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Abstract 
In biological systems, self-time differs from the physical time scale. Biological 
self-time is the characteristic of individual biosystems and invariantly de-
scribes the various dynamic processes in organisms. This biological inva-
riance is introduced by using 2 basic theorems: Allometric scaling and the 
Weibull psychometric function. Our objective was to precisely describe the 
timing phenomenon in biosystems and provide a framework to further de-
velop this analogy for other fields. 
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1. Introduction 

The lifetime of biological objects is measured by their dynamical development. 
Studies have a surprising universality by the self-organizing [1] [2] and conse-
quently, self-similarity. A further consequence of this self-managed process is 
the spatiotemporal fractal structure [3] [4], and the bioscaling behavior, [5]. 
These ideas are forming the similarities of the species [6], which directly leads to 
an expected lifetime universality of well-selected cohorts. Heart rates are well 
scaled by the 1 4α =  power-law by the body-mass in mammals [7] from the 
smallest to the largest. The allometry is generally applicable description from 
respiratory complexes, through the mitochondria, to the largest mass animals 
[8]. The heartbeat and the metabolic rate have the same mass-scaling depen-
dence. The statistical value of the heart-beat in their lifetime does not change by 
the life-expectancy or by the mass of the organism and pretty stable for mam-
mals around ( ) 8

/ 7.3 5.6 10hb ltn ≈ ± ×  heartbeat/lifetime [9] which supports the 
unified delivery of the nutrition, but many other factors could modify this pic-
ture. Based on the universality, it is estimated, that all biological species have the 
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same basal oxygen consumption, ≈ 10−8 oxygen molecules per heartbeat [10]; 
this measurement defines the actual self-time. In consequence, the full lifetime 
( ltT ) is also scaled by the 1 4α =  power-law, using the heartbeat ( hf ) [9]: 

1 4
/lt hb lt hT n f M= ∝                         (1) 

Self-time can be introduced on a thermodynamic optimizing basis when en-
tropy production is constant over time [11]. Self-time is connected to allometry 
[12], and it scales with the allometric factor α. This power rule is strongly sup-
ported by various physiological times [13]. In a broader context, the intrinsic 
time could be explained similarly to the special relativity; time is not indepen-
dent of space (only the space-time is invariant), and in biosystems, time is an in-
tegrative parameter of complex conditions [14]. 

Our objective is to study the self-time of biological objects in comparison to 
the coordinate time (clock time) measured by the observervations outside the 
studied bio-system, to develop an analogy for brittle materials by introducing the 
Weibull function (cumulative form of two-parametric Weibull distribution) for 
survival times. We transform time-scales and show the accuracy of the fit of 
Weibull based calculation to standard allometric scaling. 

2. Weibull Statistics of Brittle Materials 

The generalized cumulative Weibull distribution [15] is: 

( )
0

exp ,
n

xW x
x

  
 = −    

                        (2) 

where n is the shape factor, or form parameter, and x0 is the scale parameter. 
This function is widely used in physiology and psychometry [16]. 

Weibull’s statistics was originally developed to describe the fracture of brittle 
materials [15], and it provides the probability of a damage-free survival of a giv-
en material. The Weibull investigated brittle materials, such as ceramics, to de-
scribe the probability of breaks due to mechanical stress [15] [17]. Using the no-
tation from [18], the “survival” of the material’s integrity (PS) and the survival 
rate probability define the percentage of sample breaks when multiple probes are 
tested. When processing the statistical data, the cumulative probability of sur-
vival at a homogeneous σ stress on a sample with V volume is: 

( )
0 0

, exp ,
n

S
VP V
V

σσ
σ

  
 = −     

                   (3) 

where V0 is the reference volume, σ0 is the reference stress, and n is the Weibull’s 
form factor of the function. When experimenting with N samples, NPS pieces of 
this count will not fail even under the maximum stress of σ. The reference stress 
and volume should be introduced into the exponent for dimensional reasons. 
When we have a sample where V = V0 and σ = σ0, and these are both indepen-
dent from the form factor n, by solving the Equation (3) we obtain: 
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0 0
0

0 0

exp 0.3678.
n

S
V

P
V

σ
σ

  
 = − ≅    

                   (4) 

Therefore, the survival probability of such a sample is 36.78%. 
The above Weibull function (3) can be rewritten by using the familiar 

2-parametric shape: 

( )
1

1 0

0 0

, exp .
nn

n
S

V
P V V

x
σσ

σ

   
 = −       

                 (5) 

The relationship between the individual scale parameter characteristics can be 
readily associated with the Weibull statistics (2) used in the strength theory: 

1 1
0 0 0and .n nx V x Vσ σ= =                      (6) 

It is possible to determine the survival probability of the same stress and vo-
lume relationship, i.e., the scaling law from the Weibull distribution in (3), when 
we have the same survival probability: 

1 ,n

const
V

σ =                             (7) 

which means a smaller sample is stronger and stabler than a larger one. 
The Weibull function is based on 2 primary properties: volume dependence 

and self-similarity. To formulate the above equations in another way, imagine, 
that a sample is composed of 2 parts (Figure 1), and we want to express the like-
lihood of failure of the complete, complex system using the failure probability 
for each individual part. 

By applying the Weibull Function (3) to the scenario shown in Figure 1, the 
likelihood of σ stress failure of the V1 + V2 sample volume is: 

( ) ( ) ( )1 2
1 2

0 0

, exp , , .
n

S S S
V VP V P V P V

V
σσ σ σ
σ

  + = − =    
       (8) 

From (7), sample failure occurs at the weakest location (the structural fault 
location). In the Weibull theory, the structural failure probability is proportional 
to the sample volume. The effect of the form factor is shown in Figure 2. 

Step-function occurs at large form factors. In other words, if σ ≤ σ0, each sam-
ple component survives, however, when σ > σ0, the entire sample fails. Materials 
composed of links with equal strength, that is, homogeneous chains like metals, 
show such behavior. 

3. Links to Survival Characteristics of Patients 

A recent study attempted to describe the connection between fractal geometry 
and the circulatory system with Weibull’s survival function by using the age of 
the patient and body weight as its parameters [18]. Specifically, this study ex-
amined the link between brittle material fracture survival and cancer patient 
survival [18]. This allometric approach links geometric and life parameters  
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Figure 1. Two-part system for Weibull analysis. 

 

 
Figure 2. Form factor impact on the probability of survival. 

 
(ontogenetic growth [19]), to survival probability described by the cumulative 
Weibull parametric distribution function [15]. The resulting function was used 
to assess the cancer patients’ survival statistics. Since this approach utilized body 
mass, it did not examine the links between other patient details, including cancer 
type, vascularization or tumor size, on fractal geometry and actual survival sta-
tistics. Individuals are exposed to a variety of complex stresses—environmental, 
nutritional, physical, lifestyle-related and spiritual—that are not equivalent to 
the mechanical strength of inanimate material. There is no doubt, however, that 
in a cohort of healthy individuals with similar life stresses, the best single para-
meter may be their collected experiences. 

The above assumption is not far from strength theory, where repetitive stress 
would likely be the best parameter to statistically investigate and characterize 
failure. This characterization is called the fatigue test. When each stress cycle 
takes a nearly identical course, the measurement can be reduced to a single pa-
rameter, and the load is characterized by the spending time. Statistical functions 
can describe both inanimate objects and organisms; although living organisms 
are far more complex than objects described with mechanical rheology. Indeed, 
we found many similarities between machine parts and the organs of a living 
body by using lifespan approximations with the Weibull function [15]. For ex-
ample, one can compare machine part wear with the wear that results from me-
chanical friction and stress at joints. Both processes cause damage to the mate-
rials and influence lifespan. Additionally, heart diseases may be caused by in-
creased electrical conductivity in specific heart regions that alters the initial sinus 
node electrical signal propagation and thus modifies heart function. Similarly, 
parts of a printed circuit board unit located in a wet and/or dusty environment 
would likely stop functioning appropriately. The actual size of the malfunction-
ing areas does not matter (as long as they are small), but over time the collective 
malfunctioning could cause failure, or disease in a biological system. 
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Malignant tumors are the result of altered biological activity in an organ. Tu-
mor dynamism overloads normal systemic functions by their aggressive de-
mands for nutrients and thus alters organ function. Hence, in addition to the 
tumor’s metastasis, there are 3 direct reasons why organ failure may occur due 
to this malignant process: 
 the cancerous metabolism overwhelms normal physiological consumption; 
 tumor metabolism becomes comparable to the host organ metabolism; 
 the geometric scale of the tumor makes normal organ function impossible. 

Consequently, tumor size influences the individual’s lifespan. Tumor volume 
is related to the structural failure probability. This parameter is constant over 
time for healthy individuals; however, the tumor size is time dependent. There-
fore, there is a qualitative difference between the volumetric parameters of the 
Weibull law and the so-called “faulty volume” of the disease. Naturally, the 
growing cancerous tumor reduces survival probability. The increased, faulty tis-
sue volume increases the probability of structural incompatibility problems and 
stress caused by the growing tumor increases the probability of failure. Thus, the 
analogy between mechanical failure and survival is as follows: 
 mechanical stress, σ, is analogous to survival time t (or observation time 

during treatment); 
 the reference stress, σ0, is analogous to the scale parameter t0 (the reference 

time in the therapy, when the survival probability is 36.8%); 
 the volume, V, is analogous to the actual size (volume) or the actual meta-

bolic activity (energy consumption rate) of the tumor, G(t). This function is 
additive and could be the volume or the metabolic rate. Both parameters are 
additive in the destructive process; 

 the reference volume, V0, is analogous with the reference size (volume) or the 
reference metabolic activity (energy consumption rate) of the tumor (G0). 

Hence, the Weibull law (as in (3) and (2)), which corresponds to survival by 
time (t) distribution is: 

( )
0

exp ;
n

tW t
t

  
 = −    

                       (9) 

alternatively, when considered in the context of an administered therapy, it is 
analogous with (3): 

( ) ( )
0 0

exp .
n

S

G t tP t
G t

  
 = −     

                   (10) 

4. Metabolic Considerations 

As discussed above, tumor size could be geometric (volume) or metabolic 
(energy consumption). Extra energy demands are due to the high proliferative 
and metabolic processes of cancer cells. Indeed, tumor energy consumption may 
be several times higher than the metabolism of healthy cells, and energy is sup-
plied by intensive glucose production from non-oxidative glycolysis [20]. 
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The size of the host organism and its net metabolic rate (basal metabolic rate, 
R0) can be expressed by the actual body mass (m) of the healthy adult individual, 
as introduced by the allometric considerations (allometric law [21]): 

0 .R mα∝                            (11) 

In case of satisfactory nourishment, 0 3 4α α= =  [22]. If one considers adult 
individuals, who would exhibit a stable mass (M), the mass-specific basal meta-
bolic rate function would be: 

10 .
R

M
M

α −∝                          (12) 

These allometric considerations could be applied for organs, where M is the 
final, stable organ mass, and R0 is the organ’s basal metabolic rate. 

Tumor growth satisfies the allometric metabolic rule; that exhibits universal 
growth dynamics [23] [24]. The approximate change in the number of tumor 
cells (nc) depends on production (proliferation, P) and cell death (annihilation, 
A); A is proportional to nc as shown below: 

d
and ,

d
c

c
n

P A A n
t

λ= − =                    (13) 

where λ−1 = T is the average life of the cell. 
Energy balance has 3 components: energy to support current cells (the meta-

bolic rate of a single cell, Rc), energy to produce new cells (Ec) and external work 
(We) on the system. All of these factors originate from the energy flux of blood 
flow (I) through capillary terminals: 

d
.

d
c

c c c e c c c c e
n

I R n PE W R n n E W
t

λ = + + = + + + 
 

          (14) 

Due to allometric considerations [8] [19]: 

0 0and ,c e cI R n W C nα α= =                     (15) 

where α ≤ 1 [25] [26]. Substitute these terms into (14): 

( ) ( )0 0
d

.
d

c
c c c c c

n
E R C n n R E

t
α λ= − − +                (16) 

Multiply by the mass of an individual cell (mc): 

d
d
m am bm
t

α= −                        (17) 

( ) ( )1
0 0 , .c c

c c

R C m R
a b

E E

α

λ
−−

= = +  

Due to energy flux changes by the α power of the mass during metabolism to 
maintain homeostasis, (dm/dt) is positive, and thus the maximum mass (M) is 
limited and can be expressed by the mass of a cell (mc): 

( ) ( ) ( )
11

1 11 00 c

C C

R maaM bM M
b R E

α ααα

λ

− −−   − = → = =     +   
         (18) 
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When substituting b from (18) into (17), we get the Verhulst-Pearl differential 
equation [27], similar to the results of [18]: 

( )1d 1 .
d
m mam
t M

α
α

−  = −     
                     (19) 

The solution of this differential equation describes a sigmoid curve: 
1

1 e ,m
M

α
τ

−
−  = − 

 
                        (20) 

where 

( )
( )

( )1
0

1

1
ln 1 ;

a t m
MM

α

α

α
τ

−

−

 −   = − −     
                  (21) 

moreover, m0 is the initial (birth) mass. 
The ratio of energy flux for stationery stabilization and metabolism is: 

( ) 1

0

.c c c

c

n R mR br t m
I am R m

α
α

−= = =                    (22) 

Using (18) and (20), the relative metabolic rate for maintaining stationary 
equilibrium is: 

( )
1

1 e ;m
mr t
M

α
τ

−
− = = − 

 
                     (23) 

moreover, the universal energy-function used for growth is: 

( ) ( )1 e .mR t r t τ−= − =                       (24) 

r(t) and R(t) are the same functions of τ for all organs with m mass; the 
time-scale τ may be regarded as a biological self-time. τ is invariant for the organ 
or organism; it is a time scale that is determined wholly by the biological system 
and not by any outside processes. The existence of physiologic time, which is 
different from clock time, was previously hypothesized [28]. 

Equation (20) is a universal function, and so the above considerations are well 
suited to living organisms [8] [19] and tumor growth [23] [24], when self-time is 
defined as above. Maximum mass growth occurs at the inflection point, where: 

2

2

d 0.
d

m
t

=                           (25) 

Here, mass and growth rate are: 
43  ;

4 3
Mm M = ≅ 

 
                      (26) 

2 3 2 3d 27 0.1 ,
d 256
m a M aM
t
= ≅  

when 0 3 4α α= = . Thus, relative metabolic rate (rm) and the part of metabol-
ism related to growth ( 1m mR r= − ) are: 

3 1and .
4 4m mr R= =                       (27) 
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Several investigations have estimated that 2/3 ≤ α ≤ 1 depends on the fractal 
geometry of the nutrient supply of the tumor [25]. In the case of volumetric 
supply, α ≈ 1, while for surface supply, α ≈ 2/3 [29]. Consequently, it is necessary 
to examine the possibility of the above analogies with strength theory in the 
self-time (biological time) scale, τ (observation of biological self-time during 
therapy). 

5. The Relationship between the Variants of Time Scales 

Identical tumor size (G(τ) = G0) and biological self-time (τ = τ0) could differ 
from the physical time (t) periods, and the survival probability (PS) in this situa-
tion would be approximately 36.8%. However, the connection between the 
two-time scales, according to (20), is: 

( )

( )

( )11
0ln 1 .

1
mMt

a M

αα

τ
α

−−      = + −   −     
                (28) 

The difference depends on the metabolic rate per unit volume, the initial size 
of the tumor and actual vascularization. Generally, scaling biological self-time 
shows the same survival probability of lifespan from (10) to any actual probabil-
ity:  

( )
0 0

.
nG

const
G
τ τ

τ
 

≅ 
 

                       (29) 

Hence, 

( )
0

1

0

.
n

const
G

G

τ
τ

τ
≅

 
 
 

                       (30) 

Thus, survival time decreases as tumor size increases. The higher the value of 
m, the more it reduces the dependency rate. The physical timescale using (30) is: 

( )

( ) ( )

( )11
0 0

1

0

ln 1 .
1

n

mMt const
a MG

G

αα τ
α τ

−−

 
 
     ≅ + −   −          

          (31) 

If we substitute (18) into (31) we get: 

( ) ( )

( )1
0 0

1

0

1 ln 1 .
1

n

m
t const

b MG
G

ατ
α τ

−

 
 
     ≅ + −   −          

          (32) 

Consequently, if the enlarged initial mass decreases, the surface supply in-
creases the physical lifetime. It is also clear from (32) that individuals with high-
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er G(τ) would exhibit a reduced survival, especially when n is relatively small. 

6. The Scaling Law and the Physical Timescale 

From above, the Weibull law is applicable to biological self-time and also corre-
lates with physical time. Lifespans connected to the same survival probability 
have a dependence as shown in (10) and similarly to (29): 

( )
0 0

,
nG t const

G t
τ  

≅ 
 

                        (33) 

from which we conclude, that survival time decreases as tumor size increases: 

( )
0

1

0

.
n

t
t const

G t
G

≅
 
 
 

                        (34) 

The greater the value of n, the more independent t is of G. 
We know from [19] that the metabolic flux is: 

,cmαΦ =                             (35) 

where c is a constant with a peculiar dimension, that is, the nutrient flux per unit 
weight of the system. This is not a good measure since it is not additive. The ad-
ditive rate is: 

( ) ( ) ( ) ( )
1 1 1 1

: and : ;G t c m t G c mα α α ατ τ= Φ = = Φ =           (36) 

alternatively, any of its homogeneous linear function. 
From a mathematical point of view, 2 cases will produce a biparametric Wei-

bull function: 

( ) ( )or .?G const K G δτ τ τ≅ = ≅                 (37) 

The G(τ) ≈ const case occurs when the tumor has almost reached its final size. 
This scenario may occur if tumor vascularization cannot sufficiently supply the 
required nutritional demand and/or due to interventional therapy. However, 
here α ≈ 1, denoting conformity with surrounding surface supply. This case is 
termed as a stagnant cancer. The second case is equivalent to the long physical 
time related to short biological time. This phenomenon could occur with a large 
M (matured tumor mass) or when the tumor supply is volumetric. τ could be m0 
≈ 1 and α ≈ 1; hence, the observed real-time survival would be accompanied 
with a very short biological self-time. This case represents a rapidly growing tu-
mor. 

When τ is small, the Equation (20) is well approximated by the linear function 
1 e τ τ−− ≅ . Comparing this biological self-time scale set to the allometric law, 
the rate of weight is: 

( ) ( )
1

1 11
1 .mG m M M

M

α α
ατ τ τ

− −
−

  = = ≅     
             (38) 
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Substituting (37) for the Weibull function using the analogy of biological 
self-time, we get: 

1
0 0

0
0

exp exp

q

q

S n q q
n q

MP
M M

M

τ τ
τ

τ

  
         = − = −                    

        (39) 

1 ,
1

q n
α

= +
−

 

where the selected reference is the metabolic flux of the tumor with the power α, 
and M0 corresponds to the healthy reference G0. If the tumor is near to the en-
tirely surface-determined supply (α ≈ 1), the exponent will be large, the pheno-
menon will become digital (1 or 0, e.g., all or none) and the deviation of survival 
times will be low. The scaling law in this case would be: 

1

1 0
0 .

qM
const

M
ατ τ −  ≅ ⋅  
 

                    (40) 

This equation again shows that in the case of tumor surface feeding, survival 
time becomes independent of the parameters. 

When the first condition of (37) is valid, then: 
1

0
0 .

nM
const

M
τ τ  ≅ ⋅  

 
                      (41) 

When the second condition of (37) is valid (metabolic rate is high), then: 

( ) ( )
1

1 1 11
1 1 1 .mG a m a M a M

M

α α
α α α ατ τ τ

− −
−

  = = ≅     
          (42) 

When we substitute (41) into the Weibull function obtained by using the bio-
logical self-time analogy, we get: 

1

4 3 14 3
0 0 0 0 0

0 1

exp exp .

q

q

S n q q
n q

a MP
a M a M

a M

α

α

τ τ
τ

τ

    
         = − = −                   

      (43) 

Concerning the metabolic flux of the reference tumor with allometric expo-
nent α, we used α0 = 3/4 for the healthy (τ0, reference) exponent. 

It again appears that at a near surface supply condition, the exponent will be 
large and a digital behavior will occur. From this point of view, the scaling law is: 

1
4
3

1 0 0
0 1  

q
a M

const
a M

α

α

τ τ −

 
 ≅ ⋅  
 
 

                  (44) 
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Again, the above equation describes universal behavior, namely, that survival 
time increasingly becomes independent in the case of surface supply. According 
to the second equation of (42), a simple deduction to the real physical time scale 
from the above equation to describe biological self-time leads to: 

( ) ( )1

1
1 .

a t
b t

M α

α
τ α−

−
≅ = −                   (45) 

Substituting (44) into (43), we get the Weibull law associated with the physical 
time scale: 

( )

1

4 3 1 11 4 3
0 0 0 0 0 0

1

exp exp .

1

q

q

S q

a M tP
a M a M

b a M

α

α α

α

τ
τ τ

α

− −

  
  

         = − = −               −    

     (46) 

Consequently: 

( )

1
4

1 3
0 0 0

1  .
1

q
a M

t const
b

a M

α

α

τ
α

−  
 ≅ ⋅  −  
 

                   (47) 

We again see that the supply tends to become localized at the surface when α 
→ 1, and so the growth of the tumor becomes independent of the survival para-
meters. 

7. Allometry Scaling and Weibull Function 

Several theories describe the growth of cell populations (including tumors). The 
time dependence of tumor size has several competing theories, but recently 
hyperbolic growth models have been proposed [30]. Weibull’s law provides a 
simplified version of the general hyperbolic fit. The tumor size (e.g., the mass) 
satisfies the following equation in the hyperbolic model: 

1
d

1 ,
d

m
mM t

t M
λ

λ

λ
β

−

 
     = − 

 
                   (48) 

where M is the final tumor size. This equation is actually the Weibull equation. 
The solution is: 

1 1 exp ;m m t
M M

λ

β

     = − − −        
                (49) 

or slightly modified: 

1 e ;m
M

τ−= −                          (50) 

0: ln 1 .
mt
M

λ

τ
β

   = − −   
  
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If 0m M , then: 

1 e ,
t

m
M

λ

β
 

− 
 = −                        (51) 

and the equation is returned to the well-known Weibull law. Considering (20), 
the allometric law could be formulated as: 

( ) ( )1 1
1 e .m

M
ατ −−= −                      (52) 

A simple comparison shows the validity of the approximation of the allome-
tric law using the Weibull’s function (Figure 3). 

The Shannon entropy of the Weibull functions for fits to 2
3

α =  and 3
4

α =  

are 2 3 1.403s ≅ , and 2 3 1.452s ≅ ; respectively. This ≅ 3.5% difference shows a 

more certain death (less lifetime) in the 2
3

α =  case than in 3
4

α = , because 

the growing entropy shows a growing uncertainty. 
This observation reveals a more profound relationship and can be proven by 

rigorous mathematical calculation. If α and β are large values in (50), then the 
following linear approximation is valid: 

.m t
M

λ

β
 

≈  
 

                        (53) 

Thus, rapidly growing tumors could also be described by the Weibull evolu-
tive equation. Note, that the probability of cumulative survival covariates with 
the normalized tumor size, i.e.: 

( )1 e .
t

S
m F t
M

λ

β
 

− 
 = − ≅                    (54) 

 

 
(a)                                       (b) 

Figure 3. The allometric law (solid line) of survival could be well approximated by the 

Weibull function (dashed line). (a) 3
0

2 ; 1.698, 2.005; 2 10
3

n t errorα −= ≅ ≅ < ×  (b) 

3
0

3 ; 1.917, 2.286; 2 10
4

n t errorα −= ≅ ≅ < × . (The error is defined by the integral of the 

square of the differences of the functions in the [0, 10] interval.) 
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The same can also be formulated in a more approximate version. The cumula-
tive survival probability is the self-similar function of (1 − m/M). In other words, 
the slopes of Equations (55) and (56) are equal, and the straight lines are parallel. 

( ) ( )( )( )ln ln ln ;St F t
                   55) 

( )ln ln ln 1 .mt
M

  − −  
  


                 (56) 

This formulation allows the fitting of the β scale parameter of survival to the 
final mass of the tumor (or to fit other tumor characteristics). In other words, 

( )( )ln SF t  is a self-similar function of ln(1 − m/M), so: 

( )( )( ) ( )1 2ln ln ln ln 1 ,S
mF t K K
M

 = − 
 

           (57) 

where K1 and K2 are constants. 

8. Conclusion 

We proposed an intrinsic time model that differs from clock time. We analyzed 
the self-time for tumor growth and showed its scaling based on allometric scal-
ing as well as compared it to the Weibull physiologic function. The allometric 
function could be well approached by the Weibull function which highlights the 
intrinsic values of both the bioscaling and the Weibull physiologic function for 
living objects. 
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