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ABSTRACT 

A set of reduced MHD equations is derived us-
ing the standard energy balance equation. By 
applying assumption of internal energy, i.e. 

constuR 2 , a set of reduced magnetohydro-
dynamic equations are obtained for large aspect 
ratio, high   tokamaks. These equations in-

clude all terms of the same or der as the toroidal 
effect and only involve three variables, namely 
the flux, stream function and internal energy. 
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1. INTRODUCTION 

Magnetohydrodynamic (MHD) instabilities [1], such as 
tearing modes, play an important role in plasma behav-
iour of tokamaks. They may influence both the particle 
and the energy confinement and are considered to be one 
of the main reasons for disruptions. Hence they have 
been studied by many authors [2-4]. The method of re-
duced magnetohydrodynamic based on a large-aspect 
ratio expansion has provided a powerful method for lin-
ear and nonlinear numerical computations.  

In previous studies [2-4], the density of plasma is as-
sumed to be constant. This assumption is valid in cylin-
drical geometry because the divergence of velocity is of 
the order 3  with   being the ratio of the minor ra-
dius to the length of cylinder. Thus we can neglect the 
divergence of velocity in the continuity equation. By 
applying assumption of density, i.e. 2R const  , Ren 

et al. [5] has derived the reduced MHD Equations in 
toroidal geometry for large aspect ratio, low   toka-

maks. Since the divergence of velocity is of the order 
2  in toroidal geometry the same order as the toroidal 

effect, and cannot be neglected. Hence the assumption of 
constant density does not agree satisfactorily with the 
continuity equation in toroidal geometry. The present 
paper extends this work to high   tokamaks. 

In this paper, by using a new assumption about inter-
nal energy that is, 2R u const  a set of reduced MHD 
Equations is derived. Where R is major radius and u  is 
an internal energy. The reduced MHD Equations involve 
three variables: the flux, stream function and internal 
energy. The Equations can be used to calculate the 
nonlinear evolution of tearing modes for toroidal plas-
mas.  

2. REDUCED MHD EQUATIONS 

The basic MHD Equations are of the form  
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standard energy Balance Equation has the form  
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For the sake of simplicity, we adopt the quasi-cylin-
drical coordinate  , ,r    with   being the toroidal 

angle. By assuming the inverse aspect ratio   to be a 
small quantity, the ordering of the high   tokamaks [4].  
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where 0 0B R
B

R   is the externally applied magnetic 

field with 0R  being the coordinate of the geometric 

center of plasma and 
0

0 R R
B B 

 . B
  is the toroidal 

magnetic field produced by plasma current. J  is the 

toroidal current and   the toroidal velocity. The sub-

script   denotes perpendicular to  . The u  is the 

internal energy assumed to be of the order  , for high 
  tokamaks. For simplicity we use B  to express 

RB , B
  to RB

 , J  to RJ ,   to R  . Thus 

B  is of the order 1  , J  is of zeroth order while 

B
  and  are of the order  . Furthermore we assume 

   to be of the order 2
 

, for high   tokamaks [4]. 

Introducing the vector potential A  for magnetic fiel- 
d B , that is, 
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Then B can be expressed as 
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 (8) 
From Eq.(8) one can see that A  is of zeroth order 

and rA  and A  are of the order 2
 

. Compared with 

equilibrium magnetic filed expressed as B   

 B B        , where A  is the flux function. 

Later it will be shown that the effect of rA  and A  is 

of the order of 2  and can be neglected so that within 
our approximation B  can be determined by A  only. 
Substituting Eqs.(8) and (5) into Eq.(4) we obtain  
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where   is the gauge potential. Eq.(9) can be deduced 

as 
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where U  is the order   and   can be expressed as 
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where the relation 0 0B B R   is used. The divergence 

of   is obtained as 
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This Eq.(12) shows that the divergence of   is of 

the order 2
 

. Taking the   component of Eq.(9) and 

substituting Eqs.(10) and (12) into Eq.(9), we obtain the 
flux evolution equation  
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Taking the curl of B , we get the expression of cur-
rent  
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where the  -derivatives in operator are of the higher 

order and can be dropped. From the internal energy 
evolution Eq.(6) by substituting Eq.(11), we obtain  
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The term on the right-hand side of Eq.(15) can be ne-
glected because the term on the left-hand side is of ze-
roth order. This indicates that if we assume the internal 
energy to be constant, Eq.(15) cannot be satisfied. We 
assume  

constuRuR  0
2
0

2              (16) 

This assumption satisfies Eq.(15) and includes the tor-
oidal effect.  

Taking the curl of momentum Eq.(2) after multiplying 
by 2R

 

we can eliminate J  and B . Then we get  
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The  -derivatives in the Laplacian are also of the 

higher order and can be neglected. Using the Assump-
tion of Eq.(16) we can directly obtain the parallel vis-
cosity equation. Then a set of reduced MHD equations 
can be written as 
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The Assumption 16 that the product of the square of 
the major radius and the internal energy is a constant, is 
quite stringent as taking this to be a constant, the first 
driving term in the Grad-Shafranov equation becomes 
just proportional to the flux derivative of the logarithm 
of the major radius, which shows a rather weak depend-
ence. Therefore, this assumption seems to drastically 
narrow down the range of equilibrium configurations to 
which it is applicable. On the other hand, it has been 
observed [6] that a high density region appears near the 
inside limiter, which means that the density profile at the 
inside and outside of plasma along a flux surface is 
asymmetric. The pressure is calculated as the product of 
experimental temperature and density. Since the internal 

energy is related to the pressure as 
1

P
u





, we can say 

that the pressure distribution is nonuniform poloidally 
and the pressure is higher at the inside of plasma than at 
the outside. The result is, however, consistent with our 
expectation. On the other hand, density and pressure 
profile widths are clearly correlated [7]. 

3. CONCLUSIONS 

In summary, we derived the reduced MHD Equations  
(18-22) by using the Assumption 16 about the internal 
energy in a large aspect ratio limit. These equations in 

 

clude all terms of the same order as the toroidal effect 
and only involve three variables, namely the flux, stream 
function and internal energy. These equations can be 
used to investigate the time evolution of tearing mode 
for the high  , large aspect ratio limit for tokamak 

Plasmas. 
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