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ABSTRACT

In [1], Hamzeh, Iranmanesh Hossein-Zadeh and M. V. Diudea recently introduced the generalized degree distance of graphs.
In this paper, we present explicit formulas for this new graph invariant of the Cartesian product, composition, join, dis-
junction and symmetric difference of graphs and introduce generalized and modified generalized degree distance poly-
nomials of graphs, such that their first derivatives at X =1 are respectively, equal to the generalized degree distance and
the modified generalized degree distance. These polynomials are related to Wiener-type invariant polynomial of graphs.
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1. Introduction

A graph invariant is any function on a graph that does not
depend on a labeling of its vertices. Topological indices
and graph invariants based on the distances between the
vertices of a graph are widely used in theoretical chemis-
try to establish relations between the structures and the
properties of molecules. Topological indices provide
correlations with physical, chemical and thermodynamic
parameters of chemical compounds [2]. In this paper, we
only consider simple and connected graphs. Let G be a
graph on n vertices and m edges. We denote the ver-
tex and the edge set of Gby V(G) and E(G), respec-
tively. As usual, the distance between the vertices u
and v of G, denoted by dg(u,v) (d(u,v) for short),
is defined as the length of a minimum path connecting
them. We let dg (V) be the degree of a vertex v in G.
The eccentricity, denoted by &(V), is defined as the
maximum distance from vertex Vv to any other vertex.
The diameter of a graph G, denoted by diam(G), is the
maximum eccentricity over all vertices in a graph G.

The Cartesian product GxH of graphs G and H is a
graph such that V(GxH)=V(G)xV(H), and any two
vertices (a,b) and (u,v) are adjacent in GxH if
and only if either a=u and b is adjacent to v, or
b=v and a is adjacent to u, see [3] for details. Let
G, and G, be two graphs with disjoint vertex sets V,
and V, and edge sets E and E,. The join G +G,
is the graph union G, UG, together with all the edges
joining V, and V,. The composition G[G,] is the
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graph with vertex set V,xV, and u=(u,V;) is adja-
centto V=(U,,V,) whenever (U, is adjacent with Uu,)
or (U =u, and Vv, is adjacent to V,), [3, p. 185]. The
disjunction Gv H of graphs G and H is the graph
with vertex set V(G)xV(H) and (u,V) is adjacent
to (Uy,,V,) whenever uu,eE(G) or vv,eE(H).
The symmetric difference G®H of two graphs G
and H is the graph with vertex set V(G)xV(H) and

E(G®H)={(u.u,)(v,%)|uV, € E(G)or
u,v, € E(H) but not both}

The first Zagreb index was originally defined as
M, (G)= de (u)’ [4]. The first Zagreb index can
©)

uev

be also expressed as a sum over edges of G,
M, (G)= 3 [ds(u)+ds(v)] We refer readers to [5]
)

ueE(G

for the proof of this fact and for more information on
Zagreb index. The first Zagreb coindex of a graph G is
defined in [6] as:

Ml (G) = W;E(:G)[de (u)+ ds (V)]

Let d(G,k) be the number of pairs of vertices of a
graph G that are at distance k, A be a real number,

and W, (G)=>_d(G,k)k", that is called the Wiener-
kel
type invariant of G associated to A, see [7,8] for de-

tails. Additively weighted Harary index is defined in [9]
as
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HA(G):

> d (uv)(de () +de (V)
{uvjeV(G)

Dobrynin and Kochetova in [10] and Gutman in [11]
introduced a new graph invariant with the name degree
distance that is defined as follows:

D(6)= ¥ d(uv)(ds(u)+ s (v).
{uviev(G)

In [12], the modified degree distance was defined as

follows:

s(6)=

> dg(uv)(dg(u)ds (V)
{uviev(c)

The generalized degree distance, denoted by H,(G),
is defined as follows in [1].

For every vertex X and real number A, H, (X) is
defined by H,(x)=D"(x)dg(X), where
D*(x)= > d*(x,y). We then define

yeV(G)

HA(G): Z Hz(x): Z DA(X)dG(X)

XeV(G) XeV(G)
= 2 dl(uav)(de (u)+ds (V))
{uvjieVv(G)

If A=0,then H,(G)=4m. When A=1, this new
topological index (H ., (G)) is equal to the degree dis-
tance (or Schultz index). There are many papers for
studying this topological index, for example see [13-16].
Also if A=-1, then H,(G)=H,(G). Therefore the
study of this new topological index is important and we
try to obtain some new results related to this topological
index. The modified generalized degree distance, de-
noted by H}(G), is defined in [1] as:

H;(G)= 3 o (uv)(ds (u)dg (V)
{u.vicev(G)

If A=1,then H}(G)=S(G).

We construct graph polynomials having the property
such that their first derivatives at X=1 are equal to the
generalized degree distance, the modified generalized
degree distance and Wiener-type invariant respectively.
These polynomials are defined as follows:

Ho(GX)= Y (dg(u)+dg(v))x" ™,

uyv(e)

and
W, (Gx)= > x¥),
{uviev(G)

The Wiener index of the Cartesian product of graphs
was studied in [17,18]. In [19], Klavzar, Rajapakse and
Gutman computed the Szeged index of the Cartesian
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product of graphs. In [9,20-24], exact formulae for the
hyper-Wiener, the first Zagreb index, the second Zagreb
index and Schultz polynomials of some graph operations
were computed.

Throughout this paper, C,,P,K, and S, denote
the cycle, path, complete graph and star on n vertices.
The complement of a graph G is a graph H on the
same vertices such that two vertices of H are adjacent
if and only if they are not adjacent in G. The graph H
is usually denoted by G. Our other notations are stan-
dard and taken mainly from [2,25,26].

In this paper we present explicit formulas for H, (G)
of graph operations containing the Cartesian product,
composition, join, disjunction and symmetric difference
of graphs and introduce generalized and modified gener-
alized degree distance polynomials of graphs, such that
their first derivatives at X=1 are respectively, equal to
the generalized degree distance and the modified gener-
alized degree distance. These polynomials are related
with Wiener-type invariant polynomial of graphs.

2. Main Results

The aim of this section is to compute the generalized
degree distance for five graph operations. We start with a
lemma which gives some information about the number
of vertices and edges of operations on two arbitrary
graphs. For a given graph G, the number of vertices
and edges will be denoted by n and m, respectively.

Lemma 2.1. [3,20] Let G and H be graphs. Then
we have:

a)

V(GxH)[ =V (GvH)=N(G[H])|=|V(G&H)
=V (G)v(H),

[E(GxH)|[=|E(G)|-V(H)|+V(G)|-|E(H).

[E(G+H)|=|E(G)|+|E(H)|+]V(G)]-V (H).

[E(GIH])|=[E(G) -V (H)f +[E(H) M (G).

[E(GVH)|[=[E(G)|-M(H)[ +[E(H)|-M(G)
~2[E(G)|-[E(H)

and

[E(GOH)|=|E(G)-NV(H) +|E(H)-M(G)]
~4[E(G)[E(H)]
b) The graph GxH is connected if and only if G

and H are connected.
) If (ac) and (b,d) are vertices of GxH , then

de.y ((a.¢),(b.d))=dg (ab)+d, (c.d).
d) The Cartesian product, join, composition, disjunc-
tion and symmetric difference of graphs are associative
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and all of them are commutative except the composition
of graphs.
e)
dG+H (U,V)
o,u=v
=:LueE(G)oruve E(H)or(ueV(G)veV(H)).’

2,otherwise

f)

ds(a,c),a=c
0

, a=c&b=d
dG[H]((a’b)’(C’d))z 1’ azc&bdeE(H)'

, a=c&bdeE(H)

N

g)
0,a=c&b=d
de. i ((ab).(c.d))=41l,ace E(G)orbd e E(H).
2,otherwise
h)
desy ((ab).(c.d))
0,a=c&b=d
=<l,ace E(G)or bd € E(H) but not both.

2,otherwise
i) dg.p((ab))=dg(a)+d, (b).
i) gy ((ab)) =V (H)|dg (2) +d,, (b).
. ds(a)+|V(H).aeVG
k) doun (a) {dH(a)+|\/(G),aeV(H)

D
e, (@) =V (H)]dg (a) +V (G|, (b)
-4, (2)d, (b).
m)
oons ((20)) =V (H)] e (2) +}V (6)]d (b)
20 (a)d, (b)

In Theorem 2.2, we give a formula for the generalized
degree distance of the join of two graphs.
Theorem 2.2. Let G, and G, be two graphs. Then

H,(G +G,)
=nn,(n+n)+4nm+4nm +M, (G )+M,(G,)
+24 (M, (G)+M,(G,))+2"" (n,m +nm,).

Proof. It is obvious from definition that for any
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u,veV (G +G,), the distance dg g (U.V) is either 1
or 2. In the formula for H,(G +G,), we partition the
set of pairs of vertices of G, +G, into three subsets
A,A and A .In A, we collect all pairs of vertices U
and v such that uisin G, and vis in G,. Hence, they
are adjacent in G, +G,. The set A,i=1,2 is the set of
pairs of vertices U and V which are in G, . Also we parti-
tion the sum in the formula of H,(G +G,) into three
sums § so that § isover A for i=0,1,2. For S
we obtain

S=2 2 (dGl(U)+dGZ(V)+nl+n2)

ueV(G) veV(Gy)
=nn, (N +n,)+2n,m+2nm,

and

S= > (dGI (u)+dg, (v)+2n2)dél+G2 (u,v)

{uviev(G)

= 2 (dc;1 (u)+dez (V)+2nz)

weE(G))

+ ) Zl(d‘31 (u)+dg, (v)+2n2)

weE(G))
=M, (G )+2n,m +2*M, (G )+2*"n,m.
Similarly,
S =M,(G,)+2nm, +2*M,(G,)+2*"'nm,.
Therefore
H,(G +G,)
-5+5+S,
=nn,(n +n,)+4n,m +4nm, +M,(G))+M,(G,)
+2°(M,(G)+M, (G,))+2"" (n,m +nm, ).
Corollary 2.3. Let G be a connected graph with n ver-
tices and medges. Then
H, (K, +G)=n(n+1)+4m+M, (G)
+2*M, (G)+2*"'m
The exact formulas H, (G) for the fan graph K; + P,
and for the wheel graph W, =K, +C, are given in the

following Corollary.
Corollary 2.4.

H, (K, +B,)=n,+9n-10+2%(n-2)(5n-9),

O

and
H, (K, +C,)=n,+9n+3x2*n(n-3).

Remark 2.5. In the above theorem, if A =1, then we
obtain D'(G +G,), which gives first derivatives for-
mula Theorem 3 in [22] at X=1.

In the next theorem we obtain the exact formula for
the generalized degree distance of the composition of
two graphs.

Theorem 2.6. Let G, and G, be two graphs. Then
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Hl(Gl [Gz]):4n'5mlnz+n1M1(G2)+2M2r_nznzm Proof. Suppose iul’m’uj and {Vl’”."vnz} are
— , two set of vertices of G, and G,, respectively. Then
2'nM, (G,)+mH, (G)+4n,mW, (G,) by Lemma 2.1 and definition of H,, we have:

H, (Gl G])= X dél[Gz](u,v)(dGl[Gz](u)+dGl[62](v))

{uviev(G[e,])

=5 Z Z de] [G2] ((uiﬂvk)’(ujﬂvl ))(ndq (U)+de, (V) +ndg (uj )+dG2 (v ))

2 (G (uy,

=3 3 6 (0 )y ) (20l () + o, () + i, (1))

p=1k,I=1

+§: i dcsl[c;2 ((ui’vk)’(uj’vl ))(nz(dq (u)+dg (uj))+dGz (Vi) +dg, (v ))

k=11, j=Li#]

N

N

5 Y 2 (2ndg (u,)+ g (v)+ e, (v))+NH, (G)+ 4nmW, (G)

p=1k,I=1,uM 2E(G,)
=4mmn, +nM, (G,)+2*?mnm +2*nM, (G,)+mH, (G )+4n,mW, (G)).
So the proof of theorem is now completed. O and
By composing paths and cycles with various small H, (Cn [Kz]) =9n+ S(Hz (C,)+W, (C, ))
graphs we can obtain classes of polymer-like graphs. Remark 2.8. In Theorem 2.6, if 4 =1, then we obtain

N ive the fi la of the H, index for the f . . L
grz\;VhW;g[l}\ée] anr:}?;lcaloose d te‘enc g cl:n (T? )or © fenee D'(G[G,]) . which gives first derivatives formula
nLo2 ni\gr Theorem 5 in [22] at X=1.

Corollary 2.7.
Y g KT =on—8+8(H. (P )+W. (P Now we prove the theorem that characterizes the gen-
2 ( [ 2 ]) =/N=0+ ( A ( n ) V% ( n ))’ eralized degree distance of the disjunction of two graphs.

n

Theorem 2.9.Let G, and G, be two graphs. Then
H, (G vG,)=8nnmm, +(n13 —4n1ml)M1(Gz)+(n23 —4n2mz)M1(Gl)+ M, (G )M, (G,)
+24 [(anmz +n’-2m, ) M, (G, )+(2n1rT1l +n’-2m ) M, (G, )]
-2'M, (G, )M, (G,)+2** (nmm, +n,m,m)
Proof. According to definition of G, v G, , we have the following relations:

s= > X (nszl(x)+n1dez(u)—dG1(x)dGz(u)+n2dG1(y)+n1dGz(v)—dGl(y)dGz(v))

{u.vieV(Gy ) weE(G,)

= Y3 (n(de, (u)+de, (v)+ s (do (¥)+ g, (%)=, (x)ds, (u) = (¥)ds, (v))

{xy}eV(G) weE(G;)
= nl3M1 (Gz)+4n1mzm1n2 _2n1mlM1 (Gz)»
S= > > (nsz1 (x)+ndg, (u)=dg (x)dg, (u)+ndg (y)+ndg (V)—dg (Y)dg, (v))

WG UV (Gy)

=M, (G)+4nmmn, -2n,mM, (G,),
S = %(:G) %(:G )(nzdel (X)+ndg, (u)—dg (X)dg, (u)+n,dg (y)+ndg, (V)—dg (V) dg, (V))

=2nmM, (G,)+2n,mM,(G)-M,(G)M,(G,),

and

Copyright © 2013 SciRes. OJDM
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S7 )MZ* (nqu (X)+nds, ()~ dg (x)d, (u)+nydg (¥)+ s (V)= dg (¥)dg, (V)
+21WE;G quZ;; (2”1de2 , —dg, (u))( ))
2 33 (on (0 de () (0, (u) 0, ()
=21[(2n2n5+n2_2”5) 1( ) (2n1ml+n —2m)M( )_Ml(Gl)ml(Gﬂ]‘FzMz(nlmlmz+nzmzml)~
So we have:
Hi(leGz)
=5 +S +5,-S =8nnmm, +(n —4nm )M, (G,)+(n —4n,m )M, (G )+ M, (G )M, (G,)
+21[(2n2mz+”22—2”B)M1(G1)+(2”1m+n12—2”1)M1(G2)} M, (G)M,(G,)+2"*(nmm, +n,mm).

This completes the proof. O

Now we prove the theorem that characterizes the generalized degree distance of the symmetric difference of two
graphs.

Theorem 2.10. Let G, and G, be two graphs. Then
H, (G ®G,)=8nnmm, +(n’-8nm )M, (G,)+(n,’ -8n,m )M, (G,)+4M, (G)M, (G,)
+2ﬂ[(2n2r712+n22—4mz)l\ﬁ1( )+ (2n1ml+n —4m) (G, )]
-2*M, (G, )M, (G, )+2*?* (nmm, + n,m,m )
Proof. We consider four sums S,---,S, as follows:

S= X > (nzde, (x)+ ndg, (U)_Zdel (X)de2 (u)+ n,dg (y)+n1de2 (V)_Zdel (y)dez (V))

(xyjV(e) weE(e,)

=n'M,(G,)+4nmmn, —4nmM, (G,),
similarly to S

=M, (G)+4nmmn, —4n,mM, (G,),
= Z(: Z ( (x)+n1dG2(u)—2dG](x)dGz(u)+n2dGI(y)+n1d62(v)—szl(y)dGz(v))
—2n1 ( 2)+2nzsz1(Gl)_2M1(G1)M1(Gz)’
and
5= W% Z) ’ (nQdGI ()41, (4)=20 (), ()N, (), (v)=20 (¥)dl, (V)

xyeE G )ueV(G,) (

+(n, —2dg, (u))(dg, (¥)+dg (Y)))
deze, mEsz ~2dg (x))(dg, (u)+dg, (v)))

:2’1[<2n2mz+n2—4mz) VI, (G )<2nlml+n1 4m)M( )—2M1(Q)M1(Gz)]
+242 (nmm, + n,mm).
By the definition of G, ®G, , we have:
Hﬁ(Gl®G2):Sl+%+S4—283:8nln2mlmz+(nl3—8nlml) (G)+ (n —8nmz) (G)+4M,(G)M, (G,)
+24[(2n,m, + 12 —4m, )M, (G,) +(2n M+ —4m )M, (G,)-2M, (G,) M, (G,) |
+242 (nmm, + n,mm).

So the proof is now completed. O

Copyright © 2013 SciRes. OJDM
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In the next theorem we find the generalized degree distance of the Cartesian product of two graphs.

Theorem 2.11. Let G, and G, be two graphs. Then

H, (G xG,)=1H, (G,)4mnW, (Gz)+2(/11j(H, (G )W, (G,)+W(G)H,,(G,))

+2(’21J( H, (G )W,

+mH, (G )+4mnW, (G)).

Proof. Suppose {ul"”’unl} and {Vl,m,vnz

2.1 and definition of H,, we have:

(G,)+W, (Gl)Hi_z(ez))+--.+z(

A

)N_l](Hi—l (G)W(G,)+W, (G )H,(G, ))

} are two set of vertices of G, and G, , respectively. Then by Lemma

H,(G xG,)= > dé|><Gz (U’V)(danGz (u)+dGIX62 (V))

{u ViV (G xG,)

== Z Z dGlez ((ui,vk),(uj,vl))(dGl (u)+d, () +dg (u;)+dg, (v ))
=_Z Z( (I’ 1)+d (vk,vl))l(dGl () +dg, (V) +dg (uj)+d62(vl))

:_Z i(iﬂ (u.u, d“(vk,vl)j(d (u)+dg, (vk)+dGl(uj)+dGz(v|))

1M, (@) amw, (62| (R (G W, (6) W(G K, (@)

+2(2J(H2 (Gl )lefz (Gz)+V\/2 (Gl ) H. (GZ ))

+---+2[/1_J(H“ (G)W(G,)+W, (G )H,(G,))+mH, (G )+4mnW, (G).

So the proof is now completed. O

As an application of the above theorem, we list ex-
plicit formulae for the generalized degree distance of
P xP,P xC_ and C,xC,. These graphs are known
as the rectangular grid, the C, nanotube, and the C,
nanotorus, respectively.

K
Lemma 2.12. Define a(k,r)=>i". By [1,23],
i=1
have:

W, (P,)=na(n-1,2)-a(n-1,4+1),

2
na[g—l,lj—i—[g) g, nis even
W, (C,)=

No (n—l /lj
2

H,(P)=-2a(n-3,4)+4na(n-3,1)

>

nis odd

~4a(n-3,2+1)+2(n-1)" +6(n-2)",

A+l
4na(ﬂ—1,}tj+(E] ,Nis even
2 2
4r10:(ﬂ—1 ﬂ]
2

Copyright © 2013 SciRes.

H, (Cn)=

,nis odd

Corollary 2.13. By Theorem 2.9 and Lemma 2.12 we
have:

H, (Cn ><Cm)
=n’H, (C,)+4n’W, (C,)+n’H, (C,)+4mW, (C,)

i CYCHUARRCATCN !
H,(R,xR,)

=n’H, (P,)+4n(n-1)W, (P,
+Am(m-1)W, (P,)

n

5[ B (B H. (R E))
and
H,(P,xC,)
=n’H,(C,)+4n(n-1)W, (C,,)
+m'H, (R,)+4m'W, (R,)

+zz( ]( (RO, (o) +H, (RIW(C)).

Remark 2.14. In the above theorem, if A =1, then we
obtain D'(G, xG,), which gives first derivatives for-

)+mH, (R)
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mula Theorem 1 in [22] at X=1.

Now we obtain the relation between the generalized
degree distance polynomial and Wiener-type invariant
polynomial and the relation between the modified gener-
alized degree distance polynomial and Wiener-type in-
variant polynomial for graphs.

Theorem 2.15. If G is a graph with n vertices and
m edges, then

H,(Gx)= Y (dg (u)+dg (v)—2)x"
u;tVeV(G)

+4m-2n+2W, (G, x).

Proof. By definition, we have

Hﬂ,(G,X): Z (dG(u)+dG(v))Xd’~(u,v)

{uviev(6)

= Y (do(u)+dg (v)—2)x"

uzveV(G)

+ > (dg(u)+dg(v)-2) x4 )

u=veV(G)

2 Y X&' (4)

{uvjev(G)
= 3 (d (u)d (v)-2)x"
u=veV(G)
+4m-2n+2W, (G, x).
This completes the proof. o

Theorem 2.16. If G is a graph with n vertices and
m edges, then

Hi(G.x)= Y (dg(u)=1)(dg (v)-1)x"

u=veV(G)

+M, (G)-4m+n+H, (G,x)-W, (G, x).

Proof. By definition, we have

H; (G, x)

_ Z (de (U)de (V))Xdl(u,v)

{uviev(G)

= Y (do(u)=1)(ds (v)-1)x" ™
uzveV(G)

£ 3 (do (u)=1)(dg (v)-1)x"
u=veV(G)

+ > (dG(u)+dG(v))xdl(”’V)— X&' ()
{uvjev(c) {uvjev(G)
= Y (do(u)=1)(ds (v)-1)x" ™
uzveV(G)

+ dg (u)—4m+n+H, (G,x)-W, (G,X)
(G)

ueVv

= 3 (dg(u)=1)(dg (v)-1)x*

u=veV(G)

+M,(G)-4m+n+H, (G,x)-W, (G,X).

Copyright © 2013 SciRes.

This completes the proof. o

[12]
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