
Open Journal of Applied Sciences, 2012, 2, 177-179
doi:10.4236/ojapps.2012.23025 Published Online September 2012 (http://www.SciRP.org/journal/ojapps)

A Solution to Implement Dynamic Authentication

Bingbing Xia, Youping Dong
Information Technology Department, Shandong Jiao Tong University, Jinan, China

Email: jennifer_xiababy@yahoo.com.cn

Received July 6, 2012; revised August 5, 2012; accepted August 16, 2012

ABSTRACT

In view of the security risks of using static passwords to authenticate users, this paper gives a solution to implement
two-factor authentication by using RSA token. A set of corresponding realization processes is proposed as well. Using
dynamic password given by RSA can further verify user identity to improve the reliability of authentication.

Keywords: Token; Two-Factor authentication; NextToken

1. Introduction

Currently, most network users need to use user name and
password to log on for authentication. Passwords used in
systems, such as email system, online banking, are most
static. But static passwords show more and more security
risks with the development of hacking. Nowadays it is
not a hard job either to obtain passwords by using Trojan
or to decipher passwords by using hacking tools. There-
fore, a more secure two-factor authentication mechanism
is needed.

1.1. Two-Factor Authentication

Two-factor authentication is a cryptology concept, which
is a strengthening authentication mechanism based on
static password identification process. It uses physical
tokens, such as dynamic password card, IC card and
magcard, to further verify user identity so as to forbid
unauthorized visitors, thereby to improve the reliability
of authentication.

Three main components are included in a dynamic
two-factor authentication solution that are a simple, easy-
to-use token, a powerful management server and a kind
of proxy software.
 Token: Different user has different token with which

a random number is generated as the token code re-
spectively. Usually the number changes every one
minute so that it is valid only for a specific user at a
particular time. As a dynamic password, token code
further ensures the accuracy of user identification.

 Proxy software: When users log on, proxy software
will send the request to the authentication engine of
the management server. Logon can be successful pro-
vided that authentication process is verified.

 Management server: The management server uses the

same algorithm and token code as the token to verify
the token code.

Users can log on successfully when both password and
token code are inputted correctly. Otherwise the token
code will be requested once again. If three times of fail-
ure occurred, two following token codes need to be pro-
vided. Once the number of inputting exceeds a certain
value, proxy software will lock the user account and pro-
hibit it from logon again.

1.2. Introduction of RSA Token Authentication
System

RSA token authentication system is a mature product and
it generates a 6-digit or 8-digit number by applying the
well known RSA algorithm [1]. The number changes
every one minute and can never be repeated. Each user
has a token that can generate the same 6-digit or 8-digit
number by applying the same algorithm. Token code is
inputted through client system and verification is carried
through the server. User identity can be authenticated
when the two numbers are the same. Otherwise the ac-
cess will be denied. The advantages of this process are:
 The algorithm used is rigorous and hard to decipher.
 Synchronization between server and user token does

not involve signal synchronization. Whereas systems
that use SMS random code are restricted with signal
strength limitations and may have delay.

 Special hardware is not needed for the client system.
What users need to do is to input token code and no
special interface, like USB or card reader, is required.

2. Solution

Though there have been some products that can embed
RSA token product into operating system and VPN sys-

Copyright © 2012 SciRes. OJAppS

B. B. XIA, Y. P. DONG 178

tem, corresponding development is not popular currently
yet. Customers need to do extra interface development
programming to realize two-factor authentication for
usually this kind of product only provide a java API
package [2]. Token as shown in Figure 1 has a unique
serial number for each user and the number is one-to-one
corresponding to the user name in RSA system. By giv-
ing system user list to RSA server, one-to-one relation-
ship between user name and token is built up [3]. The
two systems can synchronize user identification through
administrative processes but not underlying structure.

2.1. AuthUserBean.java Class

AuthUserBean.java class is created firstly in the interface
development program based on the API given by provid-
ers. The variable userID represents user name and pass-
Code represents token code. The status of logon is repre-
sented by the variable Status that has three values, value
0 means verification process is successful, value1 means
it failed while value 2 means NextToken mode. Times of
failure of inputting token code are calculated via function
countPlus ().

The AuthUserBean.java class has two variables named
as userID and passCode. Another variable is count used
in the countPlus () method, and the method plus 1 to the
count.

2.2. AuthManager.java Class

AuthManager.java class implements the communication
with the RSA server with main function authUser (), in
which the process of communication is created through
the path parameter by using the API of RSA [4]. The
code is as below:

AuthSessionFactory api = AuthSessionFactory.
getInstance (this. path);
AuthSession authSession = api.createUserSession ();
Next step is to determine the status of logon. If the

status value is 2, it means nextToken mode that is a
strategy of RSA server to prevent attacks [5]. When cer-
tain times of inputting failed, the server treats the logon
as an attack and asks the user to input two consecutive
token codes to change the status. If times of inputting
wrong token codes continued reach a certain number, the

87032848
RSA

Figure 1. Token.

user account will be locked. If the value of the Status is 0,
the verification of user identity is successful; if the value
of Status is 1, the times of wrong inputting needs to be
recorded. The code is as below:
if (user.getStatus () == 2) {
status = user.getAuthSession ().next (user.getPassCode
());
user.setStatus (status);}
else if (user.getStatus () == 0) {
user.getAuthSession ().close ();}
else {
status = user.getAuthSession ().check
(user.getUserID (), user.getPassCode ());
user.setStatus (status);
if (user.getStatus () == 1) {user.countPlus ();}
if (user.getStatus () == 0) {user.getAuthSession ().close
();}}

2.3. MainController Class

MainController class creates a servlet, the init () method
is used to initialize the servlet，get the parameter path
from the web.xml and judge the validity of the path. The
main code of this method is as below:
String path = config.getInitParameter (“path”);
if (path == null) {
throw new ServletException (“path is null”);}
if (path. equals (““)) {
throw new ServletException (“path is blank”);}

The service () method is used to process the client’s
request, action saves the input source identity, passCode
saves the input RSA number. The main code is as below:
String action = request.getParameter (“action”);
String passCode = request.getParameter (“passCode”);

If the input source is incorrect, the program returns the
login page:
RequestDispatcher dispatcher;
if (!”tokenUser”.equals (action)) {
dispatcher = request.getRequestDispatcher (“/login.jsp”);
dispatcher.forward (request, response) ;}

If the input source is correct, the program will turn to
other verification,
 First, judge the existence or overdue of the session:
HttpSession session =request.getSession ();
if (session.getAttribute (“tokenuser”) == null) {
request.setAttribute (“logout”, “true”);
dispatcher = request.getRequestDispatcher
(“/login.jsp”) ;}
 Second, begin to verify the token number.

First, assign the token number named passCode to the
user, then verify by the authUser () method. If the verifi-
cation passed, the program will turn to result.jsp, else if
the token number got is incorrect 3 times, the program
will turn to the login page login.jsp.
AuthUserBean user = (AuthUserBean)

Copyright © 2012 SciRes. OJAppS

B. B. XIA, Y. P. DONG

Copyright © 2012 SciRes. OJAppS

179

session.getAttribute (“tokenuser”);
user.setPassCode (passCode);
User = manager.authUser (user);
if (user.getStatus () ==0){
dispatcher = request.getRequestDispatcher (“/result.jsp”);
dispatcher.forward (request, response);}
else if (user.getStatus () ==1&&user.getCount () <3) {
dispatcher = request.getRequestDispatcher (“/login.jsp”);
dispatcher.forward (request, response) ;}

2.4. Web.xml File

The content that needs to be configured in web.xml is as
below:
<Web-app>
<Servlet>
<servlet-name>MainController</servlet-name>
<servlet-class>servlet.MainController</servlet-class>
<Init-param>
<param-name>path</param-name>
<Param-value>
D:\\userlogin\\WEB-INF\\classes\\rsa_api.properties
</param-value>
</init-param>
</servlet>
<Servlet-mapping>
<servlet-name>MainController</servlet-name>
<url-pattern>/servlet.do</url-pattern>
</servlet-mapping>
<welcome-file-list>
<welcome-file>servlet.do</welcome-file>
</welcome-file-list>
</web-app>

2.5. Application Resources

The main part of the file rsa_api.properties is as follows:
 #RSA verification necessary file path created at the

server port:
SDCONF_TYPE=FILE
SDCONF_LOC=D:\\userlogin\\sdconf.rec
SDSTATUS_LOC=D:\\userlogin\\JAStatus.1

 #RSA verification file path after the first success dis-
path between the server and the WEB server:

SDNDSCRT_TYPE=FILE
SDNDSCRT_LOC=D:\\userlogin\\securid

 #WEB server log path:
RSA_LOG_TO_CONSOLE=NO
RSA_LOG_TO_FILE=YES
RSA_LOG_FILE=D:\\userlogin\\rsa_api.log
RSA_LOG_LEVEL=INFO

3. Conclusion

The process of two-factor authentication of user identity
can be achieved through the dynamic password provided
by RSA token. The reliability of verification is improved
and all user information verified will be stored in the
system for later use [6]. Through the process of token
code validation, the accuracy of user identity is guaran-
teed thus to enhance the system security. It can be seen
as a practical solution.

4. Acknowledgements

I would like to express my deepest gratitude to Tian Rui,
who helped me a lot to complete this paper. Second, I
will extend my heartfelt gratitude to teacher Dong You
ping that helped me a lot during my work.

REFERENCES
[1] RSA Laboratories, “PKCS #15 v1.0: Cryptographic To-

ken Information Format Standard [S]”.

[2] H. Krawczyk, M. Bellare and R. Canetti, “HMAC:
Keyed-Hasing for Message Authentication [S],” 1997.

[3] International Organization for Standardisation (ISO),
“JTX 1/SC17.ISO/IEC 7816 Identification Cards-Inte-
grated Circuit(s) Cards with Contacts [S]”.

[4] Y.-L. Wei, H. Zhu and B. Qiu, “Authentication Technol-
ogy Research of Information Safety Based Dual Factor,”
Journal of Shandong University, Vol. 40, No. 3, 2005.

[5] V. Chopra and J. Eaves, “Jsp Programming,” Posts and
Telecom Press, Beijing, 1999.

[6] M.-H. Xu, “Java Web Integrate Development and Project
Design,” Posts and Telecom Press, Beijing, 2010.

