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ABSTRACT 

In [1], Hamzeh, Iranmanesh Hossein-Zadeh and M. V. Diudea recently introduced the generalized degree distance of graphs. 
In this paper, we present explicit formulas for this new graph invariant of the Cartesian product, composition, join, dis- 
junction and symmetric difference of graphs and introduce generalized and modified generalized degree distance poly- 
nomials of graphs, such that their first derivatives at x = 1 are respectively, equal to the generalized degree distance and 
the modified generalized degree distance. These polynomials are related to Wiener-type invariant polynomial of graphs. 
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1. Introduction 

A graph invariant is any function on a graph that does not 
depend on a labeling of its vertices. Topological indices 
and graph invariants based on the distances between the 
vertices of a graph are widely used in theoretical chemis- 
try to establish relations between the structures and the 
properties of molecules. Topological indices provide 
correlations with physical, chemical and thermodynamic 
parameters of chemical compounds [2]. In this paper, we 
only consider simple and connected graphs. Let G be a 
graph on n vertices and  edges. We denote the ver- 
tex and the edge set of G by  and , respec- 
tively. As usual, the distance between the vertices  
and  of G, denoted by 

m
 V G  E G

u
v  ,d u vG  (  ,vd u  for short), 

is defined as the length of a minimum path connecting 
them. We let  Gd v  be the degree of a vertex  in G. 
The eccentricity, denoted by , is defined as the 
maximum distance from vertex  to any other vertex. 
The diameter of a graph G, denoted by 

v
v
v


 diam G , is the 
maximum eccentricity over all vertices in a graph G. 

The Cartesian product  of graphs G and H is a 
graph such that 

G H
     V G G V HH V  , and any two 

vertices  ,a b  and  ,u v  are adjacent in G H  if 
and only if either a  and b  is adjacent to , or 

 and  is adjacent to , see [3] for details. Let 

1  and 2  be two graphs with disjoint vertex sets  
and 2  and edge sets  and 2 . The join 1 2G G

u
u

1E



E

v
b v
G

V

a
G 1V

  
is the graph union 1 2  together with all the edges 
joining  and . The composition 

G 
2V

G

1V  1 2G G  is the 

graph with vertex set 1 2V V  and  is adja- 
cent to 

 1 1,u u v 
 2 2,v u v

u
 whenever ( 1  is adjacent with 2 ) 

or ( 1 2u
u u

  and  is adjacent to 2 ), [3, p. 185]. The 
disjunction  of graphs G  and 

1v
G H

v
H  is the graph 

with vertex set    V G  and   is adjacent 
to 

V H 1 1,u v
 2 2,u v  whenever  1 2  or u u E G  1 2 . 

The symmetric difference G  of two graphs  
and 

v v E H
GH

H  is the graph with vertex set    V G V


H  and 

     
 

2v

H 
1 1

not both

u v E G1 2 1

2 2

, ,u v

E

or

but

E G H 


 

G
u V G

u

u v

2

. 

The first Zagreb index was originally defined as  

 1M G d


  u  [4]. The first Zagreb index can  

be also expressed as a sum over edges of ,  G

    G  .
 uv E G

1 GM G d


 u d v    We refer readers to [5]  

for the proof of this fact and for more information on 
Zagreb index. The first Zagreb coindex of a graph G  is 
defined in [6] as: 

     .G G 
 E G

1
uv

M G d u d v


     

Let  ,k  
hat 

d G
G  t

be the number of pairs of vertices of a 
graph are at distance k ,   be a real number,  

and    ,W G d G k k
1k






  , th called the Wiener-  at is 

type invariant of G  associated to  , see [7,8
e

] for de- 
tails. Additively weighted Harary ind x is defined in [9] 
as *Corresponding author. 
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1

,

,A G
u v V G

.GH G d u v d u d



   v

Dobrynin and Kochetova in [10] and Gutman in [11] 
in

.

troduced a new graph invariant with the name degree 
distance that is defined as follows: 

    , G G   
   ,u v V G

D G d u v d   u d


 v

In [12], the modified degree distance was defined as 
follows: 

        
   ,

,G G G
u v V G

d u v d u d v



   .

The generalized degree distance, denoted by 

S G

 H G , 
is defined as follows in [1]. 

For every vertex x  and real number  ,  H x  is 
defined by      GH x D x d x

  , where 

 
 

 ,
 y V G

D x   efine d x y . We then d



   
 

   
 

      
   ,

, .

G
x V G x V G

G G
u v V G

H G H x D x d

d u v d u d v


 



 



 

 

 


 

x

If 0  , then   4 mH G  . When 1  , this new 
topolog index ical   H G  is 

ndex). T
equal to t egree dis-

tance (or Schultz i here are many papers for 
studying this topological index, for example see [13-16]. 
Also if 1

he d

   , then    .AH G H G   Therefore the 
study of w topolo portant and we 
try to obtain some new results related to this topological 
index. The modified generalized degree distance, de- 
noted by  

this ne gical index is im

H G
 , is defined in [1] as:  

  , G G    
   ,u v V G

.H G d


  d u v d u v

If 



1  , then    H G S G
  . 
ph polynomialWe struct gra s  con having the property 

such that their first derivatives at 1x   are equal to the 
generalized degree distance, the m fied generalized 
degree distance and Wiener-type invariant respectively. 
These polynomials are defined as follows: 

      ,H G x d u d v 

odi

,

and 

The Wiener index of the Cartesian product of graphs 
w
Gutman computed the Szeged index of the Cartesian 

omplete gra on rtices. 
Th

 

   

        

   

,

,

,

,

, ,

d u v
G G

u v V G

d u v
G G

u v V G

x

H G x d u d v x















 
 

   

   

,

,

, .d u v

u v V G

W G x x





   

as studied in [17,18]. In [19], Klavžar, Rajapakse and 

product of graphs. In [9,20-24], exact formulae for the 
hyper-Wiener, the first Zagreb index, the second Zagreb 
index and Schultz polynomials of some graph operations 
were computed. 

Throughout this paper, , ,n n nC P K  and nS  denote 
the cycle, path, c ph and star 

 G  is a 
n  ve

e complement of a graph graph H  on the 
same vertices such that two vertices of H  are adjacent 
if and only if they are not adjacent in G . The graph H  
is usually denoted by G . Our other no ons are stan- 
dard and taken mainly from [2,25,26]. 

In this paper we pres t explicit formulas for 

tati

en  H G  
of graph operations containing the Cartesian 
co

product, 
fferencemposition, join, disjunction and symmetric di  

of graphs and introduce generalized and modified gener- 
alized degree distance polynomials of graphs, such that 
their first derivatives at 1x   are respectively, equal to 
the generalized degree distance and the modified gener-
alized degree distance. e polynomials are related 
with Wiener-type invariant polynomial of graphs. 

2. Main Results 

Thes

tion is to compute the generalized 
ve graph operations. We start with a 

The aim of this sec
degree distance for fi
lemma which gives some information about the number 
of vertices and edges of operations on two arbitrary 
graphs. For a given graph iG , the number of vertices 
and edges will be denoted by in  and im , respectively. 

Lemma 2.1. [3,20] Let G and  H  be graphs. Then 
we have: 

a) 

        
   

         
         

          

         
   

2

2 2

,

,

,

,

2 ,

V GH V G H V G H V G H

V G V H

E G H E G V H V G E H

E G H E G E H V G V H

E G H E G V H E H V G

E G H E G V H E H V G

E G E H

    

 

    

    

   

    

 

 

and 

         
   

2 2

4 .

E G H E G V H E H V G

E G E H

    

 
 

G H  b) The graph is connected if and only if 
and 

G  
H  are connected. 

c) If  ,a c  an   ,b d  are vertices of G H , th  d en
       , ,a b d c d . 

tion and symmetric difference of graphs are associative 

, , ,G Gd a c b d d H H

d) The esian p t, join, composition, disjunc-  Cart roduc
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an

f) 

g) 

h) 

i) 

d all of them are commutative except the composition 
of graphs. 

e) 

 ,d u v

        
0,

1, or or .

2,otherwise

G

u v

uv E G uv E H u V G v V H




    



. 

H

      

 

 
 

, ,

0, &
, , , .

1, &

2, &

G

G H

d a c a c

a c b d
d a b c d

a c bd E H

a c bd E H




    
  

 

        
0, &

, , , 1, or .

2,otherwise
G H

a c b d

d a b c d ac E G bd E H

 
  



 

    

   

, , ,

0, &

1, or but not both.

2,otherwise

G Hd a b c d

a c b d

ac E G bd E H



 
  



 

      , .G H G Hd a b d a d b    

j)          , .G HG Hd a b V H d a b   d

k)  
   
     

,
.

,

G

G H

H

d a V H a VG
d a

d a V G a V H


   
 

 

l) 

          
   

,

.

G H G H

G H

d a b V H d a V G d

d a d b

  


 

b

m) 

          
   

,

2 .

G H G H

G H

d a b V H d a V G d

d a d b

  


 

b

In Theorem 2.2, we give a formula for the generalized 
degree distance of the join of two graphs. 

Theorem 2.2. Let 1G  and 2G  be two graphs. Then 

 
     

      

1 2H G G 

 1 2,u v V G G  , the distance  
1 2

,G Gd u v  is either 1  
ula for or 2. In the form  1 2H G G , we partition the  

set of pairs of vertices of  into three subsets  1 2G G
0 1,A A  and 2A . In 0A  we  pairs of vertices u 

acent i

 collect all
an
are adj

d v such that u is in 1G  and v is in 2G . Hence, they 

1 2Gn G  . The set is the set of 
hic

, 1, 2  iA i
h are in 

 
pairs of vertices u and v w iG . Also we parti- 
tion the sum in the formula of 1 2H G G  into three 
sums iS  so that iS  is over iA  for 0,1,2i  . For 0S  

ain 

   
we obt

 
  

 

1 2
1 2

0 1 2

1 2 1 2 2 12 2

G
u V G v V G

S d u d n

n n n n n m

 

  

  

 
 

and 
1 2 ,

G v

n m

n

      
   

    
 

    
 

   

1 1 1 2
1

1 2
1

1 2
1

1S  2
,

2

2

1
1 1 2 1 1 1 2 1

2 ,

2

2 2

2 2 2 .

G G G G
u v V G

G G
uv E G

G G
uv E G

d u d v n d u v

d u d v n

d u d v n

M G n m M G n m





 










 

  

  

   






 

Similarly, 

    1
2 1 2 1 2 1 2 12 2 2S M G n m M G n m      2.

Therefore 

 

     
      

1 2

0 1S S S  2

1 2 1 2 2 1 1 2 1 1 1

1
1 2 2 1 1 2

4 4

2 .

H G G

n n n n n m n m M G M G

M G n m n m



 





     

  

 □ 

Corollary 2.3. Let G be a connected graph with n ver- 
tices and m edges. Then 

2

1 12 M G

     
 

1 1

1
1

1 4

2 2

H K G n n m M G

M G m



 

    

 
. 

The exact formulas  H G  for the fan graph K1 + Pn 
and for the wheel graph 1n nW K C   are given in the 
following Corollary. 

Corollary 2.4. 

   1 2 9 10 2 2 5 9nH K P n n n n
          ,

and 

   1 2 3 .nH K C n n     

 the

9 3 2n n  

Remark 2.5. In  above theorem, if 1  , then we 
obtain  1 2D G G 

1 2 1 2 2 1 1 2 1 1 1 2

1
1 1 1 2 2 1 1 2

4 4

2 2 .

n n n n n m n m M G M G

M G M G n m n m 

     

   

 

Proof. It is obvious from definition that for any 

, which gives first vatives for- 
mula T 2] at 

 deri
heorem 3 in [2 1x  . 

In
the ge

 the next theorem we obtain the exact formula for 
neralized degree distance of the composition of 

two graphs. 
Theorem 2.6. Let  and be two graphs. Then 1G 2G  
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 11, , nu u  and  21, , nv v
, respectively. T

    

     

2
1 1 2 1 1 2 2 2 1

3
1 1 2

4 2

2

G G m m n n M G m

n M G H






  


 

2 2

2 1 2 2 14

H m n

n G n m W G  

Proof. Suppose  are 
two set of vertices hen
by Lemma 2.1 and de

of 1G  and 
finition of 

2G  
H , we

 
 have: 

             
    

               
  

             

                

1 2 1 2 1 2G Gd v
1 2,

1

u v G

1 2 1 21 2

1 2

1 2 21 2

1 1 2 21 2

1 2

, ,

2
1 , 1

2
, 1,

, , ,
2

, , , 2

, , ,

i k j l

G G G G
V G

i k j l G i G k G j G lG G
u v u v

n n

p k p l G p G k G lG G
p k l

i k j l G i G j G k G lG G
i j i j

u

d u v u v nd u d v nd u d v

d u v u v n d u d v d v

d u v u v n d u d u d v d v











 

 

   

  

   

 

 

      
 

   

 

,H G G d u v d 

     

2 1

1 2

1 2 2
2

, 1

3
2 2 1 2 2 1

1 , 1,

2 3
2 1 2 1 1 2 2 2 1 1 1 2 2 1 2 2 1

2 2 4

4 2 2 4 .

k l

n n

k l

n n

G p G k G l
p k l u v E G

n d u d v d v n H G n m W G

m m n n M G m n m n M G n H G n m W G


 

 
 



  



    

     

 

 

 

 
So the proof of theorem is now completed. □ 
By composing paths and cycles with various small 

graphs we can obtain classes of polymer-like graphs. 
ow we give the formula of the 

and 

       2 9 8n nH C K n H C W C     .n

Remark 2.8. In Theorem 2.6, if 1  , then we obtain 
 HN   index for the fence 

gr  1 2G
rem 5 in

D G
Theo

, which gives first tives formula 
 [22] at 

deriva
1x  . 

aph  2nP K  and the closed fence  2n

Corollary 2.7. 



C K . 

      2 9 8 8 ,n n nH P K n H P W P       
Now we prove the theorem that characterizes the gen- 

er nctio

et  and be two graphs. Then 

alized degree distance of the disju n of two graphs. 
 

Theorem 2.9. L 1G 2G  

             

       

     

3 3
2 2 2 1 1 1 1 1 24H 1 2 1 2 1 2 1 1 1 1 2

2
1 1 1 1 1 1 2

2
1 1 1 2 1 1 2 2 2 1

8 4

2 2

2 2

2
2 2 2 2 12 2 2

G G n n m m n n M G

G n m n m M G

M G M G n m m n m m



 

   

    

  

 

Proof. According to definition of , we have the following relations: 

m n n m M G M G M G  

n m n m M  

1 2G G

                
    

         
    

   

1 2 1 2 1 2 1 2
1 2

2 2 1 1 1 2 1 2
1 2

1 2 1 2 1
,

1 2
,

3
1 1 2 1 2 1 2 1 1 1 24 2 ,

G G G G G G G G
u v V G uv E G

G G G G G G G G
x y V G uv E G

S n d x n d u d x d u n d y n d v d y d v

u x d u d y d v

n M G n m m n n m M G

 

 

     



  

 

        n d d v n d y d x d     

                
    

   

1 2 1 2 1 2 1 2
1 2

2 2 1 2 1
,

3
2 1 1 1 2 1 2 2 2 1 14 2 ,

G G G G G G G G
xy E G u v V G

S n d x n d u d x d u n d y n d v d y d v

n M G n m m n n m M G

 

     

  

 
 

                
  

       

1 2 1 2 1 2 1 2
1 1

3 2 1 2 1

1 1 1 2 2 2 1 1 1 1 1 22 2 ,

G G G G G G G G
xy E G uv E G

S n d x n d u d x d u n d y n d v d y

n m M G n m M G M G M G

 

     

  

 

 

d v

and 
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1 2 1 2 1 2 1 2
1 2

2 2 1 1
1 2

1 1 2 2
1 2

4 2 1 2 1
, ,

1 2

2 1

2 2
2 2 2 2 1 1 1 1 1 1 1 2 1 1 1 2

2

2 2

2 2

2 2 2 2 2

G G G G G G G G
xy E G x y uv E G u v

G G G G
xy E G u V G

G G G G
x V G uv E G

S n d x n d u d x d u n d y n d v d y d v

n d u n d u d x d y

n d x n d x d u d v

n m n m M G n m n m M G M G M G









   

 

 

     

   

   

      

 

 

 

 2
1 1 2 2 2 12 .n m m n m m   

 

So we have: 

 
           

             

1 2

3 3
1 2 4 3 1 2 1 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2

2 2 2
2 2 2 1 1 1 1 1 1 1 2 1 1 1 2 1 1 2 2 2 1

8 4 4

2 2 2 2 2 .

H G G

S S S S n n m m n n m M G n n m M G M G M G

n m M G n m n m M G M G M G n m m n m m



 



         

       

 

This completes the proof. □ 
Now we prove the theorem that characterizes the generalized degree distance of the symmetric difference of o 

graphs. 
Theorem 2.10. Let G1 and G2 be two graphs. Then 

22 2n m  

 tw

            

       
     

3 3
1 2 1 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2

2
1 1 2 2 2 1

8 4n n m m n n m M G n n m M G M G M G

n m m n m m

    



Proof. We consider four sums  as follows: 

1 2 8 8H G G  

2 2
2 2 2 2 1 1 1 1 1 1 1 22 2 4 2 4n m n m M G n m n m M G          

1 1 1 22 2M G M G  

1 4, ,S S

                
    

   

1 2 1 2 1 2 1 2
1 2

1 2 1 2 1
,

3
1 1 2 1 2 1 2 1 1 1 2

2 2

4 4 ,

G G G G G G G G
x y V G uv E G

S n d x n d u d x d u n d y n d v d y d v

n M G n m m n n m M G

 

     

  

 
 

similarly to 1S  

   
                

  

       

1 2 1 2 1 2 1 2
1 2

3
2 2 1 1 1 2 1 2 2 2 1 1

3 2 1 2 1

1 1 1 2 2 2 1 1 1 1 1 2

4 4 ,

2 2

2 2 2 ,

G G G G G G G G
xy E G uv E G

S n M G n m m n n m M G

S n d x n d u d x d u n d y n d v d y d v

n m M G n m M G M G M G

 

  

     

  

 

 
and 

                
  

          
  

          
  

         

1 2 1 2 1 2 1 2
1 2

2 2 1 1
1 2

1 1 2 2
1 2

4 2 1 2 1
, ,

1 2

2 1

2 2
2 2 2 2 1 1 1 1 1 1 1 2 1 1

2 2 2

2 2 2

2 2 2

2 2 4 2 4 2

G G G G G G G G
xy E G x y uv E G u v

G G G G
xy E G u V G

G G G G
x V G uv E G

S n d x n d u d x d u n d y n d v d y d v

n d u n d u d x d y

n d x n d x d u d v

n m n m M G n m n m M G M G









   

 

 

     

   

   

      

 

 

 

 
 

1 2

2
1 1 2 2 2 12 .

M G

n m m n m m

 
 

 

 

By the definition of , we have: 1 2G G

             

           
 

3 3
1 2 1 2 4 3 1 2 1 2 1 1 1 1 2 2 2 2 1 1 1 1 1 2

2 2
2 2 2 2 1 1 1 1 1 1 1 2 1 1 1 2

2
1 1

H

2 2 2 12

2 8 8 8 4

2 2 4 2 4 2

.

G G S S S S n n m m n n m M G n n m M G M G M G

n m n m M G n m n m M G M G M G

n m m





          

          

So the proof is now completed. □ 

n m m 
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In the next theorem we find the generalized degree distance of the Cartesian product of two graphs. 
Theorem 2.11. Let  and be two graphs. Then 1G 2G  

              

    



2
1 2 1 2 1 1 2 1 1 1 2 1 1 2

1 1 1 2

2 1 2 2 1

4 2
1

H G G n H G m n W G H G W G W G H G

G H G

G n

    

 





 
 

    
 

 
  2 H G W

 
          2 1 2 2 2 1 2 2 1 1 22

  2 4 .n H m W G 

2

Proof. Suppose  and are two set of vertices of  and , respectively. Then by Lemma 
2.1 and definition of 

1
G W G H G H G W G W               



 11, , nu u  21, , nv v  1G 2G
H , we have: 

        
   

             
 

             

   

1 2 1 2 1 2
1 2

1 2 1 2 1 2

1 2 1 2 1 2

1 2 1

1 2
,

, 1 , 1

0

,

1
, , ,

2

, ,
2

1
, ,

2

G G G G G G
u v V G G

G G i k j l G i G k G j G l
u

G i j G k l G i G k G j G l
k l i j

r r
r G i j G k l G

r

H G G d u v d u d v

d u v u v d u d v d u d v

d u u d v v d u d v d u d v

d u u d v v d u









  
 



 





  

   

   

   
 



 

         

            

        

            

2 1

2 1 2
, 1 , 1

2
1 2 1 1 2 1 1 1 2 1 1 2

2 1 2 2 2 1 2 2

2
1 1 2 1 1 1 2 2 1 2 2 1

4 2
1

2
2

2 4 .
1

n n

i G k G j G l
k l i j

d v d u d v

n H G m n W G H G W G W G H G

H G W G W G H G

2 1

, ,

1

i k j lv u v

n n 
  

H G W G W G H G n H G m n W G

   

 

   








 

 

 

 

  

 
    

 
 

  
 

 
      

 



 

 
So the proof is now completed. □ 
As an application of the above theorem, we list ex- 

plicit formulae for the generalized degree distance of 
 and  These graphs are known 
lar grid, nanotube, and the 
ctive

,n m n mP P P C 
as the rectangu
anotorus, respe

n mC C .
the 

ly. 
4C  4C  

n

Lemma 2.12. Define 
1i

i


. By [1,23], we  

have: 

   

 ,k r 
k

r

 

 

     
    

 


1

1, 1, 1 ,nW P n n n

n n



1, is even
2 2

,
,

2

1
, , is odd

2

2 3, 4 3,

4 3, 1 2 1 6 2 ,

4 1, , is even
2 2

1
4 , , is odd

2

n

n

n

n
n n

n
n n

H P n n n

n n n

n n
n n

H C
n

n n







W C

 







 

   

 

 

 



   
  

 
   

    

      

         
    

 
 
 

.





 

Corollary 2.13. By Theorem 2.9 and Lemma 2.12 we 
have: 
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Remark 2.14. In the above theorem, if 1  , then we 
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This completes the proof. □ 
Theorem 2.16. If G  is a graph with n  vertices and 
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This completes the proof. □ 
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