

Domination Number of Square of Cartesian Products of Cycles

Morteza Alishahi, Sakineh Hoseini Shalmaee

Islamic Azad University, Nazarabad Branch Email: morteza.alishahi@gmail.com

Received 2 August 2015; accepted 26 October 2015; published 29 October 2015

Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/

Abstract

A set $S \subseteq V(G)$ is a dominating set of *G* if every vertex of V(G)-S is adjacent to at least one vertex of *S*. The cardinality of the smallest dominating set of *G* is called the domination number of *G*. The square G^2 of a graph *G* is obtained from *G* by adding new edges between every two vertices having distance 2 in *G*. In this paper we study the domination number of square of graphs, find a bound for domination number of square of Cartesian product of cycles, and find the exact value for some of them.

Keywords

Domination Number, Square of a Graph, Cartesian Product

1. Introduction

The usual graph theory notions not herein, refer to [1]. The *neighborhood* of vertex u is denoted by $N(u) = \{v \in V(G) : uv \in E(G)\}$ and the *close neighborhood* of vertex u is denoted by $N[u] = N(u) \cup \{u\}$. Let $S \subseteq V(G)$, the *neighborhood* and *closed neighborhood* of S are defined as $N(S) = \bigcup_{u \in S} N(u)$ and $N[S] = \bigcup_{u \in S} N[u]$. If $u \in V(G)$, then $N_k(u) = \{v \in V(G) | 1 \le d(u,v) \le k\}$. If $S \subseteq V(G)$ and $u \in V(G)$, then $d(u,S) = \min\{d(u,v) | v \in S\}$. The *diameter* of G denoted by diam(G) is defined as $diam(G) = \max_{u,v \in V(G)} d_G(u,v)$. A set $S \subseteq V(G)$ is a *dominating set* of G if every vertex of V(G) - S is adjacent to at least one vertex of S. The cardinality of the smallest dominating set of G, denoted by $\gamma(G)$, is called the *domination number* of G. A dominating set of cardinality $\gamma(G)$ is called a γ -set of G [2]. A dominating set S is a *minimal dominating set* if no proper subset $S' \subset S$ is a dominating set. Given any graph G, its square graph G^2 is a graph with vertex set V(G) and two vertices are adjacent whenever they are at distance 1 or 2 in *G*. For example $C_5^2 = K_5$. A set $S \subseteq V(G)$ is a 2-distance dominating set of *G* if $d_G(u,S) = 1$ or 2 for every vertex of V(G) - S. The cardinality of the smallest 2-distance dominating set of *G*, denoted by $\gamma^2(G)$, is called 2-distance domination number of *G*. Every 2-distance dominating set of *G* is a dominating set of G^2 , so $\gamma^2(G) = \gamma(G^2)$. The Cartesian product of Graphs *G* and *H* denoted by $G \Box H$ is a

graph with vertex set $V(G \Box H) = V(G) \times V(H)$ and the edge set

 $E(G\Box H) = \{((u,v),(z,w)) : (uz \in E(G) \& v = w) \text{ or } (u = z \& vw \in E(H))\}.$ The graph $G\Box H$ is obtained by

locating copies H_i of grpah H instead of vertices of G and connecting the corresponding vertices of H_i to H_j if vertex v_i is adjacent to v_j in G. $G \Box H$ is isomorphic to $H \Box G$. We denote a cycle with n vertices by C_n and a path with n vertices by P_n . The bipartite geraph $K_{1,3}$ is named *claw*.

2. Preliminaries Results

Theorem 1. Let G be a graph. Then

a) If $uv \in E(G)$, then $\gamma(G-uv) \ge \gamma(G)$.

b) If $uv \in E(G^c)$, then $\gamma(G+uv) \leq \gamma(G)$.

Proof. a) Every dominating set of G - uv is a dominating set of G so $\gamma(G - uv) \ge \gamma(G)$.

b) Every dominating set of G is a dominating set of G + uv so $\gamma(G + uv) \le \gamma(G)$.

Theorem 2. [3] A dominating set S is a minimal dominating set if and only if for each vertex $u \in S$, one of the following conditions holds:

a) *u* is an isolated vertex of *S*.

b) there exist a vertex $v \in V(G) - S$ for which $N(v) \cap S = \{u\}$.

Theorem 3. [3] If G is a graph with no isolated vertices and S is a minimal dominating set of G, then V(G)-S is a dominating set of G.

Proof. Let S be a γ -set of G. S is a minimal dominating set of G. By Theorem 3, V(G) - S is a dominating

set of G too, so $|S| \leq |V(G) - S|$, so $|S| \leq \frac{n}{2}$.

Theorem 4. [4] If G is a connected claw free graph, then $\gamma(G) \leq \left| \frac{n}{3} \right|$.

Theorem 5. [5] Let G be a graph. Then $\left\lceil \frac{n}{1+\Delta(G)} \right\rceil \le \gamma(G) \le n-\Delta(G)$.

Since $\Delta(C_n) = \Delta(P_n) = 2$, by Theorems 4 and 5 we have the following corollary.

Corollary 6. $\gamma(C_n) = \gamma(P_n) = \left| \frac{n}{3} \right|.$

Vizing conjecture

Let G and H be two graphs. Then $\gamma(G \Box H) \ge \gamma(G)\gamma(H)$ [6].

3. Domination Number of Square of Graphs

Theorem 7. Let *S* be a dominating set of G^2 . Then *S* is a minimal dominating set of G^2 if and only if each vertex $u \in S$ satisfies at least one of the following conditions:

a) There exists a vertex $v \in V(G) - S$ for which $N_2(v) \cap S = \{u\}$.

b) d(u, w) > 2 for every vertex $w \in S - \{u\}$.

Proof. If $u \in S$ and u does't satisfy conditions a) and b), then the set $S - \{u\}$ is a dominating set of G^2 that is contradiction. Conversely, let S be a dominating set of G^2 but not minimal. Then there exists a vertex $u \in S$ such that $S - \{u\}$ is a dominating set of G^2 , too. So $d(v, S - \{u\}) = 1$ or 2 for every $v \in V(G) - S$; therefore S doesn't satisfy in condition a). In addition $d(u, S - \{u\}) = 1$ or 2, so S doesn't satisfy in condition b).

Theorem 8. If $diam(G) \le 3$, then $\gamma(G^2) \le \delta(G)$.

Proof. Let $d(u) = \delta(G)$. Since $diam(G) \le 3$, the set N(u) is a dominating set of G^2 . Therefore $\gamma(G^2) \le |N(u)| = d(u) = \delta(G)$.

Theorem 9. If $diam(G) \le 4$, then $\gamma(G^2) \le \left(\sum_{v \in N(u)} d(v)\right) - d(u)$, for every $u \in V(G)$.

Proof. Let u be an arbitrary vertex of G. Let $S(u) = N(N(u)) - \{u\}$. Since $diam(G) \le 4$, $d(v, S(u)) \le 2$, for every $v \in V(G)$. Therefore S(u) is a dominating set of G^2 . $|S(u)| \le \sum_{v \in N(u)} (d(v) - 1)$ and |N(u)| = d(u), Hence $\gamma(G^2) \le |S(u)| \le \sum_{v \in N(u)} (d(v) - 1) = \sum_{v \in N(u)} (d(v)) - d(u)$. Theorem 10. Let G be a graph. Then, $\gamma((G \Box K)^2) = \gamma(G)$.

Theorem 10. Let G be a graph. Then $\gamma((G \Box K_n)^2) = \gamma(G)$. Proof. Let $V(G) = \{u_1, u_2, \dots, u_m\}$ and H_1, H_2, \dots, H_m be the copies of K_n in $G \Box K_n$ corresponding to the vertices u_1, u_2, \dots, u_m . Let $S = \{u_{t1}, u_{t2}, \dots, u_{tk}\}$ be a γ -set of G. Then the set $S' \subseteq V((G \Box H)^2)$ that contains a vertex of each copies $K_{t1}, K_{t2}, \dots, K_{tk}$ is a γ -set of $(G \Box K_n)^2$. Since |S'| = |S|, the result holds. **Theorem 11.** For every $n \ge 3$, $\gamma(C_n^2) = \left\lceil \frac{n}{5} \right\rceil$.

Proof. The graphs C_3^2 and C_4^2 are complete graphs, therefore $\gamma(C_3^2) = \gamma(C_4^2) = 1$. So the result holds for C_3^2 and C_4^2 . Let $C_n = u_1 u_2 \cdots u_n u_1$, $n \ge 5$. Since $\Delta(C_n^2) = 4$, by the Theorem 5 we have $\gamma(C_n^2) \ge \left\lceil \frac{n}{5} \right\rceil$. On the other hand by **Figure 1** the set $S = \left\{ u_{5k+1} : k = 0, 1, \cdots, \left\lceil \frac{n}{5} \right\rceil - 1 \right\}$ is a dominating set of size $\left\lceil \frac{n}{5} \right\rceil$ for C_n^2 . So $\gamma(C_n^2) \le \left\lceil \frac{n}{5} \right\rceil$, therefore $\gamma(C_n^2) = \left\lceil \frac{n}{5} \right\rceil$. **Theorem 12.** For every $n \ge 1$, $\gamma(P_n^2) = \left\lceil \frac{n}{5} \right\rceil$.

Proof. $\gamma(P_1^2) = \gamma(P_2^2) = \gamma(P_3^2) = \gamma(P_4^2) = 1$, and the result holds for these graphs. Let $P_n = u_1 u_2 \cdots u_n$, $n \ge 5$. Since $\Delta(P_n^2) = 4$, by Theorem 5 we have $\gamma(P_n^2) \ge \left\lceil \frac{n}{5} \right\rceil$. By Figure 2 the set:

$$S = \begin{cases} \left\{ u_{5k+3} : k = 0, 1, \dots, \left\lfloor \frac{n}{5} \right\rfloor - 1 \right\} & \text{if } n \equiv 0 \pmod{5} \\ \left\{ u_{5k+3} : k = 0, 1, \dots, \left\lfloor \frac{n}{5} \right\rfloor - 1 \right\} \cup \left\{ u_n \right\} & \text{if } n \equiv 1, 2, 3 \pmod{5} \\ \left\{ u_{5k+3} : k = 0, 1, \dots, \left\lfloor \frac{n}{5} \right\rfloor - 1 \right\} \cup \left\{ u_{n-1} \right\} & \text{if } n \equiv 4 \pmod{5} \end{cases}$$

is a dominating set of size $\left\lceil \frac{n}{5} \right\rceil$ for P_n^2 , so $\gamma \left(P_n^2 \right) \le \left\lceil \frac{n}{5} \right\rceil$; therefore $\gamma \left(P_n^2 \right) = \left\lceil \frac{n}{5} \right\rceil$.

Theorem 13. For every $m, n \ge 1$, $\gamma\left(\left(P_m \Box P_n\right)^2\right) \ge \left\lceil \frac{mn}{13} \right\rceil$, and for every $m, n \ge 3$, $\gamma\left(\left(C_m \Box C_n\right)^2\right) \ge \left\lceil \frac{mn}{13} \right\rceil$.

Proof. The graphs $P_m \Box P_n$ and $C_m \Box C_n$ have *mn* vertices and every vertex *u* dominates at least 13 vertices in $(P_m \Box P_n)^2$ and $(C_m \Box C_n)^2$ (Figure 3), so the result holds.

By Theorem 13, $\gamma((P_m \Box P_n)^2)$ or $\gamma((C_m \Box C_n)^2)$ equals the minimum number of diamonds like Figure 4. we can cover all the vertices of $P_m \Box P_n$ or $C_m \Box C_n$.

In this paper we use *short display* or *s.d* to show the graphs $P_m \Box P_n$ and $C_m \Box C_n$ for simplicity; it means that we don't draw the edges of these graphs and draw only their vertices.

Theorem 14. For every $k, t \ge 1$, $\gamma \left(\left(C_{13k} \Box C_{13l} \right)^2 \right) = 13kt$.

Proof. By Theorem 13 we have $\gamma \left(\left(C_{13} \Box C_{13} \right)^2 \right) \ge 13$. In **Figure 5** that is *s.d* of $C_{13} \Box C_{13}$. It is determined by a γ -set of size 13 for $\left(C_{13} \Box C_{13} \right)^2$. Therefore $\gamma \left(\left(C_{13} \Box C_{13} \right)^2 \right) \le 13$; hence $\gamma \left(\left(C_{13} \Box C_{13} \right)^2 \right) = 13$.

We can obtain *s.d* of $C_{13k} \Box C_{13t}$ with dominating set of size 13kt for $(C_{13k} \Box C_{13t})^2$ by locating *kt* copies of Figure 5 in *k* rows and *t* columns. Hence $\gamma ((C_{13k} \Box C_{13t})^2) \le 13kt$. By Theorem 13 we have

Figure 5. A dominating set of size 13 for $(C_{13} \Box C_{13})^2$.

 $\gamma\left(\left(C_{13k} \Box C_{13t}\right)^{2}\right) \ge 13kt \text{, so } \gamma\left(\left(C_{13k} \Box C_{13t}\right)^{2}\right) = 13kt$ Theorem 15. $\gamma\left(\left(C_{3} \Box C_{n}\right)^{2}\right) = \left\lceil \frac{n}{3} \right\rceil, \text{for every } n \ge 3.$

Proof. Since $C_3 = K_3$, by Theorem 10 and Corollary 6 we have

$$\gamma\left(\left(C_{3}\Box C_{n}\right)^{2}\right)=\gamma\left(\left(K_{3}\Box C_{n}\right)^{2}\right)=\gamma\left(C_{n}\right)=\left|\frac{n}{3}\right|$$

Theorem 16. $\gamma((C_4 \Box C_n)^2) = \left[\frac{4n}{13}\right], n = 4, 5, 6, 7, and$

$$\gamma \left(\left(C_4 \Box C_{6k+t} \right)^2 \right) \le \begin{cases} 2k & \text{if } t = 0, \\ 2k+1 & \text{if } t = 1, \\ 2(k+1) & \text{if } t = 2, 3, 4, 5 \end{cases}$$

Proof. By Theorem 13 we have $\gamma((C_4 \Box C_n)^2) \ge \left\lceil \frac{4n}{13} \right\rceil$. In Figure 6 it is determined by a dominating set of

size
$$\left\lceil \frac{4n}{13} \right\rceil$$
 for $(C_4 \Box C_n)^2$, $n = 4, 5, 6, 7$, so for these graphs we have $\gamma ((C_4 \Box C_n)^2) = \left\lceil \frac{4n}{13} \right\rceil$

In Figure 6, the seventh column of s.d of $C_4 \Box C_7$ (from left to right) is similar to the first column of s.d of $C_4 \Box P_1$, $C_4 \Box P_2$ and $C_4 \Box C_n$, n = 3, 4, 5, 6, 7. By setting s.d of k graphs $C_4 \Box C_7$ and one s.d of $C_4 \Box P_2$ or $C_4 \Box C_3$ or $C_4 \Box C_4$ or $C_4 \Box C_5$ consecutively from left to right such that the first column of every s.d of graph locates on the last column of s.d of the previous graph, we can obtain a s.d of $C_4 \Box C_{6k+t}$ with a dominating set of size 2(k+1) for $(C_4 \Box C_{6k+t})^2$, t = 2, 3, 4, 5. By the same setting for s.d of k graphs $C_4 \Box C_7$ we can obtain a s.d of $C_4 \Box C_{6k+1}$ with a dominating set of size 2k+1 for $(C_4 \Box C_{6k+1})^2$. Also by the same setting for s.d of k-1 graphs $C_4 \Box C_7$ and one s.d of $C_4 \Box C_6$ we can obtain a s.d of $C_4 \Box C_{6k}$ with a dominating set of size 2k for $(C_4 \Box C_{6k})^2$.

Theorem 17. $\gamma\left(\left(C_5 \Box C_n\right)^2\right) = \left\lceil \frac{5n}{13} \right\rceil, n = 3, 4, 6, \text{ and}$

$$\gamma \left(\left(C_5 \Box C_{6k+t} \right)^2 \right) \le \begin{cases} 3k & \text{if } t = 0, \\ 3k+1 & \text{if } t = 1, \\ 3k+2 & \text{if } t = 2, 3, 4, \\ 3(k+1) & \text{if } t = 5. \end{cases}$$

Proof. By Theorem 13 we have $\gamma((C_5 \Box C_n)^2) \ge \left\lceil \frac{5n}{13} \right\rceil$. In Figure 7 it is determined by a dominating set for

	C)				0				0	0	•	
	C)				0 0	C			0	0	0	
	•)				• ()			٠	0	0	
0						0 0				0	0	0	
s.d of $C_4 \Box P_1$				s.d of $C_4 \Box P_2$					s.d of $C_4 \Box C_3$				
0	0	C)	•		0	0	0	•	0	0	0	
0	0	C)	0		0	0	0	0	0	0	0	
•	0	C)	0		•	0	0	0	0	0	•	
0	0	C)	0		0	0	0	0	0	0	0	
	s.d of	$C_4 \square$	C_4		s.d of $C_4 \Box C_7$								
0	0	C	C	•	0		0	0	0	•	0	0	
0	0	C	C	0	0		0	0	0	0	0	0	
•	0	C)	0	0		•	0	0	0	0	0	
0	0	C)	0	0		0	0	0	0	0	0	
	s.d of $C_4 \Box C_5$ s.d of								d of ($C_4 \Box C_6$			
Figure 6. A dominating set for $(C_4 \Box C_n)^2$, $n = 1, 2, \dots, 7$.													
	0				0	•				0	0	•	
	0				0	0				0	0	0	
	•				•	0				•	0	0	
	0				0	0				0	0	0	
	0				0	0				0	0	0	
s.d of $C_5 \Box P_1$					s.d o	s.d of $C_5 \Box P_2$				s.d of $C_5 \Box C_3$			
	0	0	•	C)	0	0	0	٠	0	0	0	
	0	0	0	C)	0	0	0	0	0	0	0	
	•	0	0	C)	•	0	0	0	0	0	•	
	0	0	0	C	D	0	0	0	0	0	0	0	
	0	0	0	C)	0	0	0	•	0	0	0	
	s	.d of	$C_5 \square$	$\Box C_4$			s.d of $C_5 \Box C_7$						
0	0	0		•	0		0	0	0	•	0	0	
0	0	0		0	0		0	0	0	0	0	0	
٠	0	0		0	0		•	0	0	0	0	0	
0	0	0		0	0		0	0	0	0	0	0	
0	0	0		•	0		0	0	0	•	0	0	
s.d of $C_5 \Box C_5$								s.d of $C_5 \Box C_6$					
Figure 7. A dominating set for $(C_5 \Box C_n)^2$, $n = 1, 2, \dots, 7$.													
5'						01	(05	$-\mathcal{O}_n$, "	1,2	, ,′	•	

 $(C_5 \Box P_1)^2$, $(C_5 \Box P_2)^2$ and $(C_5 \Box C_n)^2$, n = 3, 4, 5, 6, 7. By Figure 7 we have $\gamma ((C_5 \Box C_n)^2) \le \left\lceil \frac{5n}{13} \right\rceil$, n = 3, 4, 6. So for these graphs equality holds.

In **Figure 7**, the seventh column of *s.d* of $C_5 \Box C_7$ (from left to right) is similar to the first column of *s.d* of $C_5 \Box P_1$, $C_5 \Box P_2$ and $C_5 \Box C_n$, n = 3, 4, 5, 6, 7. By setting *s.d* of *k* graphs $C_5 \Box C_7$ and one *s.d* of $C_5 \Box P_2$ or $C_5 \Box C_3$ or $C_5 \Box C_4$ consecutively from left to right such that the first column of every *s.d* of graph locates on the last column of the previous *s.d* of graph, we can obtain a *s.d* of $C_5 \Box C_{6k+t}$ with a dominating set of size 3k + 2 for $(C_5 \Box C_{6k+t})^2$, t = 2, 3, 4. By the same setting for *s.d* of *k* graphs $C_5 \Box C_7$ we can obtain a *s.d* of $C_5 \Box C_{6k+1}$ with a dominating set of size 3k + 1 for $(C_5 \Box C_{6k+1})^2$ and by the same setting for *s.d* of *k* graphs $C_5 \Box C_7$ and one *s.d* of $C_5 \Box C_5$ we can obtain a *s.d* of $C_5 \Box C_{6k+5})^2$. Also by the same setting for *s.d* of k - 1 graphs $C_5 \Box C_7$ and one *s.d* of $C_5 \Box C_6$ we can obtain a *s.d* of $C_5 \Box C_{6k+5})^2$.

References

- [1] West, D.B. (2001) Introduction to Graph Theory. 2nd Edition, Prentice-Hall, Upper Saddle River.
- [2] Haynes, T., Hedetniemi, S. and Slater, P.J. (1997) Fundamentals of Domination in Graphs. M. dekker, Inc., New York.
- [3] Ore, O. (1962) Theory of Graphs. American Mathematical Society Colloquium Publications, 38 (American Mathematical Society, Providence, RI).
- [4] Cockayne, E.J., Ko, C.W. and Shepherd, F.B. (1985) Inequalities Concerning Dominating Sets in Graphs. Technical Report DM-370-IR, Department of Mathematics, University of Victoria.
- [5] Walikar, H.B., Acharya, B.D. and Sampathkumar, E. (1979) Recent Developments in the Theory of Domination in Graphs. In MRI Lecture Notes in Math. Mehta Research Institute of Mathematics, Allahabad, Vol. 1.
- [6] Vizing, V.G. (1963) The Cartesian Product of Graphs. Vycisl. Sistemy, 9, 30-43.