$$
D_{n}(e, z)=\sum_{k=01 \leq i_{1}<\cdots<i_{k} \leq m}^{m}(-1)^{k} \Delta\left(n, k, \ell\left(i_{1}, \cdots, i_{k}\right)\right),
$$

Table 1. Values of $\Delta(n, k, 0)$ for $1 \leq n \leq 10$ and $1 \leq 2 k \leq n$.

$n \backslash k$	1	2	3	4	5
1	0	0	0	0	0
2	1	0	0	0	0
3	1	0	0	0	0
4	3	2	0	0	0
5	11	4	0	0	0
6	53	14	6	0	0
7	309	64	18	0	0
8	2119	362	78	24	0
9	16,687	2428	426	96	0
10	148,329	18,806	2790	504	120

where $\ell\left(i_{1}, \cdots, i_{k}\right)=\left|\left\{i_{1}, \cdots, i_{k}\right\} \cap\left\{z\left(i_{1}\right), \cdots, z\left(i_{k}\right)\right\}\right|$.
Proof. Let E_{i} be the set of all derangements x for which $x(i)=z(i)$, where $1 \leq i \leq m$. Then $D_{n}(e, z)=D_{n}-\left|\bigcup_{i=1}^{m} E_{i}\right|$. We use the inclusion-exclusion principle to determine $\bigcup_{i=1}^{m} E_{i} \mid$. For each $0 \leq k \leq m$ and $1 \leq i_{1}<\cdots<i_{k} \leq m$ we have

$$
\left|E_{i_{1}} \cap \cdots \cap E_{i_{k}}\right|=\Delta\left(n, k, \ell\left(i_{1}, \cdots, i_{k}\right)\right),
$$

where $\ell\left(i_{1}, \cdots, i_{k}\right)=\left|\left\{i_{1}, \cdots, i_{k}\right\} \cap\left\{z\left(i_{1}\right), \cdots, z\left(i_{k}\right)\right\}\right|$. This implies the result.
Our ultimate goal is to find an explicit formula for evaluating $D_{n}(e, c)$ for an arbitrary cycle c. Prior to that we need to state two elementary enumerative problems concerning subsets A of the set $[n]$ with k elements and exactly ℓ consecutive members.

Lemma 2. Let $S(n, k, \ell)$ be the number of subsets $A=\left\{a_{1}, \cdots, a_{k}\right\}$ of [n] for which the equation $r=s+1$ has exactly ℓ solutions for r and s in A. If $0 \leq \ell<k \leq n$ then

$$
S(n, k, \ell)=\binom{n-k+1}{k-\ell}\binom{k-1}{\ell} .
$$

Moreover, $S(n, 0,0)=1$ and $S(n, k, \ell)=0$ for other values of n, k, ℓ.
Proof. We can restate the problem as follows: We want to put k ones and $n-k$ zeros in a row in such a way that there are exactly ℓ appearance of one-one. To do this we put $n-k$ zeros and choose $k-\ell$ places of the $n-k+1$ possible places for putting $k-\ell$ blocks of ones in $\binom{n-k+1}{k-\ell}$ ways. Let the number of ones in the i-th block be $r_{i} \geq 1$. We then must have $r_{1}+\cdots+r_{k-\ell}=k$. The number of solutions for the latter equation is $\binom{k-1}{\ell}$.

Now suppose that we write $1,2, \cdots, n$ around a circle. We thus assume that 1 is after n and so $n, 1$ is also assumed to be consecutive. Under this assumption we have the following result.

Lemma 3. Let $C(n, k, \ell)$ be the number of subsets $A=\left\{a_{1}, \cdots, a_{k}\right\}$ of [n] for which the equation $r \equiv s+1(\bmod n)$ has exactly ℓ solutions for r and s in A. If $0 \leq \ell<k<n$ then

$$
C(n, k, \ell)=\frac{n}{k} \cdot\binom{n-k-1}{k-\ell-1}\binom{k}{\ell} .
$$

Moreover, $C(n, 0,0)=C(n, n, n)=1$ and $C(n, k, \ell)=0$ for other values of n, k, ℓ.

Proof. Similar to the above argument, we want to put k ones and $n-k$ zeros around a circle in such a way that there are exactly ℓ appearances of one-one. At first, we put them in a row. There are four cases:

Case 1. There is no block of ones before the first zero and after the last zero. In this case we put $n-k$ zeros and choose $k-\ell$ places of the $n-k-1$ possible places for putting $k-\ell$ blocks of ones in $\binom{n-k-1}{k-\ell}$ ways. Let the number of ones in the i-th block be $r_{i} \geq 1$. We then must have $r_{1}+\cdots+r_{k-\ell}=k$. The number of solutions for the latter equation is $\binom{k-1}{\ell}$.

Case 2. There is no block of ones before the first zero but there is a block after the last zero. In this case we put $n-k$ zeros and choose $k-\ell-1$ places of the $n-k-1$ possible places for putting $k-\ell-1$ blocks of ones in $\binom{n-k-1}{k-\ell-1}$ ways. Let the number of ones in the i-th block be $r_{i} \geq 1$. We then must have $r_{1}+\cdots+r_{k-\ell}=k$. The number of solutions for the latter equation is $\binom{k-1}{\ell}$.

Case 3. There is a block of ones before the first zero but there is no block after the last zero. This is similar to the above case.

Case 4. There is a block of ones before the first zero and a block of ones after the last zero. In this case we must have $\ell-1$ appearance of one-one in the row format, since we want to achieve ℓ appearance of one-one in the circular format. Thus we put $n-k$ zeros and choose $k-(\ell-1)-2$ places of the $n-k-1$ possible places for putting $k-(\ell-1)-2$ blocks of ones in $\binom{n-k-1}{k-\ell-1}$ ways. Let the number of ones in the i-th block be $r_{i} \geq 1$. We then must have $r_{1}+\cdots+r_{k-(\ell-1)}=k$. The number of solutions for the latter equation is $\binom{k-1}{\ell-1}$.

These considerations prove that

$$
C(n, k, \ell)=\binom{n-k-1}{k-\ell}\binom{k-1}{\ell}+2\binom{n-k-1}{k-\ell-1}\binom{k-1}{\ell}+\binom{n-k-1}{k-\ell-1}\binom{k-1}{\ell-1}
$$

A straightforward computation gives the result.
The following Table 2 gives some small values of $C(10, k, \ell)$.
Table 2. Values of $C(10, k, \ell)$ for $1 \leq k \leq 10$ and $1 \leq \ell \leq k$.

$k \backslash \ell$	0	1	2	3	4	5	6	7	8	9	10
0	1	0	0	0	0	0	0	0	0	0	0
1	10	0	0	0	0	0	0	0	0	0	0
2	35	10	0	0	0	0	0	0	0	0	0
3	50	60	10	0	0	0	0	0	0	0	0
4	25	100	75	10	0	0	0	0	0	0	0
5	2	40	120	80	10	0	0	0	0	0	0
6	0	0	25	100	75	10	0	0	0	0	0
7	0	0	0	0	50	60	10	0	0	0	0
8	0	0	0	0	0	0	35	10	0	0	0
9	0	0	0	0	0	0	0	0	10	0	0
10	0	0	0	0	0	0	0	0	0	0	1

Theorem 3. Let c be be a cycle of length $m \leq n$. Then

$$
D_{n}(e, c)=\sum_{0 \leq \leq \leq 2 k-\leq \leq m}(-1)^{k} C(m, k, \ell) \Delta(n, k, \ell) .
$$

Proof. Let c_{m} be the cycle defined by $c_{m}(j)=j+1$ for $1 \leq j \leq m-1, c_{m}(m)=1$ and $c_{m}(i)=i$ for $m+1 \leq i \leq n$. Then $D_{n}(e, c)=D_{n}\left(e, c_{m}\right)$.
Using the notations of Theorem 2, $\ell\left(i_{1}, \cdots, i_{k}\right)=\ell$ if and only if the subset $A=\left\{i_{1}, \cdots, i_{k}\right\}$ of [m$]$ has exactly ℓ solutions for the equation $r \equiv s+1(\bmod n)$ for r, s in A. Thus the number of $\left\{i_{1}, \cdots, i_{k}\right\}$ with the property $\ell\left(i_{1}, \cdots, i_{k}\right)=\ell$ is $C(m, k, \ell)$. Applying Theorem 2, we have the result.

Example 1. We evaluate $D_{5}\left(e, c_{5}\right)$ and $D_{5}\left(e, c_{3}\right)$. Applying Theorem 3 with $m=5$ we have

$$
\begin{aligned}
D_{5}\left(e, c_{5}\right)= & C(5,0,0) \Delta(5,0,0)-C(5,1,0) \Delta(5,1,0)+C(5,2,0) \Delta(5,2,0) \\
& +C(5,2,1) \Delta(5,2,1)-C(5,3,1) \Delta(5,3,1)-C(5,3,2) \Delta(5,3,2) \\
& +C(5,4,3) \Delta(5,4,3)-C(5,5,5) \Delta(5,5,5) \\
= & C(5,0,0) \Delta(5,0,0)-C(5,1,0) \Delta(5,1,0)+C(5,2,0) \Delta(5,2,0) \\
& +C(5,2,1) \Delta(4,1,0)-C(5,3,1) \Delta(4,2,0)-C(5,3,2) \Delta(3,1,0) \\
& +C(5,4,3) \Delta(2,1,0)-C(5,5,5) \Delta(0,0,0) \\
= & 1 \times 44-5 \times 11+5 \times 4+5 \times 3-5 \times 2-5 \times 1+5 \times 1-1 \times 1=13,
\end{aligned}
$$

and $(x(1), x(2), x(3), x(4), x(5))$ for the 13 double derangements x with respect to e and c_{5} are

$$
\begin{aligned}
& (3,1,5,2,4),(3,4,5,1,2),(3,5,1,2,4),(3,5,2,1,4),(4,1,5,2,3), \\
& (4,1,5,3,2),(4,5,1,2,3),(4,5,1,3,2),(4,5,2,1,3),(5,1,2,3,4), \\
& (5,4,1,2,3),(5,4,1,3,2),(5,4,2,1,3) .
\end{aligned}
$$

Applying Theorem 3 with $m=3$ we have

$$
\begin{aligned}
D_{5}\left(e, c_{3}\right)= & C(3,0,0) \Delta(5,0,0)-C(3,1,0) \Delta(5,1,0) \\
& +C(3,2,1) \Delta(5,2,1)-C(3,3,3) \Delta(5,3,3) \\
= & 1 \times 44-3 \times 11+3 \times 3-1 \times 1=19,
\end{aligned}
$$

and $(x(1), x(2), x(3), x(4), x(5))$ for the 19 double derangements with respect to e and c_{3} are

$$
\begin{aligned}
& (3,4,5,1,2),(3,5,4,1,2),(3,4,5,2,1),(3,5,4,2,1),(4,5,2,1,3), \\
& (5,4,2,1,3),(4,5,2,3,1),(5,4,2,3,1),(4,1,5,2,3),(5,1,4,2,3), \\
& (4,1,5,3,2),(5,1,4,3,2),(3,5,2,1,4),(3,4,2,5,1),(3,1,5,2,4), \\
& (3,1,4,5,2),(5,1,2,3,4),(4,1,2,5,3),(3,1,2,5,4) .
\end{aligned}
$$

The above example shows that how can we evaluate $D_{n}(e, c)$ for a cycle c. Moreover, Theorem 2 gives a formula for evaluating $D_{n}(e, z)$ for any permutation z. Applying Lemma 1 , we can compute $D_{n}(x, y)$ for any permutations x and y.

References

[1] Graham, R.L., Knuth, D.E. and Patashnik, O. (1988) Concrete Mathematics. Addison-Wesley, Reading.
[2] Pitman, J. (1997) Some Probabilistic Aspects of Set Partitions. American Mathematical Monthly, 104, 201-209. http://dx.doi.org/10.2307/2974785
[3] Knopfmacher, A., Mansour, T. and Wagner, S. (2010) Records in Set Partitions. The Electronic Journal of Combinatorics, 17, R109.

