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ABSTRACT 

This paper aims at solving an optimal control problem for determining the response of hypoxia to heart rate and alveolar 
ventilation that are cardiovascular and respiratory control respectively during a physical activity. A two nonlinear cou- 
pled ordinary differential equations is presented. The cost function of optimal control problem is discretized using the 
linear B-splines functions defined on a regular grid. The results show the determinant parameters stabilized at normal 
value. 
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1. Introduction 

Hypoxia, or hypoxiation, is defined as a pathological con- 
dition related to adequate oxygen supply in human body. 
It is in two main types: the generalized hypoxia that is 
characterized by the deprived adequate oxygen supply in 
whole body and tissue hypoxia which happens in its re- 
gion. It differs from hypoxemia called also hypoxaemia in 
that within the arterial blood the oxygen concentration is 
abnormally low. Hypoxemia was originally defined as a 
deficiency of oxygen in arterial blood but standard man- 
uals take this to mean an abnormally low partial pressure 
of oxygen, content of oxygen or percent saturation of he- 
moglobin with oxygen, either found singly or in combi- 
nation. The serious cases of the hypoxemia happen when 
the decreased partial pressure of oxygen in blood is less 
than 60 mmHg.  

In addition, the generalized hypoxia occurs in healthy 
people when they ascend to high altitude, where it causes 
altitude sickness leading to point constitutes the beginning 
of the steep portion of the hemoglobin dissociation curve, 
where a small decrease in the partial pressure of oxygen 
results in a large decrease in the oxygen content of the 
blood or when hemoglobin oxygen saturation is less than 
90%. The reason of this is this potentially fatal complica- 
tions including high altitude pulmonary edema (HAPE) 
and high altitude cerebral edema (HACE) [1]. It also 
occurs in healthy individuals when breathing mixtures of 

gases with low oxygen content.  
Hypoxic hypoxia is a result of insufficient oxygen 

available to the lungs. The examples of how lungs can be 
deprived of oxygen are a blocked airway, a drowning or a 
reduction in partial pressure (high altitude above 10,000 
feet). Hypoxia is also a serious consequence of pre-term 
birth in the neonate.  

The main cause for this is that the lungs of the human 
fetus are among the last organs to develop during preg- 
nancy.  

To assist the lungs to distribute oxygenated blood 
throughout the body, infants at risk of hypoxia are often 
placed inside an incubator capable of providing continu- 
ous positive airway pressure (also known as a humidicrib). 
The insufficient delivery of oxygen (low 

2O ) or inabi- 
lity to utilize oxygen (normal 

2O ) causes also the hy- 
poxia where we assist to oxygen deficiency at the mito- 
chondrial sites. This phenomeno accurs when 

2O  less 
than 7.3 kPa (55 mmHg). Below this threshold the venti- 
lation starts to stimulate carotid body activity. The hyper- 
ventilation reduces 

2CO  and  , which limits the 
initial rise in ventilation, because it decreases the carotid 
body and central chemoreceptor stimuli. In fact, in hu- 
mans, hypoxia is detected by chemoreceptors in the ca- 
rotid body. This response does not control ventilation rate 
at normal 

2CO , but below normal the activity of neu- 
rons innervating these receptors increases dramatically, so 
much so to override the signals from central chemore- 
ceptors in the hypothalamus, increasing  despite a 
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falling . 
2CO

Any physical activity obviously causes the body to de- 
mand more oxygen for normal functioning. The muscles 
rob the brain of the marginal amounts of oxygen available 
in the blood and the time of onset of hypoxic symptoms is 
shortened. However, the improvement of performance of 
athlete in high altitude results in a mild and non-damaging 
intermittent hypoxia used intentionally during training to 
develop an athletic performance adaptation at both the 
systemic and cellular level. Mathematical models quan- 
tifying hypoxic hypoxia have been proposed [2-4]. The 
optimal control problem based on the responses of car- 
diovascular respiratory system parameters to its controls, 
heart rate and alveolar ventilation, during physical activity 
has not been considered in the situation of hypoxic hy- 
poxia. This work focuses on this issue where the mathe- 
matical model is modified to include the controls of car- 
diovascular respiratory system.  

Pa

The remainder of this paper is structured as follows. In 
Section 2, we present a mathematical model, an optimal 
control problem and its descretization. The results of num- 
erical simulation are discussed in Section 3. In Section 4 
deals with concluding remarks.  

2. Setting of an Optimal Control Problem 

The model we present in this paper involves modifying of 
model equations as developed by Guillermo Gutierrez [2] 
in order to include the role of physical activity. The dia- 
gram for a two compartmental model is illustrated in the 
Figure 1 where mass transport model of tissue CO2 ex- 
change is developed to examine the relative contributions 
of blood flow and cellular hypoxia (dysoxia) to increases 
in tissue and venous blood CO2 concentration. 
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Figure 1. Diagram for the tissue carbon dioxide (CO2) ex- 
change model where [CO2] represents the total CO2 con- 
centration (dissolved and bound) and the subscripts t and v 
denote the tissue and vascular compartments respectively. 
Kv is the mass transfer coefficient for CO2. For the vascular 
compartment, the rate of change of [CO2] v depends on 

blood flow per unit volume of tissue denotes car- 

bon dioxide production. 

  Q V 
2CO

From this compartmental diagram the model equations 
are as follows. 
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The integral role of physical activity results in the in- 
fluence of the demand of the tissues for oxygen during 
hypoxia in altitude. Just as resting ventilation increases 
dramatically at high altitude, so does ventilation during 
physical activity. In fact, at moderate levels of physical 
activity, there is little or no change in arterial 

2CO be- 
tween rest and exercise. Since carbon dioxide production 
for a given work level is essentially independent of alti- 
tude, this means that measured ventilation is independent 
of altitude at a given work level. At work levels appro- 
aching maximal values at any altitude, alveolar and arte- 
rial 

2CO fall compared with the resting level and phy- 
sical activity ventilation measured at correspondingly ris- 
es. Furthermore, during exercise, increases in alveolar 
ventilation must parallel the increased tissue oxygen 
consumption and carbon dioxide production by the exer- 
cising muscles, both of which rise in direct proportion to 
the increase in power output. These relationships are 
governed by the following equation 
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where A  is alveolar ventilation and  denotes a con- 
stant [5], so that we have  
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where 
2CO the slope of the physiological 2 dissocia- 

tion curve and 
2CO constant for the physiological 

 dissociation curve [6].  

K CO
K 2CO

Taking RQ as respiratory exchange ration and as 
consummation rate of O2, the relationship between  
and  satisfies the following relation [2]. 

2OV
OV 2

2COV

2CO O .V RQ V              (3) 

Using Fick’s principle [2] applied to the relation (3) 
allows to get 

    2 2CO O O ,
a v

V RQ H SV    
2  

where  2O
a

 (resp.  2O
a

) is arterial (venous) concen-  

tration of 2 , O H  denotes heart rate and  represents 
stroke volume.  

Sv

In addition, it is known that the human respiratory  
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control system varies the ventilation rate A
 
in response 

to the levels of 2  and 2  in the body and the control 
mechanisms of cardiovascular system influences global 
control in the blood vessels as well as well as heart rate 

V
CO O

H  for impacting blood flow Q  [7]. Generally, during 
physical activity in altitude and particular in the hypoxia 
case, the control mechanism of these two systems plays a 
crucial role.  



Finally, we are interested in the following model equa- 
tions 
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v t
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where two last ordinary differential equations describe the 
control of cardiovascular and respiratory system is de- 
scribed respectively with and  u t  v t

 
the functions to 

be determined by an optimality criterion.  
The alveolar gas equation allows the calculation of the 

alveolar partial pressure of oxygen as follows [8] 

    2 2

2 2 2
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where 
2OA is the alveolar partial pressure of oxygen, 

ATM denotes the prevailing atmospheric pressure, 
2OH  represents the saturated vapor pressure of water at body 

temperature and the prevailing atmospheric pressure and 

2OI

P
P P

F is the fraction of inspired gas that is oxygen (ex- 
pressed as a decimal). In addition, the relation between 
alveolar partial and arterial pressure of oxygen is given by 

2 2O O 10a AP P   

because the
2OA to gradient is normally close to and 

is written as follows: 
P

2OaP

  2O 10 mmHgP A a  .  

Similarly, blood 
2CO is calculated on the basis of the 

Henderson-Hasselbach equation [9] as follows. 
Pa
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,
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where  is content of plasma defined by Douglas 
[10] as 

B 2CO
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It results that the alveolar carbon dioxide pressure of 
oxygen  2COAP  is equivalent to 

 
(there is no gra- 

dient).  
2COPa

Furthermore, it appears that a main goal of respiratory 
control is to keep 2

 
venous partial pressure as close as 

possible to an equilibrium value denoted by 2  
and, to a lesser extent, control 2

 
to the equilibrium 

such that the cost functional can be formulated in the fol- 
lowing way.  
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subject to the systems (4 )-(7).  
In the relation (8), the positive scalar coefficients 

2 2CO O  and vq  determine how much weight is at- 
tached to each cost component term in the integrand while 

, , uq q q

sT
 
denotes the maximum time that the physical activity 

can take.  
Let us consider the vector space that is span of NE

 , 1, ,N N
jB j   N

             
(9)

 
a base of linear B-splines functions on a regular grid 
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The functions  verify the following 
relation 

1, ,,N
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 N
j kt ik  where   denotes Kronecker sym- 

bol. The descretization of the optimal problem (8) is done 
by setting the state vector 
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where 
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We are looking for  1 2,M M M Q   
2M M

M a approxi-  

mated solution of (11) in the set such that   Q E

 ,
0

, 1, 2
M

M M
j j k k

k

t j  


  .        (12) 

Therefore the cost function (11) becomes 
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with Δ sT
t

N
  and finally the discrete formulation of  

optimal problem (8) subject to (4)-(7) is written as follows  
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where M  is a matrix  1 2M M    such that the 
components ,

M
j k  are components of the function N

j  in 
the set  and  represents the matrix with  
component is  

NB Y  ,i k
th

 N f
i k ix t x  

where  denotes the solution of the sys- 
tems (4)-(5) associated to 
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3. Test Results 

For solving the optimal control problem (13) subject to the 
constraints (4)-(7) we consider the parameters presented 
in the Table 1.  

We take  and  as normal value for a  
2

healthy individual that  and   
CO

fP a
2O

fP a
fP a 

2CO 40 mmHg
2O

fP a

= 95 mmHg. The variation curve of carbon dioxide in the 
tissues and carbon dioxide in vascular is illustrated in the 
Figure 2. The control of cardiovascular and respiratory 
systems, H  and A  against the time are given in the 
Figure 3 whereas the Figure 4 shows the responses of 
these controls. 

V 

Table 1. Values of parameters used in numerical simula- 
tion. 

Parameter Value Parameter Value 

Q  6 
2OHP  47 

Kv  0.05 RQ  0.8 

PH  7.35 SV  0.7 

2SaO  0.98 K  863 

2COV  0.21 
2COK  0.0065 

ATMP  760 
2COk  0.244 

2OIF  0.21  2O
a
 0.197 

2COq  10  2O
v

 0.147 

2Oq  15 vq  100 

uq  100   

 
The Figure 2 shows a decrease of arterial and venous 

dioxide carbon concentration against the time. They are 
maintained at a level where the variation is small. This is 
due to the effect of ventilation during physical activity. In 
fact, ventilation increases abruptly in the initial stages of 
exercise and is then followed by a more gradual increase. 
This mechanism of increase results of to motor centre 
activity and afferent impulses from proprioceptors of the 
limbs, joints and muscles. Since peripheral chemorecep- 
tors are responsible for increasing ventilation, Central 
chemoreceptors may be readjusted to increase ventilation 
to maintain carbon dioxide concentrations.  

At the onset of physical activity, the heart rate and al- 
veolar ventilation increase. Generally, heart rate increases 
to about 90% of its maximum values during strenuous 
physical activity. Furthermore, the ventilation increases 
with increases in work rate at submaximal physical activ- 
ity intensities. These physiological effects of physical 
activity on cardiovascular-respiratory system are justified 
by the variation of its controls in the Figure 3 where they 
reach a value and they are stabilized with small oscilla- 
tions. 

The Figure 4 shows the arterial carbon dioxide (resp. 
oxygen) decreases (increases) at the onset of physical 
activity to be stabilized at normal value. The changes 
which occur in

2O  and 
2CO values during exercise 

are usually small. But since hypoxia is characterized by 
the adequate oxygen supply deprived in whole (general- 
ized hypoxia) or a region of the body (tissue hypoxia) the 
ventilation process during physical activity plays an in- 
tegral role. During physical activity, when sufficient 
oxygen for flux through the is not available, the increased 
reliance on glycolysis results in increased accumulation of 
lactic acid, which initially leads to an increase in 

2CO . 
However, this is counteracted by the stimulation of ven- 
tilation and as a result s decreased. In addition, in  

Pa Pa

2CO

Pa

Pa i 
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(a)                                               (b) 

Figure 2. Variation of arterial (a) and (b) carbon dioxide. 
 

 
(a)                                               (b) 

Figure 3. Variation of heart rate (a) and alveolar ventilation (b). 
 

 
(a)                                               (b) 

Figure 4. Variation of optimal parameters: Arterial carbon dioxide pressure (a) and arterial oxygen pressure (b).   
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humans, hypoxia is detected by chemoreceptor in the 
carotid body. This response does not control ventilation 
rate at normal 

2O , but below normal the activity of 
neurons innervating these receptors increases dramati- 
cally, so much so to override the signals from central che- 
moreceptors in the hypothalamus, increasing  de- 
spite a falling . 

Pa

2COPa
2OPa

4. Conclusion 

In this work we have investigated a role of controls of car- 
diovascular-respiratory system during physical activity to 
hypoxia. The heart rate and both minute ventilation and 
alveolar ventilation increase; in this way the lungs transfer 
more oxygen and carbon dioxide and keep pace with 
metabolic demands. In this increase of the controls result 
the increase of arterial and vascular carbon dioxide. In 
addition, the partial arterial pressure of carbon dioxide and 
oxygen are maintained at normal value. 
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