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Abstract 
In this paper, we carried out a numerical study of the planar restricted 
four-body problem with repulsive Manev potential and perturbations in the 
Coriolis and centrifugal forces such that the peripherals possess Eulerian con-
figuration. We have presented the equations of motion in the rotating frame 
and investigated the existence and location of the equilibrium points. We 
have found that there exist six equilibrium points all of which lie along the 
coordinate axes and shift in positions as the perturbation parameter is varied. 
We have also examined the linear stability of these equilibrium points and 
they are found unstable. The dynamical behavior of this system is also inves-
tigated using the Lyapunov Characteristic Exponents and the system is found 
to be chaotic. 
 

Subject Areas 
Mathematical Analysis 
 

Keywords 
Repulsive-Manev Potential, Coriolis Force, Centrifugal Force, Stability, LCEs, 
Chaos 

 

1. Introduction 

Over the years, Mathematicians and Astronomers have been thrilled by the 
study of the motion of systems on n-bodies. Sir Isaac Newton pioneered the 
central-force and two-body problem in his work “Principia” which was first 
published in [1]. However, the failure of the classical gravitational law to explain 
the circular moon’s orbit around the earth within the frame of the in-

How to cite this paper: Singh, J. and Omale, 
S.O. (2019) Perturbed Planar Restricted 
Four-Body Problem with Repulsive Manev 
Potential. Open Access Library Journal, 6: 
e4980. 
https://doi.org/10.4236/oalib.1104980 
 
Received: October 11, 2018 
Accepted: June 3, 2019 
Published: June 6, 2019 
 
Copyright © 2019 by author(s) and Open 
Access Library Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/ 

  
Open Access

https://doi.org/10.4236/oalib.1104980
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1104980
http://creativecommons.org/licenses/by/4.0/


J. Singh, S. O. Omale 
 

 

DOI: 10.4236/oalib.1104980 2 Open Access Library Journal 
 

verse-square force model and other observed phenomena in the solar system 
dynamics such as the perihelion advances of the inner planets (for instance, 
mercury), got Newton to study a central-force problem given by a  

potential of the type 2

A B
r r
+ . In Principia’s Book I, Article IX, Proposition  

XLIV, Theorem XIV, Corollary 2, Newton showed that a central-force problem 
having this kind of potential leads to precessional elliptic relative orbit. That is, 
the trajectory of one particle considered with respect to a fixed point moves 
along an ellipse whose focal axis rotates in the plane of motion. Alexis Clairaut 
also studied this potential, but finally abandoned it in lieu of the classical poten-
tial.  

There were other pre- and post-relativistic laws (such as those proposed by 
Hall and Newcomb) which were able to explain the phenomena of perihelion 
advances, but unable to justify other issues such as the secular motion of the 
moon’s perigee. Fortunately, the general relativity theory thrived in expounding 
well such phenomena in both quantitative and qualitative manner, only with the 
shortcomings that this powerful theory is not of much help for celestial mechan-
ics as all attempts to formulate a meaningful relativistic n-body problem have 
failed to provide valuable results. 

Therefore, the interest is to find a model that can maintain dynamical as-
tronomy within the context of classical mechanics, as well as proffering justifica-
tions for the observed phenomena as offered by the relativity theory. Such a 
model meets the theoretical needs of celestial mechanics (by preserving the sim-
plicity and advantages of Newtonian mechanics), and can also describe accu-
rately the orbits coming close to collisions. By using physical principles, the 
Bulgarian Physicist George Manev obtained a similar model in the twenties, and 
proposed an alternative substitute for the relativity theory [2] [3] [4] [5] [6]. In 
the corresponding central force problem with unit mass for the satellite, Manev’s  

potential gives A µ=  and 
2

2

3
2

B
C
µ

= , where µ  is the gravitational parameter  

of the two-body and C the speed of light. The Manev’s model explains the so-
lar-system phenomena with same accuracy as relativity, but without leaving the 
framework of classical mechanics and it builds a bridge between the classical 
mechanics and the general relativity. In the recent times, researchers have taken 
interest in investigating the restricted few-body problem with Manev-type forces 
[7] [8] [9] [10] [11]. 

The restricted four-body problem describes the motion of an infinitesimal 
mass under the gravitational attraction of three massive bodies (called primaries) 
moving in circular orbits around their centre of mass fixed at the origin of the 
coordinate system. It is known that in the planar restricted four-body problem, 
there exist only two configurations, namely, the Eulerian (or collinear) and La-
grangian (or triangular) configurations. In the case of the later, the primaries lie 
at the vertices of an equilateral triangle, while in the former case, the peripherals 
lie on a straight line. The classical restricted four-body may be generalized to in-
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clude various types of effects such as variation of the mass of the primaries, radi-
ation pressure force, Poynting-Robertson drag, oblateness of primaries, Coriolis 
and centrifugal forces, etc. Several researchers such as [12] [13] [14] [15] have 
considered the effects of small perturbations in the Coriolis and centrifugal 
forces in the framework of restricted three-body problem. 

In this study, our aim is to carry out a numerical investigation of the motion 
of an infinitesimal mass in the gravitational field of three primaries which are in 
Eulerian configuration under the effect of small perturbations in the Coriolis 
and the centrifugal forces together with the bigger primary having a repulsive 
Manev potential. We studied the equilibrium points, the zero velocity curves, the 
linear stability and the dynamical behavior of the problem with the restriction 
that the infinitesimal mass has no influence on the motion of the primary bo-
dies. 

2. Equations of Motion 

We consider the motion of a test particle P of infinitesimal mass m under the 
gravitational attractions of three bodies P1, P2 and P3 of masses 1M , 2M  and 

3M  respectively, where the gravitational potential of 1M  is given by a Manev  

potential 2

a e
r r

 − + 
 

 with parameter 0e > , while the gravitational attraction  

due to 2M  and 3M  is Newtonian ( )1 r− . Also, the primaries have Euler 
configuration such that 2 3M M µ= =  are located symmetrically with respect 
to the central body 1M , of mass 1M βµ= , which is at the centre of masses of 
the system (Figure 1). In the inertial frame of reference, the peripherals 2M  
and 3M  move in circular orbits about the central body 1M  with angular ve-
locity ω . Now, in a rotating frame Oxyz, we choose the units of the distance, 
mass and time such that the distance between the peripherals is unity and 

1Gµ = , where G is the gravitational constant. Let the coordinates of the infini-
tesimal mass and peripheral masses 1M , 2M  and 3M  be ( ),x y , ( )0,0 ,  

1 ,0
2

 
 
 

 and 1 ,0
2

 − 
 

 respectively. As given by [16] and [17], the peripherals  

maintain their circular orbit of radius 
1  
2

 and angular velocity ω  around the 

central body under the condition that 2ω = ∆ , where 

( ) ( ), 2 1 4 16e eβ β β∆ = ∆ = + −                     (1) 

where ∆  is a positive function, implying the parameter 0e >  must satisfy the 
following sharp bound 

0
1 4
16

e e β
β

+
< =                          (2) 

here 0e >  is admissible for a fixed value of 0β >  whenever the inequality (2) 
is satisfied. Now, we introduce small perturbations in the Coriolis and centrifug-
al forces with the use of the parameters φ  and ψ . The unperturbed value of 
each is unity. 
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Figure 1. Sketch of the system. 

 
The equations of motion of the infinitesimal mass under small perturbations 

in the Coriolis and centrifugal forces in the synodic frame can be written as: 

2
2

x

y

x y
y x

φ
φ

− = Ω 
+ = Ω 

 

 

                         (3) 

where the dots denote time derivatives and the gravitational potential is given as 

( )2 2

2
1 2 31

1 1 1 1
2

x y e
r r rr

ψ
β

+   
Ω = + − + +  ∆    

             (4) 

with 

( )
1

2 2 2
1

1
2 2

2
2

1
2 2

2
3

1
2

1
2

r x y

r x y

r x y




= + 

   = − +       

   = + +       

                     (5) 

and 

1 , 1,φ ε ε= +   

1 , 1ψ ε ε′ ′= +   

where ,ε ε ′  are small perturbations given to the Coriolis and the centrifugal 
forces respectively. The subscripts x and y indicate the partial derivatives of Ω  
with respect to x and y respectively. The system (3) possesses the energy integral  

2 2 2 2v x y C= + = Ω−                        (6) 

where C is the Jacobi integral constant. 

3. Location and Existence of Equilibrium Points 

We investigate the existence and locations of equilibrium points of the test par-
ticle (infinitesimal mass) in this section. At these points the net force acting on 
the infinitesimal mass is zero. Thereby, its velocity and acceleration are both ze-
ro in the rotating frame of reference. That is, the equilibrium points satisfy
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0x y x y= = = =    . It thus follows from Equation (3), that the equilibrium points 
are solutions of equations 

3 4 3 3
1 1 2 3

1 1
1 1 2 2 2 0
Δ

x x
ex x

r r r r
ψ β

    − +          − − + + = 
  
  

             (7) 

3 4 3 3
1 1 2 3

1 1 2 1 1 0ey
r r r r

ψ β
   

− − + + =   ∆      
                (8) 

we observe that Equations (7) and (8) are independent of φ . This shows that a 
small perturbation in the Coriolis force has no effect on the positions of equili-
brium points. 

Theorem (Barrabes et al., 2017); for any 0β >  and admissible e, the equi-
librium points of the Manev R4BP must lie on the coordinate axes. 

Solving Equations (7) and (8) when the centrifugal force is unperturbed (i.e. 
1ψ = ), we obtain six equilibrium points lying on the coordinate axes as shown 

in Figure 2 confirming the theorem (Barrabes et al., 2017) (Table 1). 
In Figure 3, we observe that each of the equilibrium points is symmetric to 

another on the x and y axes respectively and the equilibrium points on the y axis 
form equilateral triangles with the peripherals 2M  and 3M . 

In the perturbed case, we observe that as the centrifugal force perturbation 
parameter ψ  increases, the numbers of the equilibrium points does not change 
but the positions of the equilibrium points with respect to the peripherals change. 
In Figure 4, we have shown the shifting of equilibrium points. 

4. Zero Velocity Surfaces 

The energy integral of the problem is given by  
2 22C x y= Ω− −                           (6) 

where C is known as Jacobi constant. The curves of zero velocity are defined 
through 2 CΩ = . This relation defines a boundary, called Hill’s surface, which 
separates regions where motion is allowed or forbidden. Figure 4 shows the zero 
velocity curves where the problem admits. The value of the Jacobi constant in-
creases with increase in the perturbation parameter (Figure 5 and Figure 6). 
( 1ψ = , 1,2 9.1949CL = , 1.2ψ = , 1,2 9.72996CL = , 1.4ψ = , 1,2 10.2055CL = ), 
( 1ψ = , 3,4 13.0987CL = , 1.2ψ = , 3,4 13.1447CL = , 1.4ψ = , 

3,4 13.1911CL = ). 

5. Linear Stability of the Equilibrium Points 

We examine the motion of the infinitesimal body when small displacements are 
given to the coordinates of the equilibrium point (x0, y0) under consideration. 
Let ξ  and η  be these small displacements in the coordinates such that 

0x x ξ= +  and 0y y η= + . Then the variational equations of motion corres-
ponding to Equations (3) are given as 

https://doi.org/10.4236/oalib.1104980
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Table 1. Equilibrium points with increase in centrifugal force. 

ψ  L1,2 L3,4 L5,6 

1 (±1.69001, 0) (0, ±0.478827) (0, ±1.63135) 

1.1 (±1.63428, 0) (0, ±0.479807) (0, ±1.57227) 

1.2 (±1.58505, 0) (0, ±0.480804) (0, ±1.51975) 

1.3 (±1.54113, 0) (0, ±0.481817) (0, ±1.47259) 

1.4 (±1.50162, 0) (0, ±0.482848) (0, ±1.42986) 

 

 
Figure 2. Showing the six equilibrium points each lying on the 
coordinate axes when 10β =  and 0.25e = . 

 

 
Figure 3. Symmetric equilibrium points. 
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Figure 4. Shifts in position of equilibrium points with increase in the 
centrifugal force. 

 

 

Figure 5. The zero velocity curves when ( 1ψ = , 1,2 9.1949CL = , 1.2ψ = , 

1,2 9.72996CL = , 1.4ψ = , 1,2 10.2055CL = ). With the increase in the energy constant 

the infinitesimal mass is trapped within the region of each of the primaries. 
 

 

Figure 6. Zero velocity curves when ( 1ψ = , 3,4 13.0987CL = , 1.2ψ = , 

3,4 13.1447CL = , 1.4ψ = , 3,4 13.1911CL = ). The white region is the region of per-

missible motion for the infinitesimal fourth body. 
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

                 (9) 

where the superscript 0 indicates that the values are evaluated at the equilibrium 
point (x0, y0), the subscripts represent the second partial derivatives and the dots 
signify the derivatives with respect to the actual time t. Here the linear terms in 
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ξ  and η  are only considered.  
Let the trial solutions of Equations (9) be 

e , et tP Qλ λξ η= =                       (10) 

where ,P Q  are constants and λ  is a parameter. Then the characteristic equa-
tion of the system (10) can be written as  

4 2 0a bλ λ+ + =                        (11) 

With  
2 0 04 xx yya φ= −Ω −Ω  

( )20 0 0
xx yy xyb = Ω Ω − Ω  

( )

( )

22 2
0

3 5 4 6 5
10 10 10 10 20

2

3 5 3
20 30 30

3 1 21 1 3 2 8

3 1 21 1

xx

xx e ex
r r r r r

x
r r r

ψ β
 − 

Ω = + − + + − +  
∆   

+
− + − 



        (12) 

2 2 2 2
0

3 5 4 6 5 3 5 3
10 10 10 10 20 20 30 30

1 1 3 2 8 3 1 3 1
yy

y e ey y y
r r r r r r r r

ψ β
  

Ω = + − + + − + − + −  
∆    

   (13) 

0
5 6 5 5

10 10 20 30

1 13 3
1 3 8 2 2

xy

x y x y
xy exy

r r r r
β

    − +          Ω = − + + 
∆   
  

        (14) 

( )
1

2 2 2
10 0 0

1
2 2

2
20 0 0

1
2 2

2
30 0 0

1
2

1
2

r x y

r x y

r x y

= +

  = − +     

  = + +     

 

The four roots of the characteristic Equation (11) play an important role in 
the determination of stability of the equilibrium points. An equilibrium point 
under consideration will be stable if the Equation (11) has all four purely imagi-
nary roots or has four complex roots with each of them having negative real part. 
This is equivalent to saying that the following system of inequalities must be si-
multaneously satisfied (Table 2). 

 
Table 2. Stability of Equilibrium points. 

 Equilibrium Points 1,2λ  3,4λ  Motion 

L1,2 (±1.69001, 0) ±0.388944 ±1.17645i unstable 

L3,4 (0, ±0.478827) ±2.09503 ±7.2765i unstable 

L5,6 (0, ±1.63135) ± 0.328801i ±1.11574i unstable 
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( ) ( )( )2 22 0 0 0 0 04 4 0xx yy xx yy xyφ −Ω −Ω − Ω Ω − Ω >  

( )2 0 04 0xx yyφ −Ω −Ω >  

( )( )20 0 0 0xx yy xyΩ Ω − Ω >  

We have computed the characteristic roots of Equation (11) as perturbation 
parameters φ  and ψ  increase and we observe that the equilibrium points Li (i 
= 1, 2, 3, 4, 5, 6) are unstable.  

6. Dynamic Behaviour of the System 

The Lyapunov Characteristic Exponents (LCEs) measure the average rate of 
convergence or divergence of orbits starting from nearby orbits. It tells whether 
or not two points in the phase space of a dynamical system that are initially very 
close will remain close as the motion of the system proceed. It is used as a tool to 
describe the behaviour of the dynamical systems. It is employed to determine the 
existence of chaos or regularity of the orbits (for example see [18]). In the appli-
cable sense, the exponential divergence of the orbits connotes impossibility to 
predict the system, so according to [19] any system with at least one positive 
Lyapunov exponent is chaotic. Therefore, LCEs can be used to analyze the sta-
bility of limit sets and to check sensitive dependence on initial conditions, that is, 
the presence of chaotic attractors (Figure 7). 

We have computed numerically the first order LCEs and plotted the graphs 
(LCEs vs Steps) with the help of Mathematica package developed by Sandri [20]. 
It is a customary practice to refer to the Maximal Lyapunov Exponent (MLE), 
because it determines a notion of predictability for a dynamical system. We find 
that the system is chaotic because the LCEs [0.965343, 0.965343, −0.965343, 
−0.965343] contain two positive exponents. 

7. Discussion and Conclusion 

We have studied the existence, location, stability and dynamical behavior of the 
equilibrium points of an infinitesimal mass under small perturbations in the Co-
riolis and centrifugal forces in the restricted four-body problem when the peri-
pherals have Eulerian configuration with a repulsive Manev potential. We have 
expressed in the rotating coordinate system the equations governing the motion 
of the infinitesimal mass, and using the energy integral we have determined the 
region of permissible motion by the zero velocity curves. We observe that the 
Coriolis force has no effect on both the location of the equilibrium points and 
the zero velocity curves, but a small perturbation in the centrifugal force affects 
both the positions of the equilibrium points and the zero velocity curves. We 
have found six equilibrium points all located on the coordinate axes that verify 
numerically the theorem of Barrabes et al. (2017). We also observe that in addi-
tion to perturbations in the Coriolis and centrifugal forces which cause the orbit 
of the infinitesimal body to shrink, the equilibrium points Li (i = 1, 2, 3, 4, 5, 6)  
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Figure 7. The Lyapunov Characteristic Exponents of the system. 

 
are unstable. With the aid of Mathematica package, we also computed the LCEs 
of the system and found that the system is chaotic, because two of its exponents 
are positive. 
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