
Modern Mechanical Engineering, 2019, 9, 20-29 
http://www.scirp.org/journal/mme 

ISSN Online: 2164-0181 
ISSN Print: 2164-0165 

 

DOI: 10.4236/mme.2019.91003  Feb. 1, 2019 20 Modern Mechanical Engineering 
 

 
 
 

Koopman Reduced Order Control for Three 
Body Problem 

Haoze Tang 

John Carroll Catholic High School, Alabama, USA  

 
 
 

Abstract 
In this paper, we use a Circle Restricted Three-Body Problem (CRTBP) to 
simulate the motion of a satellite. Then we reformulate this problem with the 
controller into the description using Koopman eigenfunction. Although the 
original dynamical system is nonlinear, the Koopman eigenfunction behaves 
linearly. Choosing Jacobi integral as the Koopman eigenfunction and using 
the zero velocity curve as the reference for control, we are allowed to combine 
well-developed Linear Quadratic Regulator (LQR) controller to design a non-
linear controller. Using this approach, we design the low thrust orbit transfer 
strategy for the satellite flying from the earth to the moon or from the earth to 
the sun. 
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1. Introduction 

Restricted three-body problems usually have a satellite which has a relatively 
small mass introduced into a system of two large masses orbiting circularly 
around their center of mass. CRTBP has many situations that it applies for in the 
solar system, such as a satellite traveling from earth to moon or comet entering 
our Sun-Earth system. 

In order to solve the optimal control problem of the orbit transfer, a wide 
range of traditional optimal control strategy is employed. Traditional methods 
for optimal control of orbit transfer are mainly divided as the direct method [1], 
and indirect method. Using the framework of the direct methods, the state and 
the control variables are directly discretized, and the optimal control problem is 
converted into a nonlinear programming (NLP) problem [2]. The major direct 
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methods include spectral collocation [3] [4], spline collocation [5]. Direct me-
thods are robust and can easily accommodate path constraints, but they often 
require many computational resources especially for complex orbit transfer. For 
indirect methods, they rely on the calculus of variations, and the necessary condi-
tion of optimality requires the solution of the two-point-boundary-value-problem 
(TPBVP) or the Pontryagin’s maximum principle. However, the disadvantage of 
indirect methods is often extremely difficult to solve. Another popular tradition-
al method for optimal control is the so-called Linear Quadratic Regularization 
(LQR) control, whose cost function is quadratic. The quadratic cost function can 
be thought as the control energy. 

However, neither direct method nor indirect method could provide a general 
solution methodology for a nonlinear optimal control problem [5] [6]. For direct 
method, the transcribed nonlinear programming problem may be not 
well-posed or converged to a local optimal solution. Especially for nonlinear 
problems, the collocation points will be huge to meet resolution requirements, 
and thus it requires large computational resources beyond current computation-
al tools. For indirect method, the existence of the optimal solution is also ques-
tionably depending case by case. 

In this paper, we use a Circle Restricted Three-Body Problem (CRTBP) to si-
mulate the motion of a satellite. Then we reformulate this problem with control-
ler into the description using Koopman eigenfunction. Choosing Jacobi integral 
as the Koopman eigenfunction and using the zero velocity curve as the reference 
for control, we are allowed to combine well-developed linear controller to design 
nonlinear control strategy. This approach is then employed to perform the op-
timal control on circular restricted three-body problem. 

2. Basic Theory 
2.1. Restricted Circle Three Body Problem 

In a circular restricted three-body problem, the satellite’s mass is negligible with 
respect to the other two, and thus we neglect the force from the third mass act-
ing on other two larger masses. When considering a rotating reference frame, 
the two co-orbiting bodies are considered stationary, and the ratios of mass and 
distance are considered instead of their actual value because their relative value 
is of the most importance. The governing equations of restricted circle 
three-body problem are: 

( )
2

1 2
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1 2
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dd
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( )2 2
2 1 31r y yµ= − + +                        (4) 

and we set µ = 0.012155085 that is the mass ratio between the earth and moon. 
We can rewrite these formula with a substitution: 1 2 3 4, , ,y x y x y y y y= = = =   
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        (5) 

Jacobi’s integral is the only known conserved quantity for the circular re-
stricted three-body problem. This integral is used to derive numerous solutions 
in special cases of three body problem. The Jacobi integral remains constant 
even though Energy and momentum are not conserved separately, and is ex-
pressed as follow in the (x, y)-coordinate system: 

( ) ( )2 2 2 2

1 2

12C x y x y
r r
µ µ −

= + + + − + 
 

                 (6) 

The zero-velocity surface relates to the restricted three body problem of gravity 
and it plays a critical role in restricted circle three-body problem. It represents a 
surface that a body of given energy cannot cross through, as it would have zero 
velocity if reaching the surface. As is shown in Figure 1, Zero velocity curve that 
passes through L1 Lagrangian point represents the surface that the third body 
flying at rest from the left of L1 cannot cross. Thus, the third body needs to move 
around the largest body permanently. However, the zero velocity contour that 
passes through L2 is much more interesting and we can see that the third body  
 

 
Figure 1. Zero velocity that pass through L1 to L5. 
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can transfer between the largest body and the second largest body. This zero ve-
locity curve provides us the potential that controlling the Jacobean (that include 
both kinetic energy and potential energy) will control the orbit transfer between 
these two large bodies. In what follows, we utilize this difference to move the sa-
tellite from orbits around the earth to the orbits around the moon, where we 
denote the larger two bodies as earth and moon while treating the third body as 
satellite. 

2.2. Koopman Eigenfunction 

We write the governing equation of the three body problem in this generalized 
form: 

( ) ( )d
d

y t f y
t

=                            (7) 

And then we are going to define its corresponding Koopman eigenfunction. 
In 1931, B. O. Koopman [7] introduced the operator theoretic perspective, 
showing that there exists an infinite dimensional linear operator Kt that acts to 
advance all measurement functions g of the state with the flow of the dynamics. 
For the infinite dimensional linear operator Kt, its eigenfunction is of the most 
importance and it satisfies the following equation [5] [8] for a continuous sys-
tem: 

( ) ( )d
d

y y
t
φ λφ=                          (8) 

The Koopman eigenfunction can be incorporated into the original governing 
Equation (7) using the chain rule, where it gives: 

( ) ( ) ( ) ( )d
d

y y y y f y
t
φ φ φ= ∇ ⋅ = ∇ ⋅                 (9) 

With the definition of the Koopman eigenfunction, the eigenfunction satisfies: 

( ) ( ) ( )y f y yφ λφ∇ ⋅ =                     (10) 

Furthermore, we can implement Koopman eigenfunction into a dynamical 
system with control. For example, we add the thrust force in three body problem 
acting directly on x and y direction acceleration. 

( )d
d

y f y Bu
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= +                       (11) 

where u is the input and B is the corresponding matrix: 
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This linear system represented in Koopman eigenfuction is: 

( ) ( ) ( ) ( ) ( ) ( )d
d

y y y y f y Bu y y Bu
t
φ φ φ λφ φ= ∇ ⋅ = ∇ ⋅ + = +∇ ⋅     (13) 
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In this form, the orignial nonlinear system f(y) in the governing equation is 
transformed into a linear one, which is represented as the eigenvalue. The con-
trol input enters the dynamics of Koopman eigenfunction φ  via an additional 
term which is linear in φ  but possibly nonlinear in control. 

Because the Jacobi integration is the conservation quantity of restricted three 
body problem, it corresponds to a Koopman eigenfunction with eigenvalue λ = 
0, i.e.: 

d 0
d
C C
t
= ×                       (14) 

Thus, we use Jacobi integration of restricted three body problem as Koopman 
eigenfunction for the reduced order optimal control. 

Although there are plenty of possible Koopman eigenfunctions, Jacobean 
integral is the known one that satisfies the definition of Koopman eigenfunction 
exactly. Setting velocity in Jacobean integral as zero, it also provides the physical 
meaning; i.e., zero velocity curve that serves to represent the potential energy of 
the system. In the following work, we are also going to utilize the zero velocity 
curve as the guidance for the control reference of Koopman eigenfunction. 

2.3. Combining with Linear-Quadratic Regulator 

With Koopman eigenfunction, we have transformed the dynamics in the system 
of φ , which is linear. This offers us the space to utilize the traditional linear 
quadratic controller [5]. 

( ) 1 T T
0

1,
2

J u Q u Ruφ φ φ= +∫                   (15) 

where φ  is the Koopman eigenfunction for our problem; i.e. Jacobean integral 
in restricted three body problem. Q is the cost matrix that weights the current 
state variable and R is the cost matrix that regulates the input u. The LQR pro-
vides a feedback controller represented by Koopman eigenfunction:  

( )u K yφφ= −                        (16) 

which is linear in the eigenfunction, but generally nonlinear in original state y. 
We also consider the reference tracking, ( )( )refu K xφ φ φ= − − , with a modified 
cost function. With this reference, we are allowed to control the Koopman ei-
genfunction into different levels. In our problem, the reference is determined 
through the zero velocity curve. Increasing the Jacobean integral corresponding 
to the system, we will have more total energy and thus satellite is allowed to fly 
to high potential energy space. 

3. Results and Discussion 

In this section, we are trying to solve a classical orbit transfer problem using the 
proposed Koopman reduced order control approach. To stimulate the practical 
application and to simplify the following description, we consider the earth to be 
the largest body in our restricted three body problem, the moon as the smaller 
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planet, and our satellite as the third body. Using Equation (15), which describes 
a magnitude of thrust, we found a way to solve the minimal thrust orbit problem 
that allows satellite to transfer from the earth orbit to the moon orbit. In Figure 
2, red part is the original orbit that move around the moon and then transfer to 
the the orbit that move around the earth (blue line). This procedure requires that 
the total thrust force is minimal. The transfer procedure is illustrated in the 
green line. In Figure 3, it shows that from time 0 to 10 is the section when the 
orbital stays rotating around the earth (Blue dashed line in Figure 2), from time 
10 to 15 is the section where the orbital changing into rotating around the moon 
(Green line in Figure 2), from time 15 to 30 is the section where the orbital ro-
tate around the moon (Red dashed dot line in Figure 2). 

As shown in Figure 3, between time 0 and 10, we kept the Jacobi integral low 
as a constant −3.19 to keep the orbit stay rotating around the earth. From time 
10 to 15, we increased the Jacobi integral to another constant −3.17 so that the 
orbital can switch to orbiting around the moon. At last, from time 15 to 30, we 
decreased the Jacobi back to the original constant −3.19 so that it will remain or-
biting around the moon. Jacobi integral represents the total energy of the three 
body system; i.e., kinetic energy and potential energy. We control the orbit 
transfer through controlling the Jacobi integral base on the zero velocity curves 
(Figure 1), as zero velocity curve represents the region that satellite can fly. 
These two constants −3.19 and −3.17 corresponds to the zero velocity curve that 
pass through Lagrangian point L1 and L2, respectively (with a minus sign differ-
ence). 
 

 
Figure 2. Orbital curve of the third body (satellite). Blue dashed line: from time 0 to 10 
when the satellite stays rotating around the earth. Green line: from time 10 to 20 when the 
orbital transfers into the orbit rotating around the moon. Red dashed dot line: from time 
15 to 30 when the orbital stays rotating around the moon. 
 

 
Figure 3. Time-history of Jacobean Integral when transferring from the earth to moon. 

https://doi.org/10.4236/mme.2019.91003


H. Z. Tang 
 

 

DOI: 10.4236/mme.2019.91003 26 Modern Mechanical Engineering 
 

Figure 4 and Figure 5 shows us the time history of feedback gain for control 
in x and y direction, respectively. Although the controller we design is linear for 
Jacobi Integral (16), but the controller is nonlinear with respective to original 
state variable; i.e., velocity and displacement in x and y directions. The advan-
tage of Koopman controller is that we are allowed to combine Koopman eigen-
function and traditional linear controller to design a nonlinear controller easily. 
Using Jacobi Integral (total energy) as the Koopman eigenfunction, it provides 
us a way to control the orbit and perform the orbit transfer easily. 

Furthermore, we modify the mass ratio µ in circle restricted three body prob-
lem to consider the sun-earth-moon system, assuming that the force of the 
moon and other planets are negligible. In that the orbit moving around the earth 
is extremely small compared to the earth-sun distance, we also show results that 
zoom in to the region around the earth (Figure 7). In Figure 6 and Figure 7, red 
part is the original orbit that moves around the moon and then transfer to the 
orbit that moves around the earth (blue line). This procedure requires that the 
total thrust force is minimal. The transfer procedure is illustrated in the green 
line. In Figure 8, it shows that from time 0 to 10 is the section where the orbital 
stays rotating around the earth (Blue dashed line in Figure 6 and Figure 7), 
from time 10 to 15 is the section where the orbital changing into rotating around 
the moon (Green line in Figure 6 and Figure 7), from time 15 to 100 is the sec-
tion where the orbital rotate around the moon (Red dashed dot line in Figure 6 
and Figure 7). 
 

 
Figure 4. Time history of feedback gain for control in x direction when 
transferring from the earth to moon. 

 

 
Figure 5. Time history of feedback gain for control in y direction when 
transferring from the earth to moon. 
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Figure 6. Orbital curve of the satellite. Blue dashed line: from time 0 to 10 when the satel-
lite stays rotating around the earth. Green line: from time 10 to 15 when the orbital 
transfers into the orbit rotating around the sun. Red dashed dot line: from time 15 to 100 
when the orbital stays rotating around the sun. 
 

 
Figure 7. Orbital curve of the satellite, zoomed in around the area around the earth. Blue 
dashed line: from time 0 to 10 when the satellite stays rotating around the earth. Green 
line: from time 10 to 15 when the orbital transfers into the orbit rotating around the sun. 
Red dashed dot line: from time 15 to 100 when the orbital stays rotating around the sun. 
 

 
Figure 8. Time-history of Jacobean Integral when transferring from the earth to sun. 
 

As shown in Figure 8, between time 0 and 10, we kept the Jacobi integral low 
as a constant −3.0008906 to keep the orbit stay rotating around the earth. From 
time 10 to 15, we increased the Jacobi integral to another constant −3.000886 so 
that the orbital can switch to orbiting around the moon. At last, from time 15 to 
100, we decreased the Jacobi back to the original constant −3.0008906 so that it 
will remain orbiting around the moon. Jacobi Integral represents the total energy 
of the three body system; i.e., kinetic energy and potential energy. We control 
the orbit transfer through controlling the Jacobi integral base on the zero veloci-
ty curves (Figure 1), as zero velocity curve represents the region that satellite can 
fly. These two constants −3.0008906 and −3.0008866 corresponds to the zero 
velocity curve that pass through Lagrange point L1 and L2, respectively (with a 
minus sign difference). 

Figure 9 and Figure 10 show us the time history of feedback gain for control 
in x and y direction while moving towards the sun, respectively. Although the  
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Figure 9. Time history of feedback gain for control in x direction when 
transferring from the earth to sun. 

 

 
Figure 10. Time history of feedback gain for control in y direction when 
transferring from the earth to sun. 

 
controller we design is linear for Jacobi Integral (16), but the controller is nonli-
near with respective to original state variable; i.e., velocity and displacement in x 
and y directions. 

4. Conclusion 

In this paper, we use a Circle Restricted Three-Body Problem (CRTBP) to simu-
late the system among the earth, moon and satellite and the system among the 
sun, earth and satellite. Then we reformulate this problem with controller into 
the description using Koopman eigenfunction. Although original dynamical 
system is nonlinear, the Koopman eigenfunction behaves linearly. Choosing Ja-
cobi integral as the Koopman eigenfunction and using the zero velocity curve as 
the reference for control, we are allowed to combine traditional Linear Quadrat-
ic Regulator (LQR) controller to design a nonlinear controller. At last, we design 
the low thrust orbit transfer strategy for the satellite flying from the earth to the 
moon or from the earth to the sun.  
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