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ABSTRACT 

A new continuum theory of the constitutive 
equation of co-rotational derivative type is de-
veloped for anisotropic viscoelastic fluid—liq-
uid crystalline (LC) polymers. A new concept of 
simple anisotropic fluid is introduced. On the 
basis of principles of anisotropic simple fluid, 
stress behaviour is described by velocity gra-
dient tensor F and spin tensor W  instead of 
the velocity gradient tensor D  in the classic 
Leslie—Ericksen continuum theory. Analyzing 
rheological nature of the fluid and using tensor 
analysis a general form of the constitutive equ- 
ation of co-rotational type is established for the 
fluid. A special term of high order in the equa-
tion is introduced by author to describe the sp- 
ecial change of the normal stress differences 
which is considered as a result of director tum-
bling by Larson et al. Analyzing the experimen-
tal results by Larson et al., a principle of Non- 
oscillatory normal stress is introduced which 
leads to simplification of the problem with re-
laxation times. The special behaviour of non- 
symmetry of the shear stress is predicted by 
using the present model for LC polymer liquids. 
Two shear stresses in shear flow of LC polymer 
liquids may lead to vortex and rotation flow, i.e. 
director tumbling in the flow. The first and sec-
ond normal stress differences are calculated by 
the model special behaviour of which is in agree- 
ment with experiments. In the research, the com- 
putational symbolic manipulation such as com-
puter software Maple is used. For the anisotropic 
viscoelastic fluid the constitutive equation theory 
is of important fundamental significance. 

Keywords: Constitutive Equation; Co-rotational 
Derivative Type; Simple Anisotropic Fluid;      
Non-Newtonian Fluid; Liquid Crystalline Polymer; 
Normal Stress Difference; Shear Flow; 
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1. INTRODUCTION 

The rheological behaviour of LC polymer melt and solu-
tions is considerably different from that of the common 
Polymers [1-3]. Special behaviour of the first and second 
normal stresses is observed by Baek, Larson, Hudson, 
Huang [4-6] in the experimental investigation with HPC 
and PBLG. The experimental results show regions of 
both positive and negative of the first and second normal 
stress differences, that is the normal stresses 1  and 

2 change sign two times with variation of shear rates. 
The classic Ericksen-Leslie continuum theory [7-12] 

describes the main features of flow of nematic liquid cr- 
ystal of low molecular weight or the flow at low shear 
rates. In research on continuum theory of anisotropic 
fluids, Green has given attempts to extend basic concept 
of simple fluid for anisotropic fluid case [13,14]. A sim-
ple anisotropic fluid is defined as one for which the 
stress tensor at a particular particle at time   is depe- 
ndent on the whole history of the deformation gradients 
F  and the whole history of rotation tensor R  at the 
same time. The constitutive equation can be reduced to 
one which contains only the whole history of the defor-
mation gradients F , no history of rotation tensor R  in 
it. The convected constitutive equation of Oldroyd type 
is well used for the isotropic polymer solutions or melts 
in Non-Newtonian fluid mechanics, but rarely for the 
anisotropic LC polymer fluid case. The first attempts 
were given by Volkov and Kulichikhin for LC polymer 
fluid [15,16]. Using the Maxwell linear equation (1867) 
for anisotropic liquid crystals and introducing a con-
vected Maxwell model with relaxation and viscosity 
tensor Vokov and Kulichikhin developed a more simple 
constitutive equation with non-symmetric shear viscosity. 
As pointed out by the authors that the constitutive equa-
tion is available for the case of small recoverable strains 
in comparison with the total strains [16]. 
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As pointed out by Larson [17], the nematic LC poly-
mer shows director tumbling in shear flow. The experi-
ments have confirmed the tumbling for nematic polymer 
solutions, but relatively rare in small-molecular nematics. 
The research of Vokov and Kulichikhin have in addition 
confirmed that it needs further study on the non-sym-
metry of the shear stress components in shear flow [16] 
which may lead to director tumbling in it. 

The anisotropic behaviour of LC polymer may be de-
scribed by the continuum theory. Using convected co- 
rotational time derivative, another new approach to con-
tinuum theory of the constitutive equation for LC poly-
mer is developed by Han Shifang [1-2,18-22]. The the-
ory was specialized by the LCP-B model [1]. In the 
equation, both fluid motion and orientational motion are 
considered. The anisotropic material functions are intro- 
duced to describe the anisotropic behaviour of the mate-
rial. The developed theory is successful to predict spe-
cial behaviour of the first and second normal stress dif-
ferences which are in agreement with the experiments 
[2,4-6].  

In the present paper a general continuum theory of 
constitutive equation is developed which is available for 
application on both shear and extensional flows of the 
anisotropic viscoelastic fluids. A new concept of simple 
anisotropic fluid is introduced. The simple anisotropic 
fluid is understood as one for which the stress behaviour 
is assumed to be functional of the whole history of the 
deformation gradients F  and the whole history of spin 
tensor W  instead of rotation tensor R  in the Green 
theory. The present continuum theory is developed to 
investigate both shear stresses, normal stress differences, 
and the un-symmetry of the stress tensor for LC poly-
mers. Extending co-rotational Oldroyd fluid B [2] the 
components of the stress tensor ijS  and its co-rotational 
derivative in it are assumed to be a tensor function of 

in , iN , ijA  and ijW  instead of velocity gradient tensor 
D in the classic LeslieEricksen continuum theory. Us-
ing the tensor analysis approach [8-10] and analyzing the 
physical nature of the fluid, a general form of constitu-
tive equation is constructed for the fluid. A special 

term 
o

kjik

o

kijk AA  21   of high order in equation is 

introduced by author to describe the special change of 
the normal stress differences which is considered as a 
result of director tumbling by Larson et al. Analyzing the 
experimental results [4-6] a principle of Non-oscillatory 
normal stress is introduced, which leads to simplification 
of the problem with relaxation times. The special be-
haviour of non-symmetry of the shear stress is predicted 
by using the present model for LC polymer liquids. The 
present theory is considerably different from the classic 
Leslie-Ericksen theory and the theory of Volkov and 
Kulichikhin: 1) the theory is based on the rational mech- 

anics theory and simple anisotropic fluid which is gener-
ally valid for finite deformation case, 2) The constitutive 
equation is used to study the shear flow to predict the 
material functions such as apparent viscosity and normal 
stress differences. The special rheological behaviour 
observed in experiments is explained by the theory. For 
shear flow, two shear stresses and two apparent viscosi-
ties are obtained which are different from the isotropic 
fluid. 

2. SIMPLE ANISOTROPIC FLUID 

The “Simple fluid” is a fundamental concept which is ba- 
sed on the theory for modern non-Newtonian fluid me-
chanics; it is generally valid for isotropic fluid. The “pri- 
nciple of objectivity of material properties” introduced 
by Noll (1958) is well used to construct constitutive eq- 
uation in non-Newtonian fluid mechanics and rheology. 
The simple fluid in sence of Noll is a great significance 
in construction of constitutive equation theory for isotro- 
pic non-Newtonian fluids. But as pointed out by Tanner 
[23], it is easy to construct physical systems where this 
principle does not hold. For example it does not hold for 
a dilute suspension of spheres when the microscale 
Reynolds number is not negligible [23]. Zahorski noted 
[24] that the requirement of invariance with respect to 
the reference frame in considerations involving some 
fields may prove to be too restrictive. The principle may 
also be too restrictive for anisotropic fluids! Th- erefore, 
the concept of simple fluid should be improved further 
for the special case—anisotropic viscoelastic fluid. 

According to the polar decomposition theorem, the 
deformation gradient F  can be decomposed as 

)()()(),()()(  URFtUtRtF  , 

IRRtRtR TT  )()()()(  ,             (1) 

where )(tR  is a orthogonal rotation tensor, )(tU  is 
symmetric positive definite tensor. A spin tensor can be 
defined in terms of )(tR  

)()()(),()()(  RWRtRtWtR 


       (2) 

where   0)()(  tWtW T . 
An angular velocity of the superposed rotation is de-

fined as 

ItQtQtQttQ T 


)()(),()()(          (3) 

When the reference frame is changed the spin tensor 
is changed by 

)()()()()( ttQtWtQtW T            (4) 

It can be seen from Eq. (4) that the spin tensor )(tW  
measured with respect to fixed coordinate system at time 
t  does not satisfy principle of objectivity of material pr- 
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operties; the tensor is non-objective. The concept of su-
perposed rotation is introduced. Let the observer is att- 
ached to the rotating particle of fluid, i.e. in co-rotational 
coordinate system. The relationship between the spin te- 
nsor )(tW s  measured with respect to the fixed refer-
ence frame and the spin tensor )(tWc  measured with re- 
spect to the co-rotational reference frame is given as 

)()()()()( tQttQtWtW TT
cs         (5) 

It is easily proved that the spin tensor )(tWc  is also 
anti-symmetric 

0)()(  tWtW T
cc

                  (6) 

Substitution of (5) into (4) yields 

)()()()( tQtWtQtW T
cc                (7) 

The new spin tensor )(tWc measured with respect to 
the co-rotational reference frame is objective. The conce- 
pt of simple anisotropic fluid was defined first by Green 
[13,14] in which the extra stress tensor is expressed by a 
functional of defomation gradient )( sF  and rotation 
tensor )( sR  . A concept of superposed rigid body 
rotations is introduced by Green which leads to the fol-
lowing conclusion that the rotation tensor does not affect 
stress, apart from orientation, i.e. invariance of the equa-
tions with respect to superposed rigid rotations. The con- 
clusions of Green are only valid for the nematic liquid 
crystal of low molecular weight or the flow at low shear 
rates with any orientation. The nematic liquid crystalline 
polymer shows director tumbling in shear flow which is 
confirmed by experiments for nematic polymer solutions 
[17]. Using the Maxwell linear equation (1867) for ani-
sotropic liquid crystals, non-symmetric shear stresses in 
shear flow were founded by Vokov and Kulichikhin for 
LC polymer liquids [15,16] which may be a cause of 
rotation motion in the flow.  

 According to the previous discussions it is necces-
sary to define a new concept of simple anisotropic fluid 
for the liquid crystalline polymers, which is a basic point 
of the present investigation. Instead of rotation tensor 

)(tR , a spin tensor sW  in constitutive equation meas-
ured with respect to fixed coordinates is expressed by a 
sum of spin tensor cW  measured with respect to co- 
rotational coordinates and co-rotational tensor term as 
given by (5). The simple anisotropic fluid is defined as 
one for which the stress tensor at a particular particle is a 
functional of the whole history of the deformation gradi- 
ent F  and the whole history of spin tensor W  measu- 
red with respect to the co-rotational coordinate system. 

 )(),(£ 
0

sWsFT 


            (8) 

where W  is defined by (5). 
 

3. PRINCIPAL CONCEPTS FOR    
CONSTITUTIVE EQUATION 

In construction of continuum theory of constitutive equ- 
ation for the LC polymer-anisotropic viscoelastic fluids, 
the following principal concepts are introduced: 

1) A concept of anisotropic simple fluid is introduced. 
According to the new definition the stress is dependent 
on the whole history of deformation gradient and the 
whole history of spin tensor measured with respect to 
co-rotational coordinate system. 

2) The constitutive equation contains both contribu-
tions due to the orientational motion of director and hy-
drodynamic motions of fluid, to describe anisotropic 
effects of LC polymer [18-22]. The stress tensor is con-
sidered as a functional of the deformation tensors and 
tensors composed of the director vector and its deriva-
tive. According to statistic physics, the macroscopic ma- 
gnitudes are considered as an average of microscopic 
values.  

3) Because the nematic LC polymer solution is also 
viscoelastic fluid, the constitutive equation of co-rota-
tional Oldroyd fluid B is an initial point in constructing 
the equation theory for anisotropic viscoelastic fluid. Co- 
nstitutive equation for anisotropic viscoelastic fluid can 
be constructed by generalizing co-rotational Oldroyd fl- 
uid B [2]. 

The Oldroyd fluid B of upper-convected derivative 
type is well used for isotropic non-Newtonian fluid me-
chanics. The Oldroyd fluid B with upper-convected de-
rivative is extended to the case of co-rotational time de-
rivative developed by Shifang Han [21,22] 

 ij

o

ij SS 0 ij

o

ij AA 00             (9) 

where 
0 —isotropic relaxation time; 

0 —isotropic lim-

iting viscosity. the 
ijS —components of the extra- stress 

tensor, 
ijA —components of the first Rivlin- Ericksen 

tensor, the top circle “o” denotes the contrav- ariant com-
ponents of co-rotational time derivative defined as 

kij
k

kji
k

ij
m

m
ij

ij SSSv
t

S
S  




 ,


   (10) 

For anisotropic fluid, a generalized Maxwell equation 
is given as [15] 

klijklij
kl

ijkl S
dt

dS                 (11) 

where the relaxation time tensor ijkl  is defined by 

ijklijklijkl G                      (12) 

Eq.11 describes the linear anisotropic viscoelastic fluid 
behavior. 
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In the Leslie-Ericksen continuum theory [7-12], the 
hydrodynamic components of the stress tensor ijS  are 
assumed to be a tensor function of in , iN  and ijD , the 
full deformation history is described only by the sym-
metric part of the velocity gradient D , i.e. the rate ten-
sor ijD  are symmetric. This is a limitation of the Les-
lie-Ericksen theory. According to new definition of ani-
sotropic viscoelastic simple fluid instead of velocity gra-
dient tensor D in the classic theory, the stress tensor is 
described by 1st Rivlin-Ericksen tensor A and spin tensor 
W for the solution and the fluid. Extending the general 
principle in constructing constitutive equation by Trues-
dell [25] and Ericksen [8] and generalizing constitutive 
equation of co-rotational Oldroyd fluid B [19,20] and the 
generalized Maxwell equation, the stress components 
and those co-rotational derivative are assumed to be of 
functional of in , iN , ijA  and ijW , a general form of 
the constitutive equation of the fluid is assumed to be of 

1 , , , ,
o o

ijklij ijkl ij ij ij i i jS S A A n N            (13) 

where the js  ,  are material constants, ijA —om-

ponents of the first Rivlin-Ericksen tensor, ij —com- 

ponents of spin tensor W , kikii nnN 


. 

For anisotropic viscoelastic fluid—LC polymer melt 
and solution the stress tensor is an un-symmetric one. 
The anisotropy in elasticity of LC polymers leads to an 
un-symmetry of the stress tensor. The rotation of the 
director vector is a source of dissipation in the nematic 
liquid even in the absence of flow [16]. The stress rela-
tionship derived from the Ossen integral equation shows 
that for the nematic fluid the orientational motion of the 
director vector characterized by the director surface 
body stress and intrinsic director body force, which leads 
to un-symmetry in stress tensor. 

The first RivlinEricksen tensor ijA  express defor-
mation history due to the normalsymmetric part of the 
deformation velocity gradient in the fluid, the spin tensor 

ijW express deformation history due to the un-symmetric 
part of deformation velocity gradient in the fluid. How-
ever the un-symmetry of the stress tensor is determined 
by the un-symmetry of the shear stress components. It 
does not have principal influence on the normal stress 
differences which is of completely symmetric. The stress 
tensor can be split into two parts: symmetric and un-sy- 
mmetric 

s
ij

n
ijij SSS                (14) 

where “n” denotes normalsymmetric part, “s”denotes 
shear un-symmetric part. The functional ij in (13) is 
correspondently split into symmetric and un-symmetric too. 

For the normalsymmetric part of the stress tensor the 

general form of the constitutive equation is proposed as 

o

kjik

o

kijk

jii

o

ijijij

o

klijkl
n
ij

AA

NnAASS





21                       

,,,,









      (15) 

The special term 
o

kjik

o

kijk AA  21   of high order 

in Eq.15 is introduced to describe the special change of 
the normal stress differences which is considered as a 
result of director tumbling effect by Larson et al. 
[4-6,17].  

For the shear un-symmetric part of the stress tensor 
the general form of the constitutive equation is proposed 
as 

 jiiijij

o
s
ijk

s
kl

s
ij NnSS  ,,, , 

ji  , 3,2,1k               (16) 

In Eqs.15 and 16 the relaxation time tensor compo-
nents n

ijkl  and s
kl are introduced for normal-symm- 

etric and shear un-symmetric stresses respectively. 

3.1. Normal Symmetric Part 

Attention will be restricted to which the tensor function- 
nal are linear tensor functions in the variables in , iN , 

ijA  and ij . Thus, for the normalsymmetric Eq.16 
one has 

ksijkskijkijij ACNCC 210         (17) 

The transversely isotropic tensors with respect to di-
rection in were studied by Smith, Rivlin and Ericksen 
[7,12] that any such tensor is expressible as a linear 
combination of outer products formed from tensors in  
and jiij nn  or equivalently 

ijin ,  

For the anisotropic viscoelastic liquid,the coefficients 
in (17) are transversely isotropic considering 

0 iiii AnN , 011 ksks A , 00  , as ijA being 
chosen arbitrarily, 01   06   one can obtain 

jiij

kjkikikj

jiskksij

o

kjik

o

kijk

o

ij

o
n
klijkl

n
ij

NnNn
AnnAnn
nnnnAA

AAASS

43

1615

1413

210

                        
                        
                        













 (18) 

where 8715   , 10916   .  
For the case of anisotropy of most general form [15,16] 

because of symmetry of stress tensor the relaxation time 
tensor ijkl  has following property 

lmijijlmijlkjiklijkl       , ,       (19) 

The Eq.18 can be rewritten as 
o

kijk

o

ijij

o
n
klijkl

n
ij AAASS  10   
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jiij

kjkikikj

jiskks

o

kjik

NnNn
AnnAnn

nnnnAA












54

32

12

                       
                       
                       





       (20) 

where 
,12   

.,,,, 4534163152141     

The molecular density in the Ossen integral equation 
can be considered as a small magnitude, and the mole- 
cular inertia is neglected, one can obtain from director 
transport equation [1,2] 

0211  
jiji AnNn           (21) 

Because of Eq.(21) the co-rotational term iN  in 
Eq.(18) can be expressed by iji An , , and the constitutive 
Eq.18 is reduced to the following form 

ikkjkjki

ksskji

o

kjik

o

kijk

o

ijij

o
n
klijklij

AnnAnn
AnnnnA

AAASS

32

12

10

                       
                       











  (22) 

3.2. Shear Un-symmetric Part 

For the shear un-symmetric partial Eq.16 one has 

ksijkskijkij ENE 21            (23) 

The coefficient tensors 21 , ijksijk EE  are expressible as a 
linear combination of outer products formed by ijin , . 
For the shear un-symmetric part, the partial Eq.16 can 
be reduced to the following form [2] 

ksskjiij

jssiissj

o
s
ijk

s
kl

s
ij

nnnn
nnnnSS




43

21

                       
   (24) 

where 

1441331092871 ,,,    

In Eqs.22 and 24 ijkl components of anisotropic 
relaxation time tensor, dimension of which is ][s ;  , 

321 ,,  anisotropic viscosities being influence of the 
orientational motion on the viscosity;  anisotropic 
retardation time ;  ,  , 1 , ，2  ，3  ，1  ，2  

43  ， [ Pas ],   ][ 2Pas . 
In research on rheology and non-Newtonian fluid me- 

chanics for a new constitutive equation, the material fu- 
nctions of the typical flows, such as shear flow and ex-
tensional flow, are considered to proof the reasonable-
ness and availability of the theory. Now axial-symmetric 
shear flow will be studied to show the reasonableness 
and availability of present constitutive theory. The cy-
lindrical coordinate system ),,( rz  is used. The ve-
locity field and the director field are given as 

),0,( wuV  , ),0,( zr nnn           (25) 

For the velocity field (25) one has 

rz 














r

w

z

u

2

1
, zr 















z

u

r

w

2

1
.   (26) 

0 zzrr   .                     (27) 

 
For the velocity field (25) co-rotational time deriva-

tive components of extra stress components are calcu-
lated. For velocity field (25) and the normalsymmetric 
part of the stress and by using expressions for co-rota-
tional derivative the constitutive Eq.22 can be reduced 
to equations in stress components. 

The property of symmetry for the relaxation time ten-
sor ijlm  (19) was used. Using the definition of co-ro-
tational derivative, the constitutive Eq.22 can be reduced. 
The stress process is assumed to be time-independent; 
the constitutive Eq. (22) is finally reduced as following 

   

 

11 13 12

2
0 1 2

2 2 2
1

2 3

2

2 2 ( )( ) ( )

  2

   ( ) ( )
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rr rz rz rz rr zz
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r r rr z rz
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u
A A A

r

n n A n A n n A

n n A n A

   


    


  

  

    

     



 

  (28) 
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r
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
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
  

  
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
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(30) 

It is an additional director transport equation derived 
from conservation equation of director (Ossen’s equation) 
[1,2,11,21]. 
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11  jijii AnNn 21   . 

Neglecting inertia and gravity forces the director 
transport equation is reduced to 
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
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For the axial symmetric problem one has the follow-
ing relationship 

122  zr nn , 

two transport equations are depedent, whereas only one 
equation is independent. For the Poiseuille flow  

 
  t

),( 
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 tr
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  )),(cos21(

2

1 2  . 

For statinary state there is a constant director vector 
for shear flow 
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b
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 0
0 sinrn

b
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

4

12 
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For the unsteady state the shear flow can transit to 
tumbling [2]. 

4. NORMAL STRESS DIFFERENCES 
FOR SHEAR FLOW 

The rheological behaviour of the normal stress differ-
ences are specially interested. The flow of the LC poly-
mer fluid in circular tube with radius of R is studied. The 
Poiseuille flow is such a typical shear flow of the fluid. 
For the flow components of velocity and director vector 
are expressed by 

0    ),(  vvrwv rz               (31) 

)(cos),(sin rnrn zr             (32) 

where the  is the orientational angle of the director 
vector. which is a function only for r only. The  1st Riv-
lin-Ericksen tensor A  and the spin tensor W  are 
given as  
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The components of 1st Rivlin-Ericksen tensor and spin 

tensor are given by 

d w 1 1
,    ,

d r 2 2rz rz

dw
A

dz

 
            (33) 

For the velocity and director vector fields (31) and 
(32), the constitutive equations in components Eqs.28- 
30 are reduced to the following form 

1 42rr rz rz rzS S      
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where the following relaxation times and normal stress 
difference were introduced 
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      (37) 

Solving Eqs.34-36 by the computational symbolic 
manipulation, such as Maple, general analytical expres-
sions are obtained by the constitutive equation for the 
first and second shear stresses and the normal stress dif-
ferences . 

Case 1: Director is parallel to flow direction sin 0,  
cos 1  The first and second normal stress differences 
are given as 
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(39) 

It can be seen from the analytical expression of the 

first normal stress (38), that the curve in plane ( 1, 


) 

has four points of intersection with the axis 

 . 

The first two points of intersection are zero 



S. F. Han / Natural Science 2 (2010) 948-958 

Copyright © 2010 SciRes.                                                                    OPEN ACCESS 

954 

021 

  

And another two non-zero points are determined by 
the following algebraic equation of shear rate 

2

1 2 3 0 1 2 3 0( ) 2 ( )( ) 2 0           
 

       (40) 

Solving the equation two points are obtained for which 
the first normal stress difference is zero (see Eq.41) 

For the second normal stress 2 , five zero points 
may be obtained , the first two points are given by 

1 2 0 
 
   

The next three points will be obtained by the following 
algebraic equation 
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The relationship between relaxation times may be de-
termined by analysis of the general character of experi-
mental results [4-6]. In general case three roots may be 
found from the algebraic equation of third order (42). In 
order to express the experimental behavior of the LC po- 
lymer that the second normal stress changes sign two 
times the algebraic Eq.42 should be second order. It 
means that a principle of non-oscillatory normal stress is 
introduced. Thereby a restriction is introduced which is 
given as 

1 5 2 4 0.                (43) 

It can be derived from (37) 

4 1 5 2 5 4 2 1, , ( )k k k               . (44) 

where the k  is called as relaxation factor. 
Moreover the curve of the 1st and 2nd normal stress  

differences 21,  against 

  have the same points of 

intersection with the axis, it is necessary that 
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For the above mentioned conditions (44-45) the Eqs. 
34-36  are reduced to 
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For this case, the 1st and 2nd normal stress differences 
are reduced to 
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For the following special case 

3 6 1 20, , 2 , 0, 0k              

the Eqs.38-39, as well as Eqs.49-50 are reduced to the 
results of co-rotational Oldroyd B model [2,21,22]. 

For Figs 1-3 the material constants are given as 
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Case 2: Director is vertical to flow direction: sin 1,   
cos 0   
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Figure 1. First normal strss difference vs 
shear rate with variation of viscosity (di-
rector parallel to flow direction). 

 

 

Figure 2. Second normal strss difference 
vs shear rate with variation of viscosity 
(director parallel to flow direction). 

 

 

Figure 3. First and second normal stress 
differences vs shear rate with variation of 
viscosity 0  (director parallel to flow di- 

rection). 
 

For this case the first and second normal stress differ- 
ences can be similarly reduced. 

In conclusion the following relationships given by (43) 
to (45) are important 

2 1 5 4 4 1 5 1k k               ， ， ，  

 

Figure 4. First and second normal stress 
differences vs shear rate with variation of 
redartation time 0  (director parallel to 

flow direction). 
 

For the constitutive equation the following 8 inde-
pendent material functions are introduced 

1 3 6 0 0 2, , , , , , ,k         

For Fig. 4: 1 3 60.8, 0.45, 0.8, 0.1k        

3 02.5, 1.50, 280      

5．UNSYMMETRIC SHEAR STRESS FOR 
SHEAR FLOW 

For the flow of the LC polymer fluid in circular tube wi- 
th radius of R, the velocity and director fields of which 
are are given by (31) and (32), unsymmetric shear stre- 
sses will be studied by using the constitutive Eq.24 for 
the shear-unsymmetric stress action. 

Noting 0kssk nn  , the right side of (24) are redu- 
ced. For the velocity and director vector fields (31) and 
(32), the constitutive equation in components (24) can be 
reduced to the following form 

1 5( ) sin coss s s s
rr rz rz zr rzS S S       ,     (51) 

1 5( ) sin coss s s s
zz zr rz zr zrS S S       ,     (52) 

2
2 4 5( ) ( sin )s s s s

rz rz zz zr rr rzS S S          , (53) 

2
3 4 5( ) ( cos )s s s s

zr rz zz zr rr zrS S S          , (54) 

where 

4 1 3 5 1 2 1 11 22 2 33 ,  ,s s s s s              ＝ , ＝ ,  

3 44 , 0,s s s
ik    when i k . 

Solving Eqs. 51-54 by the computational symbolic ma- 
nipulation, such as Maple, more general analytical exp- 
ressions are obtained by the constitutive equation for the 
the shear-unsymmetric stresses. The first and second 
apparent viscosities caused by shear-unsymmetric stress 
action are given as 
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For the shear flow, the apparent viscosity caused by 
normal-symmetric stress is given as 
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.  (57) 

The following two special cases are interested. 
Case 1: Director is parallel to flow direction sin  

1cos,0  . The apparent viscosity caused by normal 
stress action is obtained 
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(58) 

Case 2: Director is vertical to flow direction sin  
0cos,1   
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(59) 

The total first and second apparent viscosities are the 

sum of those obtained by the normal-symmetric and 
shear-unsymmetric results.The shear-unsymmetric stress 
leads to additional normal stress differences. It can be 
seen from the expressions that for the normal stress dif-
ferences any principle changes are given by the the addi-
tional one. 

Material constants for Figures 5-8: 

1 3 6 60.5, 0.5, 0.8, 0.8        

 

 
Figure 5. First apparent viscosity vs shear 
rate (with variation of director vecor). 

 

 
Figure 6. Second apparent viscosity vs sh- 
ear rate (with variation of director vector). 

 

 
Figure 7. First and second apparent viscos-
ity vs shear rate (with variation of director 
vector). 
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Figure 8. First and second apparent viscosity vs shear 
rate in comparisom with viscosity calculated by co-rota-
tional Maxwell model (director vector vertical to flow di-
rection). Co .—co-rotational Maxwell model. 
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6. DISCUSSIONS AND CONCLUSIONS 

New contribution is given in continuum theory approach 
to constitutive equation of co-rotational derivative type 
for the anisotropic viscoelastic fluid—liquid crystalline 
polymers. A new concept of simple anisotropic fluid is 
introduced for the fluid. The simple anisotropic fluid is 
understood as one for which the stress behaviour is as-
sumed to be functional of the whole history of the de-
formation gradient F  and the whole history of spin 
tensor W  instead of rotation tensor R  in Green the-
ory. Instead of velocity gradient tensor D  in the cl- 
assic LeslieEricksen continuum theory, the stress ten-
sor is described by the deformation gradient F and spin 
tensor W . The components of the stress tensor ijS  and 
its co-rotational derivative are assumed to be a tensor 
function of in , iN , ijA  and ijW  instead of velocity gr- 
adient tensor D  in classic LeslieEricksen continuum 
theory. Using the tensor analysis approach and analyzing 
the physical nature of the fluid, a general form of const- 
itutive equation is developed for LC fluid－viscoelastic 
anisotropic fluid. The rheological behaviour of the nor-
mal stress differences is successfully predicted by the 
model for the LC polymer liquids. The un-symmetry of 
the shear stress is predicted by the present continuum 
theory for anisotropic viscoelastic fluid—LC polymer 
liquids. First and second normal stress differences vs 
shear rate 


 , with variation of viscocity, calculated by 

the constitutive model are shown by Figure 1 to Figure 
3 for director parallel to flow direction. First and second 
normal stress differences vs shear rate 


  with variation 

of retardation time is shown by Figure 4. Remarkble 
difference is seen in Figure 1 and Figure 2 between the 
results of present anisotropic theory and calculated by 
isotropic co-rotational Maxwell model. Influence of ma-
terial constants on normal stress differences is shown by 
Figure 1 to Figure 3 (viscosity) and Figure 4 (retarda-
tion time). It can be seen from the Figure 1 to Figure 4, 
that the first normal stress difference changes from posi-
tive to negative , then to positive, but the second normal 
stress difference changes from negative to positive, then 
to negative. In explaining the special behaviour of the 
normal stress differences the tumbling coefficient   
and the relaxation times in the constitutive equation can 
be considered as fundamental material functions of im-
portant influence.  

Figure 5 and Figure 6 show the first and second ap-
parent viscosities vs shear rate with variation of director 
vector respectively. Recognizable change is seen in Fig-
ure 5 and Figure 6 for the first and second viscocities 
with variation of director vector. For comparisom the 
first and second apparent viscosities vs shear rate with 
variation of director vector are shown in Figure 7. A 
remarkable difference between two viscocities is ob-
served by Figure 7. Figure 8 is a plot of the first and 
second apparent viscosities in comparisom with that cal- 
culated by isotropic co-rotational Maxwell model where 
the director vector is vertical to flow direction.  

Firstly, the first and second normal stress differences 
are successfully predicted by constitutive theory (Figure 
1-Figure 4) which is tendentiously in agreement with 
experimental results of Baek, Larson et al. [4-6] as the 
experiments were completed with different conditions. 
Second, two shear stresses and two apparent viscosities 
are predicted by the present continuum theory (Figure 5 
-Figure 8), which are in agreement with the theoretical 
results by Volkov and Kulichikhin [16]. Thereby two 
shear stresses in the shear flow of LC polymer liquids 
lead to vortex flow and rotation flow in it. The present 
phenomenon could be of important practical significance 
for the modern liquid crystalline display technology.  

On basis of the above analysis, the present continuum 
theory of the constitutive equation of co-rotational type 
is reasonable and available to predict macroscopic rheo- 
logical behaviour for this kind of fluids. The present con-
stitutive theory is of fundamental significance on basis of 
which a series of new anisotropic non-Newtonian fluid 
problems can be addressed. 
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