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Abstract 

Cryptocurrencies are a mean of executing online transactions. They use a va-
riety of cryptographic techniques to secure and verify these transactions, 
which are functionally supported by the Blockchain platform. Blockchain is a 
continuously growing, distributed ledger of files that contains all transactions 
between users of cryptocurrencies in a verifiable and permanent manner. It 
consists of blocks that are connected and secured cryptographically. Crypto-
currencies use algorithms to produce pairs of public and private keys. These 
pairs, cryptographically merged with a message between the participants, are 
the building blocks of the relevant transactions. Bitcoin uses the ECDSA al-
gorithm to produce the above-mentioned keys. The purpose of our work is to 
present some useful motifs for the domain parameters of base point (P) and 
the order (n) of the subgroup produced by it, while choosing the elliptic curve 
and the Galois field on which we formulate the algorithm, in order to obtain 
safer private keys. The results of the research are experimental due to the li-
mited infrastructure, but explanatory for the purpose of our work. The re-
sulting conclusions highlight the value of the proper selection of the structur-
al parameters of these algorithms and possible alternatives to the curve, field 
and domain parameters that can be used. 
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1. Introduction 

The most important issue a cryptocurrency such as Bitcoin has to offer to its us-
ers is the ability to handle a large volume of transactions in a short period of 
time with security and verifiability. 
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Often the developer’s task with respect to the key generation algorithm is the 
right choice of the algorithm’s domain parameters that will provide a sufficient 
combination of the above properties. For the Bitcoin cryptocurrency, the elliptic 
curve secp256k1 defined by the standards for an efficient cryptographic group 
(SECG) is the one used by the ECDSA algorithm, as discussed further in [1]. Al-
though safer curves have been proposed, speed, volume of work, but above all 
infrastructure, force developers to compromise looking for other security con-
trols. 

For the purpose of the research, we focused exclusively on the security of the 
algorithm, which we applied for specific experimental data. The resulting con-
clusions concern the selection of appropriate domain parameters on the specific 
safe elliptical curves from the NSA survey conducted by the United States of 
America, best explained by [2], on Galois field ( pF ). 

2. Theoretical Background 

2.1. Hash Function 

In Bitcoin, on the Blockchain platform, the user’s digital addresses are the result 
of fragmentation of a public key part Q produced by the ECDSA algorithm [3]. 
Hash functions have four very powerful properties, thoroughly examined by [4], 
that contribute to the security of transactions between users. Specifically: 
 Collision resistance: Collision resistance: Concept in which a hash function 

H is resistant to collisions of input values if it is infeasible to lead to a com-
mon output value from different input values. Otherwise, for ,x y  with 
x y≠  we arrive at ( ) ( )H x H y= . 

 Preimage resistance: For a predetermined output value y, it is infeasible to 
find the input value x that has it as output, i.e. it is difficult to find any prese-
lected input value x, so that ( )H x y= . 

 Second preimage resistance: It is not possible for a different input value x′ , 
with x x′ ≠ , to arrive at a valid ( ) ( )H x H x′= . 

 Hiding: A hash function has the ability to be hidden if for a hidden value i, 
which is selected from a distribution with a high min-entropy, for a given 
value ( )F i z  it is impossible to find the value z. 

Note that all addresses consist of letters and numbers, which are the output 
values of the Bitcoin-based hash function, with input values the corresponding 
parts of the public keys Q. The amount, the addresses of the contracted users 
and the dates of the transactions, as shown in Figure 1, are few of the elements 
contained on the Blockchain platform. 

2.2. Elliptic Curves 

Elliptic curves are the first mathematical tool used to create the ECDSA algo-
rithm, as discussed in [5]. Selecting a suitable curve that will simultaneously 
support the collateral needs of the platform is a building block. 

Elliptic curve: A curve whose shape is given by the equation: 
2 3 , with ,y x Ax B A B= + + ∈  
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Figure 1. An example of bitcoin address and transactions history of a typical user. 
 
where the basic condition is the discriminant 3 24 27 0A B∆ = ⋅ + ⋅ ≠  

Its points are given by the set: 
( ){ } { }2 3, :E x y y x Ax B O= = + +  , where O is the point at infinity. 

Algebraic properties: For two points ( )1 1 1,P x y=  and ( )2 2 2,P x y=  on an 
elliptic curve of the form 2 3:E y x Ax B= + + , the following properties, further 
explained by [6]:  

Apply 
 If 1 2P P≠  with 1 2x x= , then 1 2 0P P+ = . 
 If 1 2P P=  and 1 0y = , then 1 2 12 0P P P+ = = . 

 If 1 2P P≠  and 1 2x x≠ , then 

2 1

2 1

1 2 2 1
1 1

2 1

y y
x x

y x y xx y
x x

λ

β λ

− = −
 − = − + =
 −

 ⇒  Point Addi-

tion. 

 If 1 2P P=  with 1 0y ≠ , then 

2
1

1
3

1 1

3
2

2
2

x A
y

x Ax Bx y
y

λ

β λ

 +
=




− + + = − + =

 ⇒  Point  

Doubling. 
It is true from the foregoing that in general: 

( )( )2 3
1 2 1 2 1 2,P P x x x xλ λ λ β+ = − − − + + −  

Schematic examples of the above are illustrated in Figure 2. 

2.3. Galois Fields 

The second mathematical theory that supports ECDSA are the finite fields, 
commonly known as Galois fields, as mentioned in [7]. 
 Field: A set of numbers defining the operations of addition, multiplication, 

and consequently subtraction and division, which satisfy all the essential 
properties of these operations. 
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Figure 2. Examples of point addition and point doubling on 2 3 1y x x= − −  elliptic 
curve. 

 
 Galois fields are all fields of form { }0,1, 2, , 1pF p= −  with p prime 

number. These fields have a finite number of elements. The results of all op-
erations are divided by modulo p and are all prime field values. 

For example, 29F  is { }0,1,2,3, , 28 . Examples of numerical operations are: 
 Addition: 17 + 20 = 8, because 37 mod 29 = 8 
 Subtraction: 17 − 20 = 26, due to −3 mode 29 = 26 
 Multiplication: 17*20 = 21, because 340 mod 29 = 21 
 Division: 17 − 1 = 12, due to 17*12 mod 29 = 1 

Some very basic properties of Galois fields useful for conducting research are: 
1) Subfield-Field Expansion: For field F, we call K a subfield of F, when this 

is a field provided with the same operations as F, all elements of which belong to 
the original F. By analogy, F is an extension of subfield K. 

2) Galois Field Base: Algebraically a finite field np
F  can be a vector space of 

the pF  subfield, where the vectors will be the elements of the first and gradual 
sizes the elements of the second (depending on the operation we perform). For 

{ }1 2, , , nB b b b=   a base and np
a F∈ , a subfield element α  can be unique as 

1 1 2 2 n na a b a b a b⋅ ⋅= + + ⋅+   with ( )1 2, , , na a a  elements of the pF  field. 
3) Existence and Uniqueness: For every prime number p and positive integer 

n there is a finite field with np  elements, i.e. np
F . Any other finite field with 

the same number of elements is isomorphic to the previous one. 
4) Subfield Criterion: For qF  a finite field with nq p=  elements, we have 

that any subfield of mq
F  has an order mp , where m is a positive divisor of n. 

Conversely, for m positive divisor of n, there is exactly one subfield mq
F  of qF  

with mp  elements. 
Note: The Galois fields are widely used in modern cryptography. Specifically 

in software applications, in the development of processors due to the field 
arithmetic and the creation of fast desktop multipliers. These are only a few of 
the improvements they have been brought by Galois fields. 

2.4. Weierstrass Equation, Isoforms and Hasse Theorem 

The ECDSA algorithm is constructed from a specific elliptic curve (secp256k1) 
on a Galois field. The merge of the two previous theories is the Weierstrass equ-
ation, best explained by [8], which stated as follows: 
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Weierstrass equation: For an arbitrary (finite) field 𝐹𝐹 we define the Weier-
strass equation of the elliptic curve E on the field, i.e. E/F, which is of the form: 

( )2 3 2
1 3 2 4 6: with , .E y a xy a y x a x a x a x y F⋅ ⋅ ⋅ +⋅+ + = + + ∈  

where: 
For 1 2 3 4 6, , , , Fα α α α α ∈  we have 0∆ ≠ , where ∆  is the discriminant of Ε. 
In general, the above equation must be transformed into more friendly forms 

for use by any key pair generation algorithm. The following isomorphism is ap-
propriate. 

Weierstrass isomorphism (mentioned in [5]): For two distinct elliptic curves 
of Weierstrass form, 1 2,E E , on a finite field F with formulas: 

2 3 2
1 1 3 2 4 6

2 3 2
2 1 3 2 4 6

:

:

E y a xy a y x a x a x a

E y a xy a y x a x a x a

+ ⋅ + ⋅ = + ⋅ + ⋅ +

′ ′ ′ ′ ′+ ⋅ + ⋅ = + ⋅ + ⋅ +
 

The curves are called isomorphic on the field if there are , , ,u r s t F∈ , with 
0u ≠ , so for the transformation: 

( ) ( )2 3 2, ,x y u x r u y u s x t⋅ ⋅ ⋅+ ⋅→ + +  

Starting with 1E , we end up in 2E . 
Basically, we use isomorphism: 

( )
32
1 1 2 31 2 1 4 123 12 3

, ,
36 216 24

a a a ax a a y a xx y
 + −− − −

→
⋅

−


⋅



 

Which leads us to the known form of short Weierstrass elliptic curves over 
Galois field pF , p prime, with the formula: 

( )2 3 3 2where 4 27 mod 0y x a x b a b p= + ⋅ + ⋅ + ⋅ ≠ . 

Riemann’s hypothesis for elliptic curves (mentioned in [12]): For E an el-
liptic curve with points on a finite field qF , with ( )# nq

E F  the number of 
these points applies: 

( ) 2# 1 2 , 1.n

n
n

q
E F q q n− − ≤ ⋅ ∀ ≥  

By selecting n = 1 we have ( )# 1 2 , 1qE F q q n− − ≤ ⋅ ∀ ≥ -Hasse theorem [9] 
Note: The order of the field, i.e. the number of points of the elliptic curve on 

the Galois field is to be denoted by N. According to Hasse theorem, an easy first 
estimate of the order of the curve is calculated. 

Using similar isomorphisms, we result from the generalized Weierstrass equa-
tion in two other very useful elliptical curve cryptographic forms (ECC). 

Specifically: 
 Montgomery equation: concerning elliptic curves on Galois pF  fields of 

the form: 

( )( )2 3 2 2, where 4 mod 0B y x A x x B A p⋅ = + ⋅ + ⋅ − ≠  

 Edwards equation: concerning elliptic curves over Galois pF  fields of the 
form: 
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( )( )2 2 2 21 , where 1 mod 0x y d x y d d p+ = + ⋅ ⋅ ⋅ − ≠  

Note: It is possible, through proper transformation, to determine one form of 
elliptic curve equation from another. Specifically:  
 For a Montgomery elliptic curve through transformation,  

( ), ,
3
Ax y B u B v → ⋅ − ⋅ 

 
 we pass into a short Weierstrass form with the 

equation: 
2 3

2 3
2 3

3 2 9, where and
3 27

A A Av u a u b a b
B B

− ⋅ − ⋅
= + ⋅ + = =

⋅ ⋅
 

 For an Edward elliptic curve through transformation  

( ) ( ) ( )( ), , 1 1x y u v u u→ − +  we pass into Montgomery with the following 

equation: 

( )2 3 2 2 1 4, where and
1 1

d
B v u A u u A B

d d
⋅ +

⋅ = + ⋅ + = =
− −

 

Note: Generally, all elliptical equations on Galois , 3pF p >  fields can be in 
the form of a short Weierstrass equation. 

Rational points (explained in detail in [10]): Αll points ( ),x y , with 
, px y F∈  of the elliptic curves on the respective Galois pF  fields that satisfy 

their curve equations. If we have short Weierstrass or Montgomery equations, 
there is the O-point at infinity, while for Edward equations there is not. 

2.5. Elliptic Curves Discrete Logarithmic Problem (ECDLP) 

Elliptic Curve Cryptography (ECC) supports its safety in the difficulty of solving 
the discrete logarithmic elliptic curve problem (ECDLP). This means that the 
implementation of the ECDSA used to produce a key pair (𝑑𝑑, 𝑄𝑄) should support 
its functions in a robust pair of elliptic curve and Galois field, as explained in 
[11].  

ECDLP (Short Weierstrass): We consider an elliptic curve E defined on a fi-
nite field pF , with characteristic p i.e.: 

( )

2 3

3 2

: ?      , where ,

with restriction 4 27 mod 0
pE y x A x B A B F

A B p

= + ⋅ + ∈

⋅ + ⋅ ≠
 

For two points of ( )pE F , let P, Q we look for the integer ,x x∈  for 
which: 

Q x P= ⋅  

Complexity of Pohlig-Hellman—ECDSA (resilience, thoroughly explained 
by [12]): The Pohlig-Hellman algorithm is used for calculating discrete loga-
rithms with input a set of points of order n and having complexity ( )O n . 

By parameterizing ie

i
in p=∏  we degrade Pohlig-Hellman into a Baby-giant 

step algorithm, which results in the complexity of the algorithm to increase to 

( )( )logi iiO e n p+∑  
Let an elliptic curve E be defined on a Galois field pF , whose order is the 
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number ( )# pE F N= . Based on the above, order N can be presented as the 
product of prime numbers, i.e. 1 2 nN p p p=   which are the orders of sub-
groups produced by base points P. This makes it more difficult to solve ECDLP, 
which implies that the ECDSA algorithm is resilient to model-based attacks. 

We prefer orders i in p≡  to be large prime numbers. 
Domain parameters of ECDSA 
The domain parameters are the composite elements on which ECDSA is de-

signed to produce the requested keys for trading. Although the users of the 
platform know their values, it is common for security reasons to list the hash 
function outputs with input values, the values of the domain parameters. Bit-
coin’s ECDSA uses the elliptic curve secp256k1 with domain parameters 

( ), , , , ,T p a b G n h=  where: 
 256 32 9 8 7 6 42 2 2 2 2 2 2 1p = − − − − − − − , is the size of the Galois field pF . 
 The coefficients a = 0, b = 7 of the above curve. 
 The generation point G = 0279BE667E  

F9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B 16F81798,  
from which we produce the subset of the elliptic curve points in the field. 

 n =  
FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8C
D0364141, the order of the base point G.  

 The cofactor 1.h =  
The base point is the one from which the algorithm generates the subgroup of 

elliptic curve points applied to the Galois field. We prefer the order of the sub-
group produced for security reasons to be a large prime number. If N is the or-
der of the curve, then we look for the largest prime number n that divides the 
order of the curve. Simply selecting a base point with a non-prime subgroup 
n order makes the algorithm vulnerable to attacks because it is not ade-
quately supported by the ECDLP. 

The process of finding the order n is fulfilled by the procedure of elliptic curve 
scalar point multiplication, i.e. by solving the equation: 

( ) mod 0n P p⋅ = , where P is a point of ( )pE F . 

Cofactor 
( )# pN E F

h
n

=
= , with h∈  is used to calculate the base point G 

by solving the equation: 

( ) 0n h P n G⋅ ⋅ = ⋅ =  with .G h P= ⋅  

2.6. Model-Based Attacks versus ECDSA 

In the present work, we will unleash three model-based methods of attack, such 
as Brute force, Baby-giant step and Pollard's rho. The methods will violate the 
ECDSA algorithm to steal the private key d of the transaction, as explained by 
[13]. This creates serious problems for the victim of the violation and for the 
Blockchain platform, whose prestige is irreversibly impaired. The purpose of the 
research is to demonstrate at an experimental level that any change in the do-
main parameters of the elliptic curve and the Galois field of the algorithm, as de-
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fined by the NSA survey, is dangerous to the security of the algorithm and by 
extension to the users’ private keys, as discussed in [14]. 

Brute force: Calculates the products 1 2 3, , ,x P x P x P⋅ ⋅ ⋅   for random values 

1 2 3, , ,x x x   until x P Q⋅ =  is verified for some value. The length of time until 
the above verification, is ( )O p . Clearly the most time-consuming method re-
quiring a powerful computing system for comparable results over the next. The 
symbolism O is Landau’s big O notation. 

Baby giant step: First, we transform the equality Q x P= ⋅  that we verify as: 
Q a m P b P− ⋅ ⋅ = ⋅  
Reminder: Generally, any integer ,x x∈  can be written as a product of 

three arbitrary integers , ,a m b∈ , so that x a m b= ⋅ + . 
So, in the next step two vector lists of the starting points ,P Q  of ( )qE F  are 

created with the previous coefficients ( )1 2 3, , ,x x x   i.e.: 

1 2 3

1 2 2

Vector 1: , , ,
Vector 2 : , , ,

x P x P x P
Q x P Q x P Q x P
⋅ ⋅ ⋅

− ⋅ − ⋅ − ⋅





 

The process ends when a collision of the following form occurs: 

, where , 1,2,3,i jx P Q x P i j⋅ = − ⋅ =   

The expected execution time is ( )O q  and is clearly less than the equiva-
lent of the exhaustive method (Brute force). 

(Pollard’s Attack): with this method, we search for discrete pairs ( ),a A  and 
( ),b B  of modulo n integers to verify equality: 

, with , , ,a P b Q A P B Q a b A B⋅ + ⋅ = ⋅ + ⋅ ∈  

Specifically we calculate the value 

( ) ( ) 1 modx a A B b n−= − ⋅ −  

Briefly 
1) For a given point X P∈  and integers ( ),c d  with X c P d Q= ⋅ + ⋅ , a 

random iteration function :f P P→  is defined, which calculates 
( )X f X=  and [ ], 0, 1c d n∈ −  with X c P d Q= ⋅ + ⋅ . 

2) Subsequently we define a random partition of P , the set { }1 2, , , LS S S  
in order the L sets to have an even approximate size. Typical values of L are 16 
(24) and 32 (25). 

3) For X c P d Q= ⋅ + ⋅  we have ( )f X X c P d Q= = ⋅ + ⋅  where  
modjc c a n= +  and modjd d b n= + . 

Finally, each point 0X P∈  defines a sequence { } 0i i
X

≥
 of points, where 

( )1i iX f X −= , 1i ≥ . Because the P  set is finite, we will definitely come to a 
collision. This means that there will be a small index w for which w w sX X += , 

1s ≥ . In conclusion we have ,i i sX X i w s−= ∀ ≥ + . 
W is called “tail length”, while s is the “length of the circle”. A collision is ex-

pected after π 2n⋅  values, while the tail and cycle lengths are respectively 
~ π 8t n⋅  and ~ π 8s n⋅ . The algorithm used to find this collision is the 

Floyd Cycle Finding algorithm. We calculate point pairs ( )2,i iX X  for 
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1, 2,3,i =   and terminate the process when 2i iX X= . There is a collision 
when for two points ,i j i jX X X X⇒ =  for i j≠ . The expected number of 
pairs to be compared is [ ],k w w s∈ +  and for random iterated function f is 
1.0308 n⋅ . 

Advantages of ECDSA: 
1) With respect to earlier cryptographic tools such as RSA, DSA, elliptic curve 

algorithms offer greater security for a certain key size. This is also observed for 
small key sizes, which by definition are much more vulnerable than larger ones. 

2) Time and memory space required to produce and distribute messages in 
the case of ECDSA is significantly smaller than in previous tools. In this way, the 
platform becomes accessible to more users and researchers. 

3) From an economic point of view, systems based on elliptic curve algorithms 
are more cost-efficient than older algorithms in storage, cooling and energy. 

Disadvantages of ECDSA: 
1) Cryptographic tools are primarily free to access by all kinds of users, al-

lowing the creation of tools for violating any kind of platform. 
2) Encrypted information, authentic and digitally signed, can be difficult to 

access even for a legitimate user at critical decision time, especially when the 
platform is tampered with. 

3) Cryptography by definition does not protect against the vulnerabilities and 
threats that result from bad design of systems, protocols and processes. 

2.7. Experimental Analysis 

At this point, we present all the experimental results that emerged from the re-
search. Specifically, we have implemented the ECDSA key pair generation algo-
rithm for two Galois 50101F  and 100153F  fields with appropriate base points of 
our choice. We then launched three model-based attacks such as Brute force, 
Baby-giant step and Pollard rho to steal private keys used in transactions. By 
counting the time required to carry out the wrenching of the private key, we 
have arrived at significant practical conclusions. 

Before the tables and diagrams are presented, we must mention the modifica-
tions to the algorithm and the assumptions made for the better conduct of the 
survey. Analytically: 
 We modified the GitHub mini_ecdsa algorithm, as referenced in the relevant 

bibliography, designed to calculate the first 10 - 12 base points of order only 
prime number. Specifically, by finding one of the points of the elliptic curve 
on the Galois field, we examined the order of the subgroup we create when 
that point is used as a base point. If order n is prime number then we would 
consider it for study, otherwise we are going to be checked at the next points. 
This double check to find points increases waiting time in many hours per el-
liptic curve, but it serves the rest of the research to a large extent. 

 The Galois fields we studied are objectively very small than those used in 
key-generation algorithms. The reason is the limited infrastructure. It is no-
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ticeable that the wait for double check increases exponentially, when the size 
of the Galois field increases. The results, however, are similar and expected. 

 From the above points, we have chosen as base points those for which the 
largest possible subgroup n order has been obtained. It is known that the 
larger the n order is, the greater the security in minor attacks, that we are not 
studying in this research. In addition, it was observed that for larger n order 
larger private keys are emerging, which is very important for research. 

 Despite the elasticity of the base point selection algorithm, we remain “loyal” 
to the ECDLP problem on which the ECDSA algorithm is based, i.e. the base 
point selection that gives as an order n prime number. 

 In applying the algorithm, we additionally chose elliptic curves with Edward 
equations, which we transformed into short Weierstrass. The reason is that 
the mini_ecdsa algorithm, best explained in [15], has been chosen to study 
elliptical curves of the form: 

2 3 2y x a x b x c= + ⋅ + ⋅ +  defined on pF , p prime number. 
The above equation is an intermediate form of Short Weierstrass and Mont-

gomery. 
In particular, the equations of the above form are: 
Having properly transformed the elliptic curves, which are displayed in Table 

1, we pass on the level of the analysis of the results, as shown in Table 2. 
 

Table 1. All the elliptic curves and their equations used for the research purposes in 
Weierstrass form. 

Curve Equation 

secp256k1 2 3 7y x x= + +  

Curve25519 2 3 2486662y x x x= + +  

Curve383187 2 3 2229969y x x x= + +  

M-221 2 3 2117050y x x x= + +  

M-551 2 3 2530438y x x x= + +  

Anomalous 2 3 62 601.535e 7.444ey x x⋅= + +  

BN(2,254) 2 3 2y x= +  

BrainpollP256t1 2 3 763 4.621ey x x= − +  

Curve1174 2 3 28489 1926947y x x= − +  

E-222 2 3 13333333333y x x= +  

E-382 2 3 94211737 352268124782y x x= − +  

E-521 2 3 14833242554 6219980097646y x x= + +  

Ed448-Goldilocks 2 3 318383 692424y x x= − +  

M-383 2 3 22065150y x x x= + +  

NIST P-224 2 3 673 1.896ey x x= − +  
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Table 2. Applying all model based methods in all above-mentioned elliptic curves on F50101 Galois field. 

Galois Field F50101 

     
Method (Time in sec) 

Curve Base Point P Order n Private Key d Point P Brute Force Baby-Giant Step Pollard’s rho 

secp256k1 (99, 11,436) 137 52 (35,925, 39,101) 0.008 0.001 0.002 

Curve25519 (1288, 23,396) 181 156 (48,651, 17,578) 0.225 0.004 0.005 

Curve383187 (88, 17,366) 1049 988 (12,662, 41,418) 0.023 0.01 0.006 

M-221 (15, 14,998) 12,547 11123 (2847, 24,111) 4.239 0.068 0.032 

M-551 (4, 3728) 3119 1440 (33,896, 38,549) 0.289 0.011 0.008 

Anomalous (378, 6853) 211 104 (49,646, 42,661) 0.014 0.002 0.004 

BN(2,254) (61, 4601) 1021 319 (16,955, 40,535) 0.237 0.006 0.004 

BrainpollP256t1 (16, 25,549) 25,057 23719 (5992, 11700) 9.736 0.085 0.022 

Curve1174 (26, 44,099) 4549 4345 (929, 5479) 1.864 0.04 0.026 

E-222 (184, 13,447) 701 552 (45,080, 196) 0.096 0.006 0.005 

E-382 (16, 2607) 4999 4913 (20,242, 13,648) 1.25 0.027 0.009 

E-521 (280, 28,472) 991 831 (18,354, 4898) 0.158 0.008 0.005 

Ed448-Goldilocks (694, 9865) 499 99 (911, 12,900) 0.012 0.002 0.006 

M-383 (76, 7159) 349 252 (46,426, 38,837) 0.036 0.004 0.004 

NIST P-224 (78, 4999) 1931 1703 (10,585, 26,862) 0.356 0.012 0.004 

 
Remarks: 
1) For all curves defined on the field, the private key is stolen in a very short 

time. Fact expected due to the small size of the Galois field and the limited base 
point options. 

2) Some curves like Curve1174 and Ed448-Goldilocks show much longer re-
sistance against the Brute force method. However, all curves succumb almost 
immediately to Baby-giant step and Pollard’s rho attacks. The reason is their 
search model and quick verification of the corresponding ECDLP solution. 

3) The higher the n order of the subgroup of the base point P, the larger the d 
private key created. For the public key Q this is not observed. In all cases where a 
large private d key is observed, the times for all the model-based methods are 
comparatively much longer than for other elliptic curves for which the subgroup 
order n gives small-sized private keys. 

4) The theory of the complexity of the Pohlig-Hellman algorithm is verified as 
to the difficulty of solving the ECDLP problem for large orders n of subgroups, 
and therefore the ECDSA algorithm’s durability. 

Correspondingly, for the Galois Field F100153 the results of the survey are dis-
played in Table 3. 

Corresponding observations with field results F50101 also arise here. By com-
paring the tables, we also observe: 

1) For elliptic curves such as secp256k1 and Curve1174 when doubling the 
Galois field there is a longer tolerance for the Brute force method only. The oth-
er smarter methods used to steal the private key consume almost equal times. 
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Table 3. Applying all model based methods in the above-mentioned curves on F50101 Galois field. 

Galois Field F100153 

     
Method (Time in sec) 

Curve Base Point P Order n Private Key d Public Key Q Brute Force Baby-Giant Step Pollard’s rho 

secp256k1 (149, 62,878) 1933 1360 (4678, 2942) 0.446 0.013 0.009 

Curve25519 (2318, 11,352) 179 102 (69,082, 18,748) 0.022 0.003 0.003 

Curve383187 (1258, 2668) 733 701 (79,043, 21,484) 0.17 0.008 0.006 

M-221 (1843, 70,129) 107 100 (64,009, 10,304) 0.013 0.002 0.003 

M-551 (2115, 86,231) 271 101 (44,889, 47,472) 0.021 0.003 0.005 

Anomalous (2995, 96,951) 43 40 (61381, 17502) 0.004 0.001 0.001 

BN(2, 254) (240, 321) 1231 994 (57435, 36387) 0.294 0.008 0.004 

BrainpollP256t1 (2368, 5807) 83 61 (46,066, 25,833) 0.004 0.001 0.001 

Curve1174 (8, 93683) 99551 96542 (15,179, 6830) 66.859 0.231 0.086 

E-222 (3, 98740) 1229 781 (77,951, 68,281) 0.274 0.013 0.01 

E-382 (785, 3790) 148 148 (65,000, 4657) 0.029 0.004 0.006 

E-521 (858, 16,707) 893 760 (82,041, 45,996) 0.186 0.009 0.005 

Ed448-Goldilocks (6, 85,750) 50021 35057 (77,073, 78,269) 12.331 0.105 0.031 

M-383 (22, 72,669) 6229 6161 (60,238, 81,175) 1.678 0.033 0.009 

NIST P-224 (3079, 50,355) 229 174 (25,906, 3547) 0.024 0.003 0.002 

 

2) On the contrary, for curves such as BrainpollP256t1 and M-221, doubling 
the field made them more vulnerable even to the Brute force method. For the 
other two methods, we observe as expected very short times. 

At the diagram level, the times for all the model-based methods for the ellip-
tical curves Curve1174, M-221, NIST P-224, secp256k1 are displayed in Graph 
1. 

Likewise the diagram level and the time tolerance for all the model-based me-
thods for the elliptical curves Brainpoll256t1 and Anomalous are displayed in 
Graph 2. 

Important Note: You may wonder why search for candidate base points P 
takes many hours, while model-based attacks squeeze the private key d in much 
shorter times. It is sufficient to consider that the equations of the elliptic curves 
we chose are very large, which delays the finding of ( )pE F  points starting 
from a absolutely random point search in combination with the integer division 
defined in the Galois field. In addition, the order n check performed at each such 
point further delays the whole process. On the contrary, solving the Q d P= ⋅  
equation of the ECDLP for calculating d takes place much faster, since the public 
keys Q and the base point P are known to all users of any platform. 

Study of d private keys 
The private key d is clearly the most important building block of a transaction 

taking place at Bitcoin. For this reason, it is the target of potential hackers who,  
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Graph 1. Tolerance of secp256k1, NIST P-224, M-221 and Curve1174 against all model based attacks on both Galois fields. 

 
use one of the above-mentioned model-based methods of attack or their variants, 
seek to steal it within a reasonable period of time. Ownership of a user’s ac-
count is determined by who knows the private key, i.e. it controls the ac-
count. For this reason, users should never disclose or make public their 
private keys, because their theft has irreversible consequences. The ECDSA 
algorithm, which takes into account the developer-defined structural parameters, 
is responsible for creating the private keys and, consequently, for the security of 
the system. 

Below we study cases of making private keys from the algorithm for some el-
liptic curves from those we studied in the Galois field 100153F . By maintaining 
specific domain parameters, such as the base point P and the order n of the sub-
group, we have studied the impact on the production of private keys. Note that  
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Graph 2. Tolerance of BrainpollP256t1 and Anomalous against all model based attacks on the Galois fields. 

 
these results are the outcome of great search in all above-mentioned elliptic 
curves. The following were chosen because of their representative image for the 
purpose of the survey, but this did not mean that there were no alternatives. 

Note: Usually for the same domain parameters, the ECDSA algorithm allows 
code-level creation of many private keys that serve the same needs with the same 
efficiency. This is most common for huge Galois fields. 

In the first phase, we defined the E elliptic curve M-383 according to the for-
mula: 

2 3 2: 2065150 withE y x x x x= + ⋅ + ∈ , 

In the finite Galois field mentioned, maintaining the base point  
( )22,72669P  stable, for which a subgroup of points of the curve with order n = 

6229 is created, a value which is objectively large prime number in relation to the 
field. Below in Table 4 are indicative results in tabular form: 

We notice that with the creation of three different key pairs ( ),Q d , as the 
size of the private key increases, the algorithm’s “resistance” to model-based at-
tacks increases, with the exception of Pollard rho. Corresponding picture is ob-
served in all elliptic curves of the survey. 

Diagramically, the stealing times are plotted per model-based method in 
Graph 3. 

Conclusion: From an algorithm perspective, it is possible to improve the se-
curity of a user’s account by generating a large-sized private key. This security 
involves model-based methods such as Brute force and the Baby-giant step and 
variations thereof. Pollard rho does not appear to be affected to some extent. Fi-
nally, the size of the public key does not affect the results at all. 

Two further elliptic curves, Curve1174 and BrainpollP256t1, were then stu-
died. Their equations are: 

2 3 28486 1926947y x x= − ⋅ +  & 2 3 763 4.621 10 ,y x x x≅ − ⋅ + ⋅ ∈  
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Table 4. Tolerance of M-383 curve on the F100153 Galois field for fixed Base Point P and value of order n. 

Galois Field F100153 

     
Method (Time in sec) 

Curve Base Point P Order n Private Key d Public Key Q Brute Force Baby-Giant Step Pollard's rho 

M-383 (22,72669) 6229 

4161 (70,789, 7108) 1.072 0.024 0.007 

5683 (63,106, 12,167) 1.615 0.031 0.01 

6161 (60,238, 81,175) 1.678 0.033 0.009 

 

 
Graph 3. Test results illustrating the tolerance of M-383 curve. 

 
Table 5 presents the collected data: 
For the Curve 1174 we chose to keep stable the n order of the subgroup of 

points produced by different base points P. 
 Initially keeping the abscissa of the base point stable, we again compared the 

private key d time of theft. We notice that for a larger ordinate, the generated 
private key increases and exhibits greater “resistance” to the Brute force and 
Baby-giant step model-based methods. As before, the Pollard rho method is 
not affected to some extent. 

 In the second phase, maintaining the base point stable, we applied the algo-
rithm several times until we arrive at two pairs (d, Q) with a larger private 
key. We notice as before, more resistance to Brute force and Baby-giant step. 
Pollard Rho method times of theft remain small. 

Note: While in the M-383 the Pollard Rho method times are not affected by 
the size of the private key d, on the contrary Curve1174 shows that the respective 
times are affected either negatively (d = 33,257 → d = 40,680) or positively (d = 
33,257 → d = 96,542). Note that no workable conclusion emerged from the over-
all study of Curve1174 elliptic curve. 

The results are shown diagrammatically in Graph 4 and Graph 5 respectively: 
Finally, for the same reasons, we studied the BrainpollP256t1 curve. Here we 

observed that on the contrary with previous M-383 and Curve1174, Brain-
pollP256t1 presents a stable motif with unexpected increases in “resistance” 
across the three model-based methods. Diagrammatically came out the following, 
which can be seen in Graph 6: 
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Table 5. Tolerance of Curve1174 and BrainpollP256t1 curves against all model based methods for a number of fixed Base Points P 
and order n values. 

Galois Field F100153 

 
Method (Time in sec) 

Curve Base Point P Order n Private Key d Public Key Q Brute Force Baby-Giant Step Pollard’s rho 

Curve1174 

(0, 32,805) 

99,551 

14,532 (63,436, 61,932) 7.607 0.111 0.05 

(0, 67,348) 27,861 (97,688, 99,242) 16.143 0.144 0.045 

(8, 93,683) 33,257 (1310, 23,887) 19.615 0.156 0.062 

(8, 93,683) 40,680 (60,101, 4759) 24.538 0.167 0.033 

(8, 93,683) 96,542 (15,179, 6830) 66.859 0.231 0.086 

BrainpollP256t1 

(4, 21,591) 

25,057 

11,961 (23,353, 47,637) 4.699 0.053 0.015 

(4, 28,510) 13,327 (11,666, 38,300) 5.284 0.068 0.028 

(7, 24,312) 20,458 (9236, 24,170) 8.602 0.079 0.016 

(16, 25,549) 23,719 (5992, 11,700) 9.736 0.085 0.022 

 

 
Graph 4. Tollerance of Curve1174 for different private keys d. 
 

For BrainpollP256t1 we observe the following: 
 When the ordinance of the base point increases (the first two triplets of the 

barplot), the private key increases, resulting in longer resistances in all mod-
el-based methods, even in Pollard rho, which has not been observed so far. 
Specifically from ( )4,21591P  to ( )4,28510P . 

 In the other two column triads we get ( )7,24312P  and ( )16,2549P  by 
increasing both base point components. Again, the times of all methods until 
the private key d is taken up increase. 
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Graph 5. Tollerance of Curve1174 for different Base Point P. 

 

 
Graph 6. Tolerance of BrainpollP256t1 against model based methods for a number of 
private keys d. 

 
We conclude that elliptic curve selection, such as BrainpollP256t1, against 

another, such as M-383, may have positive effects particularly against the Pollard 
rho method, which is objectively the most effective of the other two studied. 

General remark: The results of the survey are heavily influenced by the infra-
structure. When calculating the private key times of theft executing the algo-
rithm for the same curve and just the same domain parameters by unleashing 
any model-based method, many different times were observed, without of 
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course using another computer. The average of these times is the one completed 
in the data tables. The random production of the above times has not been sub-
ject of research. 

Notes: 
 The elliptical curve used in a cryptocurrency is chosen for a specific purpose. 

For example, BrainpollP256t1 for smaller base points produces larger private 
keys than Curve1174. However, the waiting time for calculating the base 
points of the former is much greater than that of the second. For a new cryp-
tocurrency, if developers want large private keys for users, they are more 
likely to opt for brainpoll256t1 vs. Curve1174. 

 Any mathematical model-based method of stealing will succeed over time. 
The point is that if times of theft approach prohibitive values with respect to 
natural time, then we consider them to fail. Acceptable transaction time is 
the one that does not allow the reversal of the transaction after verification. 

3. Conclusions 

On a daily base millions of transactions are executed in various cryptocurrencies 
around the world. The pair of keys of each user is his digital identity, which 
means that their security is a matter of utmost importance. Those responsible for 
safety are algorithms such as ECDSA. The domain parameters of the above algo-
rithms were the subject of the research. 

We chose to study in addition to the secp256k1 already used by the algorithm, 
all proposed elliptic curves that the NSA has declared as the most secure. Sec-
ondary criteria such as high transaction speeds were not studied. 

Generally, useful patterns were observed when selecting the base point 𝑃𝑃, 
with respect to its coordinates, resulting in an increase in the size of the user’s 
private keys. Accordingly, the choice of the elliptic curve to be used by the algo-
rithm to produce the keys plays a very important role. Of course, any change to 
the above domain parameters should be reconsidered because it does not always 
lead to better safety results. 

In any case, it is recommended to use the domain parameters of the safe ellip-
tic curves as stated on https://safecurves.cr.yp.to/ if the infrastructure allows the 
programmer-manager of the platform to do so. 
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