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ABSTRACT 

A finite volume method for the numerical solu-
tion of viscoelastic flows is given. The flow of a 
differential upper-convected Maxwell (UCM) 
fluid through a contraction channel has been 
chosen as a prototype example. The conserva-
tion and constitutive equations are solved using 
the finite volume method (FVM) in a staggered 
grid with an upwind scheme for the viscoelastic 
stresses and a hybrid scheme for the velocities. 
An enhanced-in-speed pressure-correction al-
gorithm is used and a method for handling the 
source term in the momentum equations is em-
ployed. Improved accuracy is achieved by a 
special discretization of the boundary condi-
tions. Stable solutions are obtained for higher 
Weissenberg number (We), further extending 
the range of simulations with the FVM. Numeri-
cal results show the viscoelasticity of polymer 
solutions is the main factor influencing the 
sweep efficiency. 

Keywords: Upper-Convected Maxwell (UCM) Model; 
Finite Volume Method; Viscoelasticity; Sweep  
Efficiency 

1. INTRODUCTION 

In the recent years, numerical simulation of viscoelastic 
flows has been a powerful tool for understanding the 
fluid behavior in a variety of processes of both industrial  

and scientific interest [1,2]. Polymeric fluids, owing to 
their viscoelastic characters, are of particular interest 
in the numerical simulation because of their wide ap-
plications in material processing and their different 
behavior from that of Newtonian fluids in ways which 
are often complex and striking. Although there have 
been many successful numerical predictions of elastic 
fluid flows [3-5], in which the Weissenberg number 
(We), standing for the elasticity, is low. 

In the process of water flooding alone, the residual oil 
remaining within porous media is difficult to be dis-
placed or recovered. In comparison, polymer flooding is 
more effective. Experimental results [2,5,6] indicated the 
viscoelasticity of polymer solutions can enhance the 
displacement efficiency, but there have been few theo-
retical studies on this subject. 

In this work, with the upper-convected Maxwell 
(UCM) model, the fluid flow through a 4:1 sudden con-
traction channel is studied by using a stable finite vol-
ume scheme. An enhanced-in-speed pressure correction 
algorithm and a method for handling the source term in 
the momentum equations are employed. The simulation 
accuracy is improved by a special discretization of the 
boundary conditions. The presented method succeeds in 
providing accurate numerical solutions, and elasticity 
levels up to We = 3.0. Where with the finite difference 
method the We, standing for the elasticity, is less than 0.5 
[7,8]. 

In the following sections, the description of the prob-
lem, the mathematical model of the flow and the solution 
method are described respectively. The discretization of 
the source term and the boundary conditions are sepa-
rately examined. The contours of velocity, stream func-
tion and pressure are drawn. Finally, the simulation re-
sults are presented and conclusions are drawn regarding 
the use of the FVM for viscoelastic flow simulations. 
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2. MATHETICL MODEL 

2.1. The Model of Sudden Contraction 
Channel 

The micro-pores of an actual reservoir are in general 
complicated. These pores are often simplified in nu-
merical simulation. The problem geometry is shown in 
Figure 1. It concerns the flow of a UCM fluid through 
a planar 4:1 sudden contraction channel. Then, flow 
behavior of viscoelastic polymer solutions is studied 
with this simplified physical model. Note that the di-
mension in the Figure 1 are dimensionless. 

2.2. Governing Equations 

The isothermal flow through contraction for incom-
pressible fluids, such as polymer solutions and melts, is 
governed by the equation of continuity and motion, 
which can be expressed as 

0v                    (1) 

v v p                   (2) 

where v is the velocity vector, p the pressure, τ the ex-
tra stress tensor and ρ the density. 

The constitutive equation that relates the stresses τ to 
the deformation history is predescribed by the UCM 
model, which in its differential form is written as 

  


                   (3) 

where λ is the relaxation time, μ a constant viscosity, 

  the rate-of-strain tensor and 


 Oldroyd’s upper 

convected derivative of the stress tensor τ. 
The above equations are non dimensionalized by in-
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where the characteristic velocity (U) and characteristic 
length (L) are taken as the average velocity in the down- 
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Figure 1. The model of sudden contraction channel. 

stream half channel and the width of the downstream 
half channel, respectively, η is the constant shear vis-
cosity, u is the velocity component in the x direction, 
and v is the velocity component in the y direction. 

Therefore, in the dimensionless form the governing 
equations are given in the following, where the subscript 
D is omitted for brevity. 

For a two-dimensional system in a rectangular co-or-
dinates (x,y) with the velocity components (u,v), the con-
tinuity Eq.1 can be written as 

0
u v

x y

 
 

 
                  (4) 

The momentum equation (Eq.2) is given by 

[ ( ) ( )] xyxxp
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     (6) 

and the constitutive equations for the UCM fluid can be 
written as 
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where τxx, τxy and τyy are the stress components in usual 
sense. 

The Weissenberg number (We) and Reynolds number 
(Re) in Eq.9 are defined by 
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To solve Eqs.4-9, the boundary and initial conditions 
are given below. 

For the full-developed steady Poiseuille flow, the inlet 
boundary condition is 
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No-slip conditions are imposed on solid boundaries 
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and symmetry conditions are specified on the symmetri-
cal axis [9]. 

At the outlet a fully developed velocity profile is im-
posed with the homogeneous Neumann boundary condi-
tions for the extra-stress, i.e., 

0
xx xy yy

x x x

    
  

   

3. NUMERICAL ALGORITHM 

The constitutive relation Eq.3 is solved together with 
Eqs.1 and 2 using the FVM. Here some details about our 
own implementation of the method are given. 

3.1. Computational Grid 

A grid is placed in the computational domain and a 
control volume is associated with each unknown on 
the grid. This grid, called the reference grid, remains 
fixed in space for all time. In this study, we assume 
that the sides of each control volume are aligned with 
the coordinate axes. Each component is integrated over 
an appropriate control volume [10]. The grid is shown 
in Figure 2. 

The staggered grid is used in which the different de-
pendent variables are approximated at different mesh 
points. Both meshes ensure that the solution is not pol-
luted by spurious pressure modes. On a non-staggered 
mesh the familiar chequerboard mode is applied. 

3.2. Discretization 

A simple finite volume formulation is used for the dis-
cretization and the first-order Euler implicit formula is 
used for temporal differences because of its simplicity 
for implementation and unconditional stability in nu-
merical computations. 

In employing the FVM, the governing equations are 
written in the following general form [11]: 

( ) ( )mv S                  (10) 

 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Staggered grid. 

3.2.1. Discretization of Continuity Equations 
The discretized continuity equation reflects the mass 
conservation for each cell: 

e w n s 0F F F F               (11) 

where 

eeF u yRe  , wwF Reu y , 

nnF Reu x , ssF Reu x . 

Fe is the outgoing mass flow rates at cell face e, ue refers 
to the cell face velocity component, and the same for Fw, 
Fn, Fs and uw , un , us. 

3.2.2. Discretization of Momentum Equations 
Eqs.5 and 6 can be written in the general form of Eq.10 
using the transformation 

2xx xx
u

x
     


              (12) 

2yy yy
v

y
     


              (13) 

( )xy xy
u v

y x
       

 
          (14) 

where    is the elastic part of the stress tensor   [12]. 
Substituting Eqs.11-13 into the momentum equations 

and assuming a constant viscosity turn Eqs.5 and 6 into 
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In Eqs.15 and 16 the viscous parts are discretized as 
the diffusion terms of Eq.10, while the other terms on 
the right-hand side are treated as extra source terms. 

Then the final discretized equations of momentum can 
be expressed symbolically in a general form: 

P P E E W W N N S S ua u a u a u a u a u S         (17) 

where uP refers to the cell velocity component, and the 
same for uE, uW, uN and uS. 
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3.2.3. Discretization of Constitutive Equations 
The adopted viscoelastic model also has the general 
transport equation from Eq.10 without diffusion term 
( = 0). To ensure numerical stability, generally, a first- 
order upwind difference (UD) is used for spatial discre-
tization. Thus, the discretized constitutive equation can 
be written as 

P P E E W W N N S Si ij ij ij ij ij ija a a a a S    
            (18) 

where τijP refers to the cell stress component, and the 
same for τijE, τijW, τijN and τijS. 
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where ve refers to the cell face velocity component, and 
the same for vw, vn, vs. 

3.3. Solution of the Discretized Equations 

In non-linear problems the equations are solved with itera-
tive methods using an initial guess for the primitive vari-
ables and giving an approximate solution. The iterative 
methods have the advantage of less computer memory as 
they take advantage of zero elements in the coefficient 
matrix. In this work, the strongly implicit procedure (SIP) 
[13-15] is used, which involves the direct, simultaneous 
solution of the set of equations formed by modification of 
the original matrix equation. The modified matrix is con-
structed according to two criteria: 1) the equation set must 
remain more strongly implicit than in the alternating direc-
tion implicit (ADI) case; and 2) the elimination procedure 
for the modified set must be efficient. 

4. RESULTS AND DISCUSSION 

As discussed above, a numerical simulation method is 
used and the stream function contour, velocity contour 
and pressure contour with different We can be obtained. 
As an example, the stream function and velocity con-
tours with We equates 0 to 3.0 are shown in Figures 3-5, 
respectively. 
 

 
(a) We = 0, Re = 10-5 

 

 
(b) We = 0.6, Re = 10-5 

 

 
(c) We = 1.5, Re = 10-5 

 

 
(d) We = 3.0, Re = 10-5 

 
Figure 3. Stream function contours. 
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Figure 3 shows the influence of the We on the stream 
function, we can see that when the Reynolds number is 
smaller, the vortex area is expanding as We increasing, 
and the corresponding vortex strength will be enhanced, 
thereby the fluid velocity and applied force in the con-
vex corner will increase too. So, displacing the dead oil 
in convex corner, enhance vortex-convex is an important 
reason to raise the angle of displacement oil. This is be- 
 

 

(a) We = 0, Re = 10-5 

 
(b) We = 0.6, Re = 10-5 

 

(c) We = 1.5, Re = 10-5 

 
(d) We = 3.0, Re = 10-5 

Figure 4. Velocity contours. 

cause under the flowing conditions of reservoir (That is, 
Reynolds number is smaller), the viscoelastic of fluid 
plays a important role in fluid flow, the stronger the vis-
coelastic (That is, We is larger), the stronger the viscoe-
lastic vortex is. 

In Figure 4, from the area surrounded by the speed of 
v = 0.03125, it is seen that the micro sweep area and 
sweep efficiency increase as the We increases. 
 

 

(a) We = 0, Re = 10-5 
 

 
(b) We = 0.6, Re = 10-5 

 

 
(c) We = 1.5, Re = 10-5 

 

 

(d) We = 3.0, Re = 10-5 

 
Figure 5. Pressure contours. 
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In Figure 5, at the downstream of the contraction, the 
pressures change gently. In the convex area of contrac-
tion, pressures vary intensely and the difference grows 
larger with the increase of We. That is to say, the pres-
sure loss mainly happens at corner. The the pressure 
drop is larger with a bigger We. The high pressure drop 
and high velocity of viscoelastic polymer solution at 
corner strengthen the displacement and wash action, and 
it will increase the microscopic sweep efficiency. 

5. CONCLUSIONS 

In this paper, the flow of a UCM model fluid through a 
4:1 sudden contraction channel has been studied using a 
stable finite volume scheme. The solution method suc-
ceeds in obtaining accurate values for all variables at 
elasticity levels up to We = 3.0. 

The present simulations reinforce the point that the 
FVM can be used as a viable alternative for the solution 
of viscoelastic problems. The results are accurate and 
offer an improvement over previous numerical solutions. 
Although the present study has been applied to a UCM 
fluid in a relatively simple geometry, it can be further 
extended to other more realistic constitutive equations, 
such as the Phan-Thien-Tanner or Giesekus-Leonov mo- 
dels, etc. and to other geometries encountered in poly- 
mer processing. 

Numerical results show that the viscoelasticity of poly-
mer solutions is the main factor influencing sweep effi-
ciency. With increasing elasticity, the flowing area in the 
corner is enlarged significantly, thus the area with immo-
bile zones becomes smaller. Flow velocity is larger than 
that for a Newtonian fluid, the sweep area and displace-
ment efficiency increase as the elasticity increases. The 
pressure drop in the convex area is larger with a bigger 
elasticity, and it will strengthen the displacement and wash 
action at the corner. The viscoelastic behavior of the dis-
placing polymer fluids can in general improve the dis-
placement efficiency in pores compared to using Newto-
nian fluids. This conclusion should be useful in selecting 
polymer fluids and designing polymer flooding operations. 
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