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Abstract 
The vibrations of deformed bodies interacting with an elastic medium are 
considered. The problem reduces to finding those values of complex Eigen 
frequencies for which the system of equations of motion and the radiation 
conditions have a nonzero solution to the class of infinitely differentiable 
functions. It is shown that the problem has a discrete spectrum located on the 
lower complex plane and the symmetric spectrum is an imaginary axis. 
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1. Introduction 

In this paper we consider oscillations of cylindrical bodies in a deformable me-
dium [1] [2] [3]. From the physical point of view, the damping in an ideal elastic 
medium is explained by the radiation of energy excited by the natural oscilla-
tions due to divergent elastic waves. The behavior of complex Eigen frequencies 
depending on the geometric and physic mechanical parameters of the system is 
investigated. The environment of cylindrical and spherical bodies is considered 
as elastic, viscoelastic and multicomponent. The obtained numerous results are 
compared on a computer. A piecewise homogeneous mechanical system is re-
garded as dissipative homogeneous and inhomogeneous. The ideal elastic body 
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has no losses [4] [5]. Such a body is characterized by a linear single-valued rela-
tionship between stress and strain throughout the entire period of the alternat-
ing voltage. Hence it follows that stress and deformation are always in phase. 
The energy dissipation of an elastic wave will occur if the stress and strain are 
not connected by an unambiguous dependence during the period of oscillations. 
The absence of such an unambiguous relationship between stress and deforma-
tion arises when temporal derivatives appear in the equation connecting them. 
Even if the equation is linear with respect to stress and strain, the presence of 
time derivatives is always associated with dissipation. As a result, with an alter-
nating voltage there is a hysteresis effect. This means that in the frequency range 
in which attenuation has an appreciable magnitude, the strain will lag behind the 
voltage. The presence of only a nonlinear connection between stress and defor-
mation (without time derivatives in the equation) has two effects. Such a con-
nection, firstly, leads to the interaction of the elastic wave under consideration 
with other waves (for example, with thermal vibrations) and as a result there is a 
redistribution of energy between the waves. Secondly, the considered wave will 
generate higher harmonics, transferring their energy to them. In both cases, the 
interaction depends on the strain amplitude. The nonlinear relationship between 
stress and strain in the presence of time derivatives also leads to damping, which 
depends on the strain amplitude. The Eigen vibrations of the rods and shells in 
an elastic medium are considered in [6] [7] [8]. In these works, the environment 
of rods and shells is replaced by elastic springs, i.e. the coefficient of spring stiff-
ness is taken into account in the calculation. In [9], free oscillations of spherical 
shells interacting with an elastic medium. Numerical results are obtained and 
analysis is made. In the present paper, in contrast to the known papers, instead 
of the Somerfield radiation condition at infinity, an alternative condition is con-
sidered-non-reflecting boundaries. 

2. The Body’s Own Oscillations in the Medium 

Three problems of natural oscillations of bodies interacting with the medium are 
considered. 

We consider model problems for the wave equation and, for example, dem-
onstrate the general scheme for constructing a solution with allowance for the 
radiation principle. The solution of the problem of natural oscillations of a 
semi-infinite rod with mass m (Figure 1) has the form 

( )
( )
( )

1

1

e , 0
,

e , 1

i t

i kx t

W x x x
u x t

a x

ω

ω

−

−

 < <= 
>

 

where ; 0R I Iiω ω ω ω= + > . Let k cω = —known real speed, c kω = —complex 
wave number. On an infinite section 

( ), e e .i t i x cu x t a ω ω− −=  

We define the dependence of u on x for t = 0: 
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Figure 1. Calculation scheme. 
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As can be seen, Figure 1 with increasing x displacement ( ),0u x  at the  

expense of e
I x

c
ω

 term increases to infinity. Thus, when solving the problems of  
natural oscillations of cylindrical bodies in an elastic medium at infinity ( r →∞ ) 
the potential of the displaced Summerfield is not fulfilled. Thus, a new type of 
condition is required when r →∞ . 

2.1. Consider the Natural Oscillations of the Composite Rod, to  
the Left It Is Fixed, and to the Right Is the Damper (Figure 1) 

The main goal in this problem is to show the independence of the Eigen fre-
quencies of the left rod from the length of the right rod if shortened Summer-
field conditions are put at the end of the right rod [10] [11]. 

It is required to find the solution of the following homogeneous equation: 
2 2

2 2 0u uG
x t

ρ
∂ ∂

− =
∂ ∂

,                      (2.1) 

G EF= , Young’s E-module, F-cross-sectional area, ρ—density of the rod 
material) with the following boundary conditions 

( )
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              (2.2) 

We express the solution of (2.1) in the form 

( ) ( ), e iwtU x t U x −=                       (2.3) 

where ( )U x —amplitude function, for each section 10 x x< <  and 10 x x< < ; 

1 2x x x< < , we write in the form 

0
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             (2.4) 

To determine the constants C we have the following boundary conditions: 

( )
( ) ( )
( ) ( )

( ) ( )
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1
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                  (2.5) 

From the boundary conditions we obtain 
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      (2.6) 

where 2 2

2 2p p

G G
C C

β µ µ
      = − +   
      

.  If  we set 2 2pG Cµ = ,  that is,  the  

right-hand end is set to the radiation conditions 1 0β = , then (2.6) takes the 
following form 

1
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             (2.7) 

The spectrum of eigenvalues is defined by formula 
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where by logarithm is meant the main real branch is the invalid part of the ei-
genvalues kω  has the meaning of the frequency of natural oscillations. They 
exactly coincide with the natural frequencies of the left side of the rod 
( 10 x x< < ) with a fixed end at 1 2 2 1p pG C G C> . 

When 1 2 2 1p pG C G C<  actual parts uk coincide with the natural frequencies of 
the rod, with a free right end. The imaginary parts uk have the meaning of the 
damping coefficients and are the same for all eigenvalues uk. The logarithmic 
damping decrement decreases inversely proportional to the Eigen frequency 
number. If 1 2G G=  and 1 2µ µ=  , then we get the natural oscillations of the rod, 
the left end is fixed, and the right damper. The frequency Equation (2.8) takes 
the following form 
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µ µ
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                  (2.9) 
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Natural frequency 
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+
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Reflection is absent, since the supplied conditions are satisfied by a divergent 
cylindrical and spherical waves. 

2 2
1

2 2

G G
С Сρ ρ

β µ µ
      = + −   
      

, 

at i = 0, there exists a real natural frequency. Real parts ωk coincide with the ei-
gen frequencies of the rod with free right the end. The imaginary parts are equal 
to zero. When 1 1рG Сµ =  semi-infinite rod, there is no natural frequency. In 
this way ( 1 1рG Сµ =  non-reflection conditions), the frequency Equations (2.6) 
do not depend on the length of the right rod. 

2.2. Anti-Flat Oscillations of a Cylinder Immersed in an Infinite 
Medium 

It can be shown that, for 1R , the problem under consideration is equivalent 
to the problem of the eigen vibrations of a two-layered cylinder depicted in Fig-
ure 2, which is satisfied by the following equations of motion and boundary 
conditions [12]: 
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+ − = =
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              (2.11) 
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       (2.12) 

where μ2—he Lame coefficient. 
Now we determine the conditions for the absence of reflection for r = R. For 

1R  divergent waves has the form 

( )
π
41, e

i r t
U r t

r

α ω

α

 − − 
 = .                (2.13) 

Since the asymptotic are valid 
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where α—wave number; y is the natural frequency. From relation (2.13) we have 
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Figure 2. Calculation scheme. 
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or U i u
t

ω
∂

= −
∂

. After some transformations, we get 

1
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r t r

α
ω

∂ ∂
= − −

∂ ∂
,                   (2.16) 

Thus, the condition for r = R has the following form 

3
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2

1
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2

r R r R
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U U U
r t R

U U
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α
ω

µ µ
σ

= =

=
==
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∂
= −

∂

               (2.17) 

For radial oscillations, it follows directly from (2.17) that 

2 2

2 2rr r R
r Rp r R

u u
C t R
µ µ

σ
=

==

∂
= − −

∂
               (2.18) 

Under this condition (2.18), obtaining the frequency equation does not de-
pend on the radius of the outer cylinder. 

2.3. Radial Oscillation of a Spherical Body 

Let us consider in an unbounded medium the radial oscillations of the cavity, 
accompanied by the emission of longitudinal sound waves, which leads to a loss 
of energy, and thus to a damping of the oscillations. When p sC C  the prob-
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lem under consideration is equivalent to the problem of the natural oscillations 
of the spherical hole shown in Figure 2. The solution of this problem will be 
sought in the form of a “potential” of displacement ( ),r tϕ , satisfying equation 

2 2

2 2
2

2 1 0
рr r Сr t

ϕ ϕ ϕ∂ ∂ ∂
+ − =

∂∂ ∂
                  (2.19) 

The solution (2.19) presented in the form 

( ), e e ei re iar i tA Rr t
r r

α ωϕ − −  = +    
               (2.20) 

satisfies the boundary conditions 

0rr r aσ
=
=  

and 
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,                 (2.21) 

where 

2 4 ,rr ta
r r

ϕ
σ µ ϕ

∂ = − + ∂ 
 

2
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2p
p

a
C
ω

= ;
2

2
2t
s

a
C
ω

= ; 2 2
pC λ µ

ρ
+

= —longitudinal wave velocity; 2
sC µ

ρ
= —  

velocity of propagation of transverse waves. Substituting (2.20) into (2.21), we 
obtain 

( ) ( ), e pi a r tAr t
r

ωϕ −
=  

Substituting (2.21) into the boundary condition (2.21), we have 

( )
2

4 1р

s

C
кa iкa

C
 

= − 
 

 

from here at p sC C  

2
1s s

р

C Ci
a C

ω
 

= −  
 

                     (2.22) 

At a →∞  a natural frequencies 0ω → ; When pC →∞  the natural  

frequency takes the following form 2 sС
a

ω = . It is clear from (2.22) that 

R Iiω ω ω= +  where 2 s
R

С
a

ω = ; 1s
I

P

С
C

ω =  . The resulting expression (2.22)  

completely corresponds to the results of the work of Landau and Lifshitz, which 
are obtained on the basis of the Somerfield radiation condition. 

Thus, two problems for an infinite and finite domain are equivalent. This is 
explained by the fact that at the outer boundary conditions are set for the ab-
sence of reflection, which in the general case are written in the form 
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( ) ( )L R l R∞ ∞=U U                       (2.23) 

Here L and l linear differential operators, R∞ —border selected area of infinite 
media, U —vector of displacement. Equation (2.23) replaces the Somerfield 
radiation condition. 

Equations (2.7), (2.18), and (2.21) is a particular case of (2.23). Equation (2.23) 
is the nonreflecting condition of the “Troyanovski - Safarov”. In a particular case, 
it results in a shortening of the Sommerfeld radiation condition [13] 

1lim 0
r

r iK
r→∞

∂ + = ∂ 

U U . 

3. The Eigen Vibrations of Piecewise-Homogeneous  
Cylindrical Systems 

We consider the natural oscillations of piecewise-homogeneous cylindrical bo-
dies in an infinitely elastic medium (Figure 2). The purpose of which is to show 
the influence of piecewise homogeneity on natural frequencies and damping in-
dices of a mechanical system. 

The linear equation of motion in displacement potentials in the absence of 
volume forces has the form 

2 2

2 2 2 2

1 10; 0;k zk
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pj sjc t c t
φ ψ

φ ψ
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∂ ∂

             (3.1) 
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θ θ

∂ ∂ ∂
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Solutions of Equations (3.1) are sought in the form: 
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∞
−
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∞
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
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∑

∑
            (3.2) 

where n—integer; ω—complex natural frequency; 1

0

rr
a

= . At infinity ( r →∞ )  

The Sommerfeld conditions for each component are formulated. Substituting 
(3.2) into (3.1), we obtain the following ordinary differential equations: 

( )
2

2 2 2 2 2
1 220, , 1, 2; 2 , .in i in i c c c c c

i

K K i c c
c
ω

ϕ ϕ λ µ ρ µ ρ∇ + = = = = + =  

Let us consider the natural oscillations of a cylindrical hole in an elastic me-
dium. On the boundary r = a we set the condition free of stress, i.e. 

0rr rr a r aθσ σ
= =
= = .                     (3.3) 

Substituting (3.2) into (3.3), we obtain the frequency equation 

1 2 2 1 0n n n nZ X Z x+ =  
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where 
( ) ( ) ( ) ( ) ( )1 11 2

1 0 1 0 2 1 0 0 0 ;n n nX H a d H+= Ω Ω + − Ω Ω  
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( ) ( ) 2 1 2
1 1 1 2 2 0 1 11 1 2 ; ; ; ;n nd v v a n a n n L= − − = = − Ω = Ω  

( ) ( )( )1 1 1 1 11 2 2 1 ; pL v v a Cω= − − Ω =  

With natural oscillations at r R∞=  Shortened Sommerfeld conditions are 
put in place, i.e. 

1 2
1 1 2 2lim 0, lim 0n n

n nr r
r iK r iK

r r
ϕ ϕ

ϕ ϕ
→∞ →∞

∂ ∂   + = + =   ∂ ∂   
. 

The solution of the wave equation is sought in the form 
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r

r
ωϕφ θ
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∞
−
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=          
∑                    (3.4) 

where ω—purity; n—is the number of waves; t—time; 
Substituting (3.3) into (3.4), we obtain the Helmholtz equation, whose solu-

tion has the form 
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

1 2
1 1

1 2
0 2 2

,n n n n

n n n n n

A H K r B H K r

C H K r D H K r
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ψ

∞

=

 +   =     + 
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where ( ) ( ) ( )1 , 2
nH z —Hankel functions of the first and second kind of the n-th 

order рw cα =  and Sw Сβ = —wave numbers; , , ,n n n nA B C D —arbitrary 
constants, which are determined from the boundary conditions. From the 
boundary conditions it follows that ( ) ( )2

nH z  describes a converging wave; 
therefore, the solution of (3.5) takes the form 

( ) ( )
( ) ( )

1
1

1
0 2

.n n

n n n

A H K r

C H K r

φ
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∞

=

    =      
∑                     (3.6) 

After setting (3.5) into the boundary conditions (3.3), we obtain a system of 
algebraic equations with complex coefficients 

[ ]{ } 0D q = , 

where { } { },n nq A C= —vector column of arbitrary constants; [c] is a square 
matrix whose elements are expressed in terms of Hankel functions of the first 
kind of the n-th order. For a system of algebraic equations to have a nontrivial 
solution it is necessary and sufficient 

[ ] 0c = .                         (3.7) 

The roots of the transcendental (3.7) equation describe the frequency of the 
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cavity’s natural vibrations. The frequency Equation (3.7) takes the following 
form: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2 3 2
1 1

3 2 2 2 2
1

1 2

2 4 ,

D xH yH y y H y

H x y yH y y y H y

ρ ρ ρ ρ

ρ ρ ρ

ρ ρ ρ

ρ ρ ρ ρ

− −

−

 = − − − + 
 − − + − + − 

 (3.8) 

where 
( )( )1 2

2x a pω λ µ= + ; ( )1 2y a pω µ= , λ and μ—Lame coefficients; 
—density of the material. Equation (3.8) after certain transformations can be 
written in the following form: 

( ) ( ) ( ) ( ) ( ) ( ) ( )22 2 2 2 21 2 2 0,F x F y y F x F y yρ ρ ρ− − + + − − =  

where ( ) ( ) ( )1 , 1, 2,3, .F x xH x H xρ ρ ρ= =   
Let us consider in an unbounded medium the radial oscillations of a spherical 

cavity, accompanied by the emission of longitudinal sound waves, which leads to 
a loss of energy, and thereby to an attenuation of the oscillations. When 

р SС С  the problem under consideration is equivalent to the problem of the 
natural oscillations of a spherical body. The roots of the characteristic Equation 
(3.8) are found by the Mueller method. On the basis of these studies, it is re-
vealed that the mechanical system under consideration has a discrete complex 
natural frequency. Table 1 shows the results obtained and their comparison, the 
results of those other authors [13] [14] [15]. The results obtained show that with 
increasing modulus of elasticity, the corresponding natural frequencies of the 
mechanical system slowly increase. 

Define Ω for different Poisson coefficients 1ν  and n. When n = 0 we obtain 
axially symmetric oscillations of the cylindrical hole. The partial Equation (3.8) 
takes the form 

( ) ( ) ( ) ( )1 1
1 0 1 1 1 0.d H H−Ω Ω + Ω =                   (3.9) 

The frequency Equation (3.9) is solved numerically, i.e. the Mueller method. 
Results of calculations 0n ≥  ( 1 0.25v = ) of the natural oscillations are given in 
Table 2. As can be seen from the table, the corresponding complex frequencies 
increase with increasing number of waves along the circumference. Complex 
frequencies consist of two parts, real (ReΩ) and imaginary parts (ImΩ) which 
means natural frequencies and damping coefficients. 

 
Table 1. Comparison of results ( 0.25v = ). 

№ Our Results Pao and Mao [14] Bnron and Parnes [14] 

0 0.44741 − 0.44420i 0.4464 − 0.44127i 0.4464 − 0.4410i 

1 1.09272 − 0.77653i 1.09272 − 0.7653i 1.0929 − 0.441i 

2 1.907554 − 0.89782i 1.90754 − 0.8978i 1.9076 − 0.897i 

3 2.75652 − 0.99151 2.75652 − 0.9915i  

4 3.63132 − 1.06662i 3.63132 − 1.0666i  

5 4.52440 − 1.13140i 4.52440 − 1.1314i  
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Table 2. Dependence of the complex Eigen frequencies of a cylindrical hole. 

 n = 0 n = 1 n = 2 n = 3 

Ω1 
0.4529D+00 

−i0.47651D+00 
0.10927D+01 

−i0.76538D+00 
0.19075D+01 

−i0.89782D+00 
0.27565D+01 

−i0.99155D+00 

Ω2   
0.28621D+00 

−i0.17852D+00 
0.72325D+01 

−i0.32283D+01 
Ω3 

 
  

0.404607D+00 
−i0.178552D+00 

0.12307D+00 
−i0.22283D+00 

 
The frequency Equations (3.9) depend only on the parameter ν (Poisson’s ra-

tio). With increasing Poisson’s ratio within 0 0.4ν≤ ≤  The real and imaginary 
parts of the complex frequency change to 27%. When 1 0.5ν =  the medium 
becomes incompressible, naturally, there are no attenuations. For verification, 
the results obtained are compared with the results of [10] [16] [17] at 1 0.25ν = .  

Now let us consider the natural oscillations of a rigid cylindrical inclusion. In 
this case, we seek the solution of the wave equation and the hard inclusion in the 
form. On the contact r = a we set the condition for rigid contact. The partial eq-
uation for n = i takes the form 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1
1 1 1 1 2 2 0 2 1 1

1 0 1 1 2 1 2 0 1 0 2

4 1

1 ;

H H H H

H H H H

η η

η

∆ Ω = Ω Ω − − Ω Ω Ω

− + Ω Ω Ω +Ω Ω Ω Ω
    (3.10) 

1 1 1 1;a aα βΩ = Ω = , 

where 1 2η ρ ρ= , 2ρ —tight inclusion density; 1 1aαΩ = ; 2 1aβΩ = . 
The results of the calculations are presented in Table 3 ( 1 0.25v = ), according 

to which 1η ≥  the real parts of the complex self-purity vanish. When 0η =  
we get the vibrations of the environment around the rigid body, i.e. we have only 
imaginary roots. As a result of using the asymptotic value of the Henkel function 
(for a I ), we obtained 

( )1 1 11s p si C C C aω = − + ,                  (3.11) 

The existence of imaginary values of the natural frequency means that oscilla-
tory processes in the system only attenuating. Imaginary Eigen frequencies turns 
depends on the longitudinal and transverse speed and aperture radius. The exis-
tence of a discrete frequency plays an important role for the calculations of un-
derground pipelines are in the ground environment. The obtained numerical 
results are presented in the form of tables and figures. The appearance of an ad-
ditional free surface basically thickens and reduces the eigenvalue of the fre-
quency by 10% - 16%. The existence of natural frequency means that in the vi-
cinity of the free surface of the cylindrical holes may life Rayleigh wave. Thus, 
according to (3.11), with 0n →  the real part of the complex frequency does 
not exist. Now we consider the natural oscillations of a continuous cylindrical 
inclusion in an elastic medium (Figure 3, Figure 4). The solution of the equa-
tion of motion of the medium and the inclusion in the potentials takes the form. 
At the contact boundary, we set the condition for rigid contact. Solution, substi-
tuting in the motion and boundary conditions, we obtain a homogeneous  
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Table 3. Comparison of complex frequencies. 

n [6] Our methodology [9] 

0 
0.44647 

−i0.44127 
0.45297 

−i0.47651 
0.4461 

−i0.4410 

I 
I.09272 

−i0.7653 
1.0927 

−i0.76538 
0.229 

−i0.441 

2 
I.90754 

−i0.8978 
I.90750 

−i0.89782 
I.9076 

−i0.8971 

3 
2.75661 
−i0.9915 

2.75665 
−i0.99155 

- 
- 

 

 
Figure 3. Shows the dependence of the real parts of the natural 
frequencies on η. 

 

 
Figure 4. Shows the dependence of the imaginary Eigen frequen-
cies on. 

 
complex algebraic equation in the form. Here the determinant (C) is of the 
fourth order, its elements have the form 

( ) ( ) ( ) ( ) ( )1 12 2 2
11 1 1 1 1 12 ;n nC n n b H b bH bα α α α−= + − −  

( ) ( ) ( ) ( ) ( )1 1
12 1 1 1 11 ;n nC n H b bH bµ β β β−

 = − + −   
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( ) ( ) ( )13 2 2 1 21 ;n nC n n J b bj bµ α α α−= − + −    

( ) ( ) ( )14 2 2 1 21 ;n nC n n J b bJ bµ β β β−= − + −    

( ) ( ) ( ) ( ) ( )1 1
21 1 1 1 11 ;n nC n n H b bH bα α α−

 = + −   

( ) ( ) ( ) ( ) ( )1 12 2 2
22 1 1 1 1 12 ;n nC n n b H b bH bβ β β β−= − + − +  

( ) ( ) ( )23 2 2 1 21 ;n nC n n J b bJ bµ α α α−= − + −    

( ) ( ) ( )2 2 2
24 2 2 2 1 22 ;n nC n n b J b bJ bµ β β β β−

 = + − −   

( ) ( ) ( ) ( )1 1
31 1 1 1 1 ;n nC bH b nH bα α α−= −  

( ) ( )1
32 1 ;nC nH bβ= −  

( ) ( )33 2 1 2 2 ;n nC bJ b nJ bα α α−= − −    

( )34 1 ;nC nJ bβ= −  

( ) ( )1
41 1 ;nC nH bα= −  

( ) ( ) ( ) ( )1 1
42 1 1 1 1 ;n nC bH b nH bβ β β−= − +  

( )43 2 ;nC nJ bα=  

( ) ( )44 2 1 2 2 ;n nC bJ b nJ bβ β β−= −    

1 2 .µ µ µ=  

The numerical solution was carried out on a computer with various parameter 
ratios 1 2η ρ ρ=  1 2E E E= , 1 2 0.25ν ν= = . If the environment is absolutely 
rigid, then 1E →∞ . (Table 4). The equation corresponding to the condition on 
the surface loses its meaning, it must be replaced by the boundary condition 

0r r b r bU Uθ= =
= = .  

 
Table 4. The change in the complex frequency, depending on Е  at 4η = ; 

0 0.14ν ν= =  (hard contact). 

1 0E E E=  

Ω 0.2 0.4 0.6 0.8 

1Ω  
1ReΩ  2.26428D−01 1.8172D−01 1.5839D−01 1.4324D−02 

1ReΩ  −i1.2969D−01 −i7.7092D−02 −i5.7656D−02 −i4.7033D−02 

2Ω  
2ReΩ  3.2339D−01 2.3924D−01 2.0207D−01 1.7995D−01 

2ReΩ  −2i.5641D−01 −i2.0152D−02 −i1.7192D−02 −i1.5278D−01 

3Ω  
3ReΩ  4.81550D+00 4.8144D+00 4.8137D+00 4.8134D+00 

3ReΩ  4.7709D+00 −i4.7677D+00 −i4.7667D+00 −i4.7662D−02 

 4ReΩ  4.0795D+00 4.0866D+00 4.0845D+00 4.0831D+00 

4Ω  4ReΩ  5.2295D −i5.2428D+00 −i5.2421D+00 −i5.2416D+00 

5Ω  
5ReΩ  6.1617D+00 6.1612D+00 6.1609D+00 6.1607D+00 

5ReΩ  3.5815D+00 −i3.5786D+00 −i3.5781D+00 −i3.5778D−02 
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As a result, we obtain a system of algebraic equations with respect to un-
knowns An, Bn. The change in the natural frequencies as a function of n is shown 
in Table 5. 

It can be seen that when Iη =  The imaginary parts of the complex frequen-
cies tend to infinity. The picture is similar for a change in E, at E = I the imagi-
nary parts of the complex frequencies tend to infinity. 

A similar picture was constructed with a change in the parameter E. It can be 
seen from Figure 3 that when E = I the imaginary parts of the complex frequen-
cies tend to infinity. Let us consider the natural vibrations of cylindrical shells in 
an infinitely elastic medium. The equation of motion of cylindrical shells and the 
environment is given in: 

( )

2 2

12

4 2 2
2

24 2

2

0 2

2

2o o c

u W R x
B

u W V Rb W W x
B

ugraddiv rotrot
t

θθ

θ θ θ

λ µ µ ρ

∂ ∂
+ = −
∂∂
 ∂ ∂ ∂

+ + + + = ∂ ∂ ∂ 
∂

+ − =
∂

u u

            (3.12) 

( )

2 2

1 22 2

1 1 1; ;

; ;

r
r

r o o rr o or Rr R

ru ugrad div
r r r r r

ux h x h
t t

θ
θ

θ

ϕ ϕ
ϕ

θ θ
ω

σ ρ σ ρ
==

∂ ∂∂ ∂
= + = +
∂ ∂ ∂ ∂

∂ ∂
= − − = − −

∂ ∂

K K u
 

2
2

2 2; .
12 1

o o o

o

h E hb B
R v

= =
−

 

Here, the index “0” refers to the shell, and “c” refers to the environment, R is 
the radius of the shell, ν0—Poisson’s ratio, E0—modulus of elasticity of the shell, 
σrr and 0θσ —normal and tangential, the components of the reaction from the 
environment, rK  and θK —unit vectors, r ru uθ θ= +u K K —vector of dis-
placement of environment, cλ  and cµ —the Lame coefficients. 

The contact between the shell and the environment can be hard or sliding: 

, rr r rrU u W uθα α αα= = ==
= =                   (3.13) 

( )1 2 1, 2E E nη = = =  1) R = 0.5; 2) R = 1; 
 

Table 5. Dependence of complex eigen frequencies of hard inclusion on ( )1 2η ρ ρ . 

η 1eR Ω  1miI− Ω  

0.2 0.38248D+00 0.40845D+00 

0.4 0.73515D+00 0.89541D+00 

0.6 0.19341D+01 0.14480D+01 

0.8 0.28341D+01 0.156907D+01 

1.0 0.27431D−12 0.34807D+01 

1.2 0.26728D−11 0.66809D+01 
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At infinity conditions of “reflecting borders” are put. The solution of equation 
(3.12) is sought in the form: 

( )
( )
( )
( )

sin
cos

e
sin
cos

n

n i t

n o

r r

V RV n
W RW n

u nU r
nu U r

ω

θ θ

θ
θ
θ
θ

∞
−

=

            = ⋅               

∑                 (3.14) 

where ( ) ( ) ( ), ,n nV R W R U rθ  and ( )rU r —displacement amplitude,  

R Iiω ω ω= + —complex natural frequency 
The results of calculations are presented in Table 6. 
As an example, consider the axisymmetric vibrations of a cylindrical shell lo-

cated in an unbounded elastic medium. The differential equation describing the 
axisymmetric vibrations of a cylindrical shell has the form: 

( ) ( )
22 2

12 2
2 2

1
2

n
o

o o RRn
o o

vw w wb w w R h
E h t

ρ σ
θ θ

−   ∂ ∂ ∂
+ + + = − +   ∂ ∂ ∂   

,      (3.15) 

where 

( ) ( )1 1
10 10 1 1 0 1 1 1 12

2 e , ,iwt
RR ox A x d H H

R
µ

σ −= = − Ω Ω +Ω Ω        

1
1 1 1

1 1

1, .
1 2

vK R d
c v
ω −

Ω = = =
−

 

Substituting (3.14) into (3.15), we obtain a complex transcendental equation 
for determining U1: 

( )
( ) ( )
( ) ( )

1
0 12

2 01 1 1 1 1 1
1 1

,o
H

h v b b d
H

α
Ω

= Ω − + − Ω
Ω

 

where 
2

2 21
2 2 1 01

1

1
; 1 ; ; 1;

1
o

o o
o

vEh h R v v b b
E v

α
−

= = − = ⋅ = +
+

 

1
1 1 1

1

1 ; ; ; ;
1 2 o o o o o

o

v wd S R c E
v c

ρ
−

= Ω = Ω Ω = − =
−

 

( )( )
( )

1 1
1 1 1

1

1 1 2
; ; .

1 o o
v v

S E E E E
v

η η ρ ρ
+ −

= ⋅ = =
−

 

A particular equation for the sliding contact condition takes the form: 

( ) ( )2 1 1 2 2 2

1 2

0n o o n n o o n

n n

h Y Z X h Y Z Z
Z X

− Ω − Ω
=          (3.16) 

 
Table 6. Dependence of the complex Eigen frequencies of a continuous elastic inclusion 
on n. 

n m = 0 m = 1 m = 2 m = 3 

0 0 3.8301D+00 7.0223D+00 10.1734D+00 

1 1.8412D+00 5.3317D+00 8.2401D+00 11.7401D+00 
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where 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1 1
2 1 1 1 1 1

1 1
1

1 12 1
1 1 1 2 1 1 1 1

1 11 2
2 2 2 2 2 1 2

; ;

1 ;

;

2 ;

o n n n

jn n j j n j

n n n n

n n n n

h h R Y nH H

Z n n H H

X d H H

X H H

α

α

+

+

+

+

= = Ω −Ω Ω

 = − Ω +Ω Ω 

= − Ω + Ω +Ω Ω

= −Ω Ω +Ω Ω

 

( ) ( )
( )

( )
( ) ( )( )

( )

1
2 2

2 2
2 1 1 1

2 1 1 1 1 0

2 2 2 2
1 1 0 1

1 2 2
2 1

, 1, 2

1 ; 1 1; ;

; ; ;

12 ; 1 1 ;

; 1 ;

n n

o n

s o o o o

o

n o o o

Y nH j

v v b n a

C C R a C

b h R b E v E v

a n E h v

ρ

α α

β α α α ω

β

= Ω =

= − = − + Ω =

Ω = = Ω Ω = =

= = − +

= = −

 

o o oC E ρ= —wave propagation velocity 

( ) ( ) ( )2 2 2
1 0 2 1 0 2 2o o n nZ b v a n v a Ω = Ω − − Ω −           (3.17) 

In this case we obtain asymmetric vibrations of the cylindrical shell, which are 
described by equation 

( ) ( ) ( ) ( ) ( )1 12
2 0 2 01 1 1 1 1 0 1 1 1 0h v a b b d H HΩ − + − Ω Ω Ω = .      (3.18) 

where 1 1oLΩ =Ω ; ( )( ) ( )1 1 1 11 1 2 1L E v v vη= + − −  (the index “o” corresponds 
to the shell, and the “1”—to the environment). 

If we use the asymptotic expression for the Henkel function for 1 1l  , then 
for the zero and first orders we obtain the expression for complex Eigen fre-
quencies 

2
011 1 1 1 1 1 1

2 2 2 2 2 2 22o
ab d l d d l bi

h v v h v h v

   Ω = − + − +     
          (3.19) 

To obtain complex and imaginary Eigen frequencies, it is necessary that con-
dition 

( ) ( ) ( )
( ) ( ) ( )

2
01 1 1 2 2 1 1 1 2 2

2
01 1 1 2 2 1 1 1 2 2

,

,
R I

I

i a v b h v d l b h v

a v b h v d l b h v

Ω + Ω > +Ω = 
Ω > +

      (3.20) 

To satisfy the first condition, the elastic modulus E must satisfy the inequality 

( )( ) ( ) ( )( ) ( )
1 112 2 2

1 2 2 1 1 01 1 1 1 2 1E v b h h v v vη
− −−> + + + − − −    

A similar condition is posed for η: 

( )( ) ( )( ) ( )1 1 1
2 1 1 2 01 1 1 11 2 1 1 1 2 ) 1oh v v h a v v E Eη − − − < − − + − −   

Numerical values of asymmetric x (n = 0) Eigen frequencies are given in the 
Table 7. 

At 1 20.1; 0.14, 0.025.ov v hη = = = =  
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Table 7. Dependence of complex Eigen frequencies of axisymmetric oscillations of cylin-
drical shells on Е. 

 E = 0.03 E = 0.09 E = 0.12 E = 0.15 E = 0.25 

ωR1 
1.3308D−01 

−i1.9767D−02 
2.3976D−01 

−i4.5891D−02 
3.2670D−01 

−i6.1776D−02 
4.1665D−01 

−i7.9394D−02 
1.5270D−12 

−i1.3691D−01 

 
As we see, ( )1 0.21oE E ≥  the real parts of the natural frequency vanish, and 

the behavior of the imaginary parts remains unchanged. The numerical results 
obtained are confirmed by the condition (3.20). The results of the sliding contact 
calculations for n = 5 are given in Table 8. 

If the condition of rigid contact (equality of displacements at (r = a) is put on 
the interface of the shells with the medium, then the frequency equation (3.20) 
takes the form 

3 2 1 4 0,n n n nQ Q Q Q− =                     (3.21) 

where 

( ) ( )

( ) ( ) ( ) ( )

2 2 2
0 2 2 12

2
0 2 1 2 1 22 2 2

;

, 1, 2.

jn jn jnj n

n jnjn n j n j n

Q v n h Z nh Y b Z

Q v a h Z b x nh Z j

+

+ + +

= Ω − + +

= Ω − − + =
 

The results of numerical calculations are given in the Table 9 (with n = 4, 

1 0 0.14υ υ= = , η = 0.3, E = 0.2 − 0.1), according to which for rigid contact im-
aginary and real parts are 40% - 60% larger than when sliding. 

Now we consider the case of non-axisymmetric vibrations of a cylindrical 
layer in an elastic medium. Numerical results were obtained with the following 
values of the parameters: E = 0.08; 0.08R bα= = ; n = 5; η = 0.08 − 0.72. The 
results of calculations are presented in Table 10. When η = I we obtain complex 
natural frequencies of the hole. The change in the complex Eigen frequencies as 
a function of η is shown in Figure 3 and Figure 4 it is seen that as the number of 
waves along the circle increases, the real and imaginary parts of the complex Ei-
gen frequencies first decrease, and then begin to increase. 

From the results (Figure 5) it follows that with decreasing minimum frequen-
cies as a function of η are mixed to the right. We consider the natural oscillation 
of a cylindrical layer of a cylindrical layer in a particular motion in a particular 
medium in the elastic medium: [Є] = 0, where 

( ) ( ) ( ) ( )
2 2

1 12
11 1Є ;

2 n k r n
rn n I r I rβ

α α α∗ ∗
∗ − ∗

 
= + − − 
 

 

( ) ( ) ( ) ( ) ( )
2 2

3 1 12
11 1Є ;

2 n k r n
rn n H r H rβ

α α α∗ ∗
∗ − ∗

 
= + − − 
 

 

( ) ( ) ( ) ( ) ( )3 1
12 1Є 1 ;y k r nn n H r H rβ β β∗ ∗

∗ − ∗= − + +  

( ) ( ) ( ) ( )1
41 1Є 1 ;n k r nn n I r I rα α α∗ ∗

∗ − ∗
 = − − + +   

( ) ( ) ( ) ( ) ( )3 11
41 1Є 1 ;n k r nn n H r H rα α α∗ ∗

∗ − ∗
 = − − + +   
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Table 8. Dependence of the complex frequencies of non-axisymmetric oscillations of cy-
lindrical shells on E with sliding contact. 

ω E = 0.2 E = 0.4 E = 0.6 E = 0.8 E = 1.0 

1 5.9531D−02 6.1341D−02 6.1901D−02 6.2193D−02 6.1787D−02 

 −i7.5656D−02 −i7.3121D−02 −i7.2823D−02 −i7.1202D−02 −i6.8760D−02 

2 1.1582D−01 1.1585D−01 2.4513D−01 4.4340D−01 1.1588D−01 

 −i6.9000D−01 −i6.9004D−01 −i4.4318D−01 −i6.8910D−01 −i6.8987D−01 

3 5.7958D+00 5.6652D+00 5.7376D+00 5.7505D+00 5.7971D+00 

 −i3.7114D+00 −i3.6201D+00 −i3.5791D+00 −i3.6992D+00 −i3.7144D+00 

4 5.4433D+00 5.5961D+00 5.4244D+00 5.0541D+00 5.4428D+00 

 −3.8908D+00 −i3.9481D+00 −i3.8281D+00 −i3.9896D+00 −i3.8914D+00 

5 6.8053D+00 4.8054D+00 6.8055D+00 6.8064D+00 6.8053D+00 

 −i2.8277D+00 −i2.8277D+00 −i2.8279D+00 −i2.8181D+00 −i2.8227D+00 

 
Table 9. Dependence of the complex frequencies of non-axisymmetric oscillations of cy-
lindrical shells on E for rigid contact. 

ω E = 0.2 E = 0.4 E = 0.6 E = 0.8 

1 2.2642D−01 1.8172D−01 1.5839D−01 1.4324D−01 

 −i1.2969D−01 −i7.7092D−02 −i5.7656D−02 −i4.7033D−02 

2 3.2339D−01 3.3921D−01 3.0207D−01 1.79995D−01 

 −i2.5641D−01 −i2.0152D−01 −i1.7197D−01 i1.5278D −01 

3 4.8155D=00 4.8144D=00 4.8137D+00 4.8134D+00 

 −i4.7809D+00 −i4.7677D+00 −i4.7667D+00 −i4.7662D+00 

4 6.1617D+00 6.1612D+00 6.1609D+00 6.1607D+00 

 −i5.5815D+00 −i5.5786D+00 −i5.5781D+00 −i5.5778D+00 

 
Table 10. Dependence of the complex frequencies of a cylindrical layer on η. 

ω η = 0.08 η = 0.16 η = 0.24 η =0.32 

1 1.6906D−01 4.16999D−01 5.3200D−01 6.8173D−01 

 −i1.5803D−02 −i3.3343D−02 −i1.07018D−01 −i1.0860D−01 

2 5.1175D−13 5.1163D−13 5.1139D−13 5.1102D−13 

 −i9.9134D−01 −i2.9001D+00 −i8.8770D+00 −j1.0389+01 

3 6.8166D+00 6.8176D+00 8.5821D+00 8.5830D+00 

 −i3.5504D+00 −i3.6155D+00 −i6.3848D+00 −i6.3877+00 

 

( ) ( ) ( ) ( ) ( )
2 2

3 1 12
42 1Є ;

2 n k r n
rn n H r H rβ

β β β∗ ∗
∗ − ∗

 
= + − + 
 

 

( ) ( ) ( ) ( ) ( )
2 2

1 1 12
21 1Є ;

2 n k r n
rn n I r H rα

α α α∗ ∗
∗ − ∗

 
= − + − + 

 
 

( ) ( ) ( ) ( ) ( ) ( )3 1 1
12 1Є 1 ;n k r nn n H r H rβ β β∗ ∗

∗ − ∗
 = − = −   
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Figure 5. Dependence of natural frequencies ( Rω ) and deformation 
coefficients ( Iω− ) from η. 

 
α∗  and β ∗ —longitudinal and transverse wave number. 
The formulation of the problem of investigating energy dissipation in the 

propagation of waves in an elastic medium with spherical inclusions is proposed. 
The coefficient of the so-called scattering coefficient is introduced, which ex-
presses the relationship between the energies of the incident and scattered waves 
in the sphere. Thus, the scattering coefficient is expressed in terms of the cha-
racteristics of the incident and scattered waves. 

4. Oscillations of a Deformable (Elastic or Viscoelastic)  
Cylinder in a Liquid under the Influence of Internal  
Pressure 

As an example, let us consider the solution of the problem of oscillations of an 
elastic hollow cylinder immersed in a liquid under the action of a periodic in-
ternal pressure. 

In a cylindrical coordinate system , ,r zϕ  elastic isotropic cylinder with Lame 
coefficients ,λ µ , which can depend on ,r  takes up the volume 1 2R r R≤ ≤ , 
0 2πϕ≤ ≤ , z−∞ < < ∞ . Region 2r R>  fills the ideal density liquid cρ  with 
the speed of sound waves in it 0c . On the contact surface of a liquid and a solid 

2r R=  Radial stresses and displacements are assumed to be continuous. On the 
inner surface 1r R=  a pressure is established that varies in time according to 
the harmonic law 0e

i tp p ω= . When solving a stationary problem, it is also ne-
cessary to take into account the radiation conditions at infinity. The defining re-
lations connecting the stress tensor σ and the strain tensor ε have the form [13] 
[15] 

( ) 1 2

2
0 2

2 ,

, ,с

uE u R r R

с uE r R

σ λ µε

σ ρ

= ∇ ⋅ + ≤ ≤

= ∇ ⋅ >
                  (4.1) 

where E is the unit tensor of the second rank. 
When account is taken of the axial symmetry of equation (4.1), we represent it 

in coordinate form as follows 
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( )

2

2 0,

2 .

rrrr r

r r
r

u
r r t

u ulu
r r

ϕϕσ σσ
ρ

λ µ λ

−∂ ∂
+ − =

∂ ∂
∂

= + +
∂

                (4.2) 

In the Equations (4.2) with 2r R>  should be considered 2
0 , 0ссλ ρ µ= = . On 

the inner surface 1r R=  conditions 

0e
i t

rr p ωσ = − ,                        (4.3) 

2 2 2 20 0 0 0,rr r R rr r R r r R r r Ru uσ σ= − = + = − = += = . 

The solution is represented in the form ( )ei t
ru U r ω=  and eliminating the 

stresses in (4.2), we arrive at the equation of stationary oscillations with boun-
dary conditions  

( )

( ) ( ) ( ) ( ) ( )

2

1 0 2 2 2 2

d d 2 d0, 2
d d d

, 0 0 , 0 0 .

U U U ULU U LU
r r r r r r

lU R p U R U R lU R lU R

µ
ρω λ µ λ   + = = + + + −     
= − − = + − = −

   (4.4) 

If we also require that at infinity the function U satisfy the Sommerfeld radia-
tion conditions 

0

dlim const , lim 0
dr r

Ur U r i U
r c

ω
→∞ →∞

 
= + = 

 
,        (4.5) 

then the boundary value problem (4.4), (4.5) must have a unique solution [14]. 
For an acoustic environment, the function 

( )2
1 0

0

d
d

rU B H
r c

ω 
=  

 
,                  (4.6) 

then the boundary-value problem (4.4) with, 2r R>  and the radiation condi-
tions (4.5). In (4.6) 1B  arbitrary constant, ( )2

0H —Henkel function of the 
second kind of zero order. Where in 

( )22
1 0

0

ei t
rr c

rB H
c

ωω
σ ρ ω

 
= −  

 
.                 (4.7) 

Then, except 1B  in relations (4.6), (4.7), the problem on a semi-infinite in-
terval 1R r≤ < ∞  can be reduced to a problem on a finite interval 1 2R r R≤ ≤  
for anyone 3 2R R≥ , having determined on the surface 3r R=  the following 
boundary condition: 

( )
( ) 12

22 0
0

0 0

d
dc
Hr rlU H U

c r c
ω ω

ρ ω
−

    
= −     

     
.             (4.8) 

In the relation (4.8), the parameter ω enters meromorphically. For the 
high-frequency range, using the asymptotic representation of the Henkel func-
tion for large arguments 

( ) ( ) ( )2 π 4
0

2 1e 1
π

i zH z O
z z

− −   = +     
. 
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Then condition (4.8) can be replaced by the approximate relation 

( ) ( )3 0 3clU R i c U Rρ ω= − ,                     (4.9) 

with a linearly incoming parameter ω. 
Equation (4.9) means, not reflecting the conditions (2.23) for the problems 

under consideration. 

5. Conclusions 

1) The formulation of the problem is proposed for the natural oscillations 
of cylindrical bodies in a deformed medium. The task is to find those 

R iiΩ =Ω + Ω  ( RΩ —real and iΩ —imaginary parts of complex Eigen frequen-
cies) for which the system of equations of motion and the truncated radiation 
conditions have a solution in the class of infinitely differentiable functions. It is 
shown that the problem has a discrete spectrum. 

2) Two problems of natural oscillations of bodies for an infinite and finite re-
gion for some relations of parameters turned out to be equivalent. This is due to 
the fact that at the outer boundary conditions are set for the absence of reflec-
tion. 

3) The numerical results obtained for plane mechanical systems in a particular 
case are compared with known theoretical and experimental values. In short 
waves ( 0.5h λ > ) the results differ to 10% - 15%, and in long waves ( 0.5h λ > ) 
before 25%. 

4) From the discussion of the results it is established that with the increase of 
the elasticity modulus and Poisson’s ratio, the corresponding natural frequencies 
of the mechanical system slowly increase. Natural frequencies ( 2Ω ) and damp-
ing factors ( 1Ω ) at sliding and rigid contact differ up to 15%., and at rigid con-
tact more than 15%. With increasing shell thickness, natural frequencies increase 
to 10%. 
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