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ABSTRACT 

We are interested in the anisotropic S=1 anti-
ferromagnetic chain. System of particles with an 
arbitrary spin is described directly from the first 
principles, based on the symmetry law. The 
ground state of the one-dimensional S=1 
pseudo-Heisenberg antiferromagnet with sin-
gle-ion anisotropy is calculated. Excitations of 
the chain in the form of nonlinear spin waves 
and, in particular, the possibility of a soliton 
solution is considered. 

Keywords: Pseudo-Heisenberg Hamiltonian;  
Antiferromagnetic Spin-1 Chain; Soliton Excitations 

1. INTRODUCTION 

We investigate an anisotropic S=1 antiferromagnetic 
chain. Interest in one-dimensional S=1 antiferromagnets 
is traced back to the works concerned with Bose 
–Einstein condensates of alkali atomic system with arbi-
trary spin [1] from one hand and to the original work by 
Haldane [2,3] from other hand. In the case of spin-1 

Bose gas with antiferromagnetic interaction like 23 Na , 
it has been pointed out [4] that as the magnetic field gra-
dient is reduced the single condensate involves toward an 
angular momentum eigenstate, which becomes a spin 
singlet as the magnetic field is reduced to zero. The 
singlet state has a “fragmented” structure which bears no 
resemblance to single condensate state. The part of the 
Hamiltonian that describes the interaction between the 
boson particles with angular momentum s=1 [5] has a 
Heisenberg form, but in general case assumes to the 

Hamiltonian has a polynomial form: 1 20
= ( )

n s n
nn

V C S S



 
 , 

where the operators 1S


 and 2S


 the spins of atom 1 and 

2, respectively, Cn is a linear combination of the 

s-scattering interaction constants, S –  the maximal 

total spin of two particles. It was emphasized there that 
“for bosons (or fermions), the symmetry implies that 
only even (or odd) S terms appear in V.” Contrary to this 
statement, it is shown in [6] that both the even and the 
odd S-values in the interaction Hamiltonian are possible 
for the both fermionic and bosonic systems in the spin 
representation, concerned to the symmetry of the coor-
dinate part of wave function. The polynomial form of the 
interaction is very useful for the description of the sym-
metric (antisymmetric) states in the spin representation, 
but the general form of the interaction of Hamiltonian 
was not found in reference [5]. 

By analyzing the presence of topological terms in ef-
fective-field theories for one-dimensional antiferromag-
nets, Haldane conjectured that integer-spin chains dis-
play a ground state with exponentially decaying 
spin-spin correlations and a gapped excitation spec-
trum—properties markedly different from those dis-
played by the exactly solvable S=1/2 chain. Despite ear-
ly controversy, this so-called “Haldane conjecture” is 
now supported by solid numerical and experimental 
evidences [7]. The single-ion anisotropy is relevant in 
accounting for the magnetic properties of a number of 
compounds: CsNiCl3 (weak axial anisotropy), NENP 
[Ni(C2 H8N 2)2 NO2 )ClO4] (weak axial anisotropy), 
CsFeBr3, NENC [Ni(C2H8 N2)2 Ni(CN)4 ], and DTN 
[NiCl2−4SC(NH2)2 ] (strong planar anisotropy) [7]. 
Haldane3, 4 has analyzed the isotropic point. The inter-
mediate phase was investigated by studying an extended 
S=1 model with biquadratic interactions, 

2
1 1( )i i i iAKLT i

H J S S S S      
   

    (1) 

Affleck, Kennedy, Lieb, and Tasaki (AKLT) [8] 
showed that this Hamiltonian is exactly solvable at 
 =1/3, where it displays a simple valence-bond solid 
(VBS) ground state with gapped excitations. Since the 
ground state at  =0 has been shown [3] to exhibit 
long-ranged string correlations and is adiabatically con-
nected to the ground state at  =1/3 (see, e.g., [9]), one 
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concludes that the Haldane phase has a VBS character. 
In contrary to this position, it was shown by E. Orlenko 
[10], that neither  =1/3, nor -   =0 could appear in 
the Eq.1, the constant only possible here for such system 
is  =1. The interest in Haldane-type phases exhibiting 
long-range string correlations has been renewed and 
proposals for investigating string order in cold atomic 
systems have recently been made [11,12]. The investiga-
tion of string order in cold atomic system has been made 
in reference [10]. Here the ground state of a set of parti-
cles with spins j= 1 and j= 2 were obtained and nonlinear 
magnetic phenomena in the set of particles with j = 1 
were considered. The presence of nonlinear terms in the 
Hamiltonian of a system may give rise to nonlinear spin 
waves in atomic systems with the spin j= 1and, in par-
ticular, to a soliton.  

Analyzing excited states above the Néel ground state, 
following den Nijs and Rommelse13, it is interpreted the 
spin S=1 chain as a diluted system of a pseudospin S˜ 
=1/2 pseudoparticles; sites with spin projections Siz= 1  
as being occupied by spin-half particles with pseudospin 
components S˜iz=±1/2 and sites with Siz=0 as being 
empty (occupied by “holes”). Using this language, the 
Néel ground state is equivalent to an “undoped” anti-
ferromagnet, and for small positive values of D/J, the 
low-lying excited states lie in the “one-hole sector” 
(containing one site with Siz=0). The situation is remi-
niscent of spin-charge separation in one-dimensional 
fermionic systems where a hole doped into the system 
fractionalizes into “holon” and “spinon” constitu-
ents.Unlike den Nijs and Rommelse’s artificial interpre-
tation the S=1 chain as a diluted system of S =1/2 pseu-
doparticles; we show that the system of particles with an 
arbitrary spin can be described directly from the first 
principles, based on symmetry law.  

The theoretical description of the spin ordering in the 
antiferromagnetic S1- chain requires a new form of the 
model Hamiltonian. The universal Hamiltonian of the 
exchange interaction for the system of particles with an 
arbitrary spin is developed here from the first principles. 
In this paper, we are interested in improving on previous 
estimates for ground state of the one-dimensional S=1 
pseudo-Heisenberg antiferromagnet with single-ion ani-
sotropy. Additionally, we obtain results for the excita-
tions in the form of nonlinear spin waves and, in par-
ticular, the possibility of a soliton solution is considered. 
We will show that the soliton is stable if the nonpoint 
potential varies slowly within the soliton length. For the 
one –dimensional S=1spin system, we will arrive at the 
pattern of nonlinear magnetic vortices that transform 
into macroscopic vortices of a magnetic field in a system 
and bring the phase separation.  

2. MAGNETIC ORDERING IN THE  
ONEDIMENSIONAL CHAIN OF IONS 
WITH S=1 SPINS 

2.1. Pseudo-Heisenberg Hamiltonian of the 
Exchange Interaction for the Chain of  
Particles with s= 1 

In the simplest case of the chain of ions with 
two-particle interaction, the Hamiltonian in the coordi-
nate representation can be written as follows: 

(1,..., ) ( , 1)
i

N H i i  


             (2) 

where the numbers of particles are 1, … i, i+1, …N. 
The Hamiltonian ( , 1)H i i 


describing pair interaction 

can be represented as a sum of noninteracting particle 
Hamiltonians 0( ) ( ) ( , )h i h j H i j 

  
 and the pair inter-

action operator ( , )V i j


. 
The first order correction of the total energy of a 

two-particle system is  
(1) ,E K A                  (3) 

where K is the direct input and A is the exchange input 
to the energy correction, and sign  is corresponded 
with the symmetry of coordinate part of wave function . 

The total wave function of two bosons is a product of 
the coordinate-dependent part  and / ( , 1)s a i i  a spin 
part of the same permutation symmetry. 

/ /( , 1) ( , 1) ( , 1)s s a s ai i i i i i          .   (4)  
In other words, the factor  1 for the exchange input 

Eq.3 depended of the symmetry of the spatial part cor-
responds to the determined spin part symmetry of the 
wave function. The symmetry of the spin part of the two 
particle system is connected with the total spin S be-
cause of the symmetry of the Clebsch-Gordan coeffi-
cients. In the case s1 =s2 =s is: 

 
1 2 2 1

2
1 ,z z

z z z z

s SSS SS
s s s s s s s sC C

           (5) 
where the two particle spin function is represented in the 
form  

1 1 2 2
1 2

1 2 1 1 2 2, ; , , ,z

z z
z z z

SS
z z zs s s s

s s S

S S s s C s s s s
 

    (6) 

The vectors of the spin states of particles number 1 
and number 2 are 1 1, zs s  and 2 2, zs s . 

The permutation operator ,s sP


acting on the spin state 
Eq.6 gives the eigenvalue ( 1)S , because of the two par-
ticle spin functions are symmetric or antisymmetric with 
respect to particle permutation. It can be seen from Eq.6 
for Clebsch-Gordan coefficients.  

Then we will change the factor  1 in Eq.4 by the 
permutation operator 1, 2s sP


 in the spin representa- 

tion: 
(1)

1, 2 ,s sE K A P  
 

             (7) 

Then the Hamiltonian of the chain taken into account 
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pair interactions and acting on spin functions, can be 
presented as 

1int , 1 , 1 ,( )
i ii i i i s s

i

H K A P
  

 
.       (8) 

For obtaining the permutation operator in the spin 
representation the following condition is used: 

1 2 1 2 1 2, ; , ( 1) , ; ,S
s s z zP S S s s S S s s 


.    (9) 

The permutation operator can be presented in the form 
of a polynomial expansion as 

     2 2 1

1, 2 2 1 2 2 1 1 2 1 1 2 0... .
s s

s s s sP c s s c s s c s s c


      
           

 

(10) 

Here the number of free coefficients cn is equal to the 
number of possible eigenvalues of the scalar product 
operator. The eigenvalue of the scalar product 1 2s s

  
 

operator depends on the value of total spin S:  

   
_____________________

2 2
1 2

1 1
2 ( 1) 2 ( 1)

2 2
s s S s S S s s      
    

.  (11) 

In the case s1 =s2 =1, the total spin of the two particle 
system has three eigenvalues S=2, 1, 0. 

The free coefficients cn can be determined from the 
system of three linear equations resulting from Eq.10. 
This system has only one, unique solution with determi-
nate coefficients: 

c0 =-1, c1=c2=1. Then, the permutation operator for the 
two particle system in the case s1 =s2 =1 has the form: 

2
1, 2 1 2 1 2( ) ( ) 1s sP s s s s    

       
,         (12) 

and the Hamiltonian of N particles with s = 1 interacting 
in pairs can be represented in the form: 

  2

int , 1 , 1 1 1 1 .i i i i i i i i
i

H K A s s s s   
        

       
  (13) 

This Hamiltonian of the exchange interaction has a 
biquadratic term, which gives rice for the nonlinear phe-
nomena in the S=1 antiferromagnetic chain. 

 
2.2. Ground State of the S=1 Chain  

Unlike the s=1/2 system of particle, the total spin Σ of 
the system with s=1 spins is not a good quantum number 
because it does not commutate with the Hamiltonian 

Eq.13
int

2
, 0H   

 . The Hamiltonian Eq.14 can be 

rewritten in the form, where  22
, 1 1i i i iS s s  

   
 is the 

two-particles spin operator, with indices i and i+1 de-
noting the particles numbers: 

   
2

2 2 2 2
1 1 1

2

1 1
2 2 1

2 2

int

i ,i i ,i i i ,i i
i

N
H K

A S s S s .  

 

         
   





  
 (14) 

First of all we calculate the exchange energy exc
i,i+1E of 

ions couple as a function of couple spin S. It will be 
equal to  

 

 

2

1

1
1 2 1

2

1
1 2 1 1

2

exc
i,i+1 i ,iE A S( S ) s( s )

S( S ) s( s ) .



      
 

     


    (15) 

Let us consider the spin of ion’s couple as an integer 
variable, then the new integer variable x can be written 
as 

 1
1 2 1

2
x S( S ) s( s )    ,        (16) 

where x varies in the [-2, 1]. 
Then the exchange energy exc

i,i+1E of ions couple can be 
presented as a function of x  

2
1( ) ( 1).exc

i,i+1 i ,iE x A x x            (17) 

Here the lowest energy value is achieved at x=-0.5, 
which corresponds the spin S=1.3, close to the physi-
cally available total spin of couple S=1. This state is 
anti-symmetric and stable with respect to the small fluc-
tuations from the equilibrium. Then we come to conclu-
sion, that the most preferable value of the total couple 
spin is S=1. Then we can present the Hamiltonian of 
whole chain as the perturbation expansion in the follow-
ing schema, which conserves the spin anti-symmetry of 
whole chain: 

1 1
1 2

1
1 1

1 4

2

,

int i ,i i i
i ,N /

( )
q ,q q q

q ,N /

N
H K A

A ...

 


 


    

  







    (18) 

where symbolic expressions mean for neighbour ions 

  2

1 1 1 1 1 1i ,i i i i ,i i i i iA A s s s s          
      

 and 

  
1

1 1

21
1 1 1 1

( )
q ,q q q

( )
q ,q q q q q

A

A s s s s

 

  

  

   
        

for the neighbour couple of ions with the first renormal-
ized constant of the exchange interaction Aq,q+1

(1) and the 
total couple’s spin 

1

2

,i i i
q

s s s 


 
    

2 2 3
1

2

i i i
q

s s s .  
 

 
    

 

Because of these constants Aq,q+1 
(ν) are equal for each 

couple in the chain, it is possible to find the energy of the 
system in the representation of S spin of couples. Because 
of each term of this expansion corresponds to the most 
preferable spin Sq,q+1=1 anti-symmetric state, then the 
total spin of whole chain Σ will be also equal to 1, (Σ=1) 
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which corresponds to anti-symmetric state. It is a anti-
ferromagnetic state, because of the averaged spin pro ion 

is reduced to zero as Σ/N. In this case the total energy of 
the chain can be written as follows: 

1
01

2 2 2 2 2

( ) ( )
( )

int

N N A A
E K A ...





         
  

. (19)  

We assume, that the renormalized exchange parameter 
of the k step A(k) is connected with the k-1 approximation 
exchange parameter A(k-1) as follows: 

1 ,( k ) ( k )

B

b
A A exp

a
  

  
 

            (20) 

where aB – is Bohr’s radius, b- is the constant of lattice. 
Then the total energy of the basic anti-symmetric state of 
infinite length chain for each ion will be 

0

0

1 1 1

2 2 2 22 2

1 1

2 2

B

b

a( )
( )int

( )

B

E K A e
K A

N

K A
b

exp( )
a




 
 

 
             
 

 
 
 
   
 

 

 

 (21) 
It is easy to see that the exchange interaction plays more 
important role for the long chains than for the short and 
brings to the system a strong long order correlation. 
 
3. SPIN DARK-BRIGHT SOLITON 

Let us consider the anisotropic spin-1 antiferromag-
netic chain that preserves ground state Eq.21 of the sys-
tem. The Hamiltonian of the system that takes into ac-
count only exchange interaction is taken in the form of 
Eq.14. Then, assuming that the interaction takes place 
with the nearest neighbors in the chain, we can set the 
spin of a pair of atoms to be equal to S=1 and the eigen-
value of the operator 1i is s 

  
 , to 1i is s 

  
= –1. If a spin 

k in a chain of atoms is flipped, the operator of the exci-
tation energy can be written in the form: 

 
2

0 1 1 1

2 2 2 4
1

{ ( )

( ) 2 ( 1) ( 1) },

int k k k k k k

k k k k

V H E A s s s s s s

s s s s

  



    

    

            
     (22) 

where (considering the flip of a single spin k) 
2 4 2

0 (( 1) ( 1) 1)i i
i

E A s s     . 

In the semi-classical continuous approximation of 
magnetic moment eigenvalues, the magnetic moment of 
an atom may be represented by a function that smoothly 
varies with distance. Then, the spin k  1 can be ex-

panded as  
22

1 2
,

2
k k

k k

s sb
s s b

x x

 
  

 

  
           (23) 

where b is the constant of the lattice. After the substitu-
tion of the above expansion into Eq.22, the excitation 
energy becomes 

22 24
2 2

2

22
2

2

2 2
4

1 2
2

k k
k

k
k k

s sb
V A s b

x x

sb
( s )s .

x

                    
    

 

 


  (24) 

On the other hand, in the approximation of an effec-
tive field H* produced by all spins of the system, the 
excitation energy of the system can be defined as the 
energy of interaction of each of the spins with this field: 

0
*

kV g s H . 


               (25)  

Then, each of the spins precesses (in accordance with 
the Bloch theorem) in the effective magnetic field 

*m e
H m

t Mc

    

 
 

24
* 2 2 2

2
0

22
2

2

{ (2 ( ) ( ) )
4

(1 2 ) }.
2

k k
k

k
k

s SA b
H s b

g x x

sb
S

x


 

   
 






 

      (26) 

Applying Eq.24 to the components of the magnetic 
moment vector m = sgµ0 and assuming mz >> mx, my , 
one can rewrite Eq.26 in the cyclic coordinate system: 

2 2 22

2 2 2 2 2 2 2
0 0

2 2 22

2 2 2 2 2 2 2
0 0

( ) 4( )
[ ( )

4
[ ( ) ];

m m mAb
m i m ];

x b g b g

m m mAb
m i m

x b g b g

 


 

  
 

  
 


   




    









 (27) 

where 
2

0( )x y

A
m m im , b.

g


     

The equation obtained is similar to that for a 
dark–bright soliton [14-16]. Following [14], we repre-
sent a solution in the form 

2
0 { ( ( ))}
2

i t ixktgm ka
m e e sec h k x q t 

   , 

3 ( { [ ( )]})m Aa i sin cos tanh k x q t         (28) 

Here, 1/k is the soliton length, mz = m0 , 

2 2 2
2 20 0 0

2 2 2 2 2 2
0 0 0

41
{ ( ) },

4 4

m m m
k cos

a g g g


  
    
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2
2(1 )( )

2

A tg
ka

   


 

is the precession frequency with regard to the shift, and 
2

( ) (0)
Aa

q t q kt tg 


 

is the soliton coordinate. 
Such integrable systems in which the free energy is 

conserved are known as Manakov equations [17]. The 
higher the velocity of a soliton, the lower the free energy 
of system [17]; therefore, the soliton is formally unstable 
(it is accelerated). However, the effect of other excita-
tions (solitary or ordinary spin waves), which is disre-
garded here, does not cause dissipation [17]. With an 
additional inhomogeneous potential added to Eq.26, the 
system becomes nonintegrable, allowing for the nontriv-
ial interaction of a soliton with the environment. Never-
theless, if the interaction potential varies slowly within 
the scale of the soliton length k-1 , the variations (propa-
gations) in the soliton and potential correlate and the free 
energy can be treated as an adiabatic invariant in this 
case [15,16]. Thus, for the spin system considered above, 
we will arrive at the pattern of nonlinear magnetic vor-
tices that transform into macroscopic vortices of a mag-
netic field in a antiferromagnetic chain system. It is im-
portant to note that we analyzed the case when only one 
spin was flipped. Considering the flip of two, three, etc. 
spins, we will generate a set of solitons with different 
frequencies  1,  2, …,  n that differ in the ex-
change interaction constants. 

 
4. CONCLUSIONS  

The universal form of the exchange interaction Ham-
iltonian of the system of particles with an arbitrary spin 
in the spin representation is developed from the first 
principles. The Hamiltonian described the antiferro-
magnetic S1-chain contains the biquadratic term with 
determined coefficient. The ground state energy of the 
chain is more dependent from the exchange interaction 
in the case of a long chain. The exchange interaction 
makes such system antiferromagnetic and strong 
long-order correlated. The presence of biquadratic term 
in the Hamiltonian of the system gives rice to nonlinear 
spin waves in the chain and, in particular, to a soliton. 
The soliton is stable if the nonpoint potential varies 
slowly within the soliton length. For the one-dimen-
sional S=1spin system, we will arrive at the pattern of 
nonlinear magnetic vortices that bring the phase separa-
tion.  
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