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Abstract 
Watershed vulnerability was assessed for Bernalillo County, New Mexico us-
ing a multi-criteria Fuzzy Inference System (FIS) implemented in a Geo-
graphic Information System (GIS). A vulnerability map was produced by 
means of a weighted overlay analysis that combined soil erosion and infiltra-
tion maps derived from the FIS methodology. Five vulnerability classes were 
stipulated in the model: not vulnerable (N), slightly vulnerable (SV), mod-
erately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable 
(EV). The results indicate that about 88% of the study area is susceptible to 
slight (SV) to moderate vulnerability (MV), with 11% of the area subject to 
experience high or extreme vulnerability (HV/EV). For land use and land 
cover (LULC) classifications, shrub land was identified to experience the most 
vulnerability. Weighted overlay output compared similarly with the results 
predicted by Revised Universal Soil Loss Equation (RUSLE) model with the 
exception of the not vulnerable (N) class. The eastern portion of the county 
was identified as most vulnerable due to its high slope and high precipitation. 
Herein, structural stormwater control measures (SCMs) may be viable for 
managing runoff and sediment transport offsite. This multi-criteria FIS/GIS 
approach can provide useful information to guide decision makers in selec-
tion of suitable structural and non-structural SCMs for the arid Southwest. 
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1. Introduction 

Urban sprawl is a leading cause of non-point source (NPS) pollution in the 
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world [1], with urban runoff being a major contributor to elevated levels of 
harmful pollutants in streams, lakes, rivers, and oceans. Common runoff pollu-
tants include sediments, nutrients, organic materials, pathogens, hydrocarbons, 
pesticides, metals, chlorides, grease, trash, and toxic substances. These pollutants 
pose a serious threat to surface water quality and sustainable development. Ad-
ditionally, the impact of runoff is much more realized in arid watersheds that are 
often characterized by scant but high-intensity episodic rainfall events with in-
creased runoff volume [2]. A search for stormwater management practices to 
reduce stormwater runoff volume and improve overall runoff quality is a con-
cern shared by many community planners and local governments for all land use 
classifications (urban and non-urban) within their jurisdictional boundary. 

To address this concern, scientists, planners, and stakeholders are usually re-
quired to evaluate several competing watershed-specific factors in order to de-
velop procedures and practices that can best minimize the issues associated with 
stormwater runoff. Common watershed factors include topography, precipita-
tion, soil, vegetation, and drainage area. In most cases, selecting the best combi-
nation of methods and alternative conservation practices in the presence of 
competing factors poses a great challenge for decision makers [3]. A responsible 
approach to watershed protection is by adopting Best Management Practices 
(BMPs) [4], also known as Stormwater Control Measures (SCMs). 

Structural SCMs and non-structural SCMs involve techniques, methods, ac-
tivities, and practices that have the primary objective of preventing or reducing 
the quantity of pollutants present in runoff water before reaching natural water 
systems. The increase in SCM awareness has been partly attributed to their ca-
pability to control runoff volume while preserving existing hydrological function 
[4], and also by the number of stringent laws imposed by the federal government 
[5]. Many implementations of SCMs have been established in literature, but 
there is still no single SCM that can exclusively solve every watershed problem 
[3]. This implies that a good implementation of SCM strategies should be based 
on project and watershed-specific needs. Gautam et al. [6] indicated that due to 
rapid urbanization and limited water availability in the desert Southwest, the 
best implementation of SCMs for such areas should be based on water conserva-
tion and water reuse strategies. 

One extensively used technique for improving SCM efficiency is by incorpo-
rating multi-criteria decision support (MCDS) systems. MCDS involves the use 
of scientific and mathematical tools to evaluate complex trade-offs between dif-
ferent environmental and socio-economic factors [2]. Commonly adopted 
MCDS techniques include analytic hierarchy process (AHP) and fuzzy inference 
system (FIS). The former is a measurement method to derive a scale of relative 
importance of alternatives or criteria from pair-wise comparisons [7]. Input can 
be actual measurements or subjective judgement. The latter uses fuzzy set theory 
[8] to map inputs to outputs. A more evolving concept is the integration of 
MCDS and GIS processes into SCM suitability studies. One potential benefit of 
GIS-based MCDS models is that they can be easily implemented in regions 
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where precise spatial data are not readily available without having to rely on ex-
pensive and time-consuming field surveys. Information from MCDS models can 
prove useful for overall watershed management and resource planning. 

This study combines specific soil erosion and infiltration criteria within a 
GIS-based FIS framework using Fuzzycell software to develop a watershed vul-
nerability map for Bernalillo County, New Mexico. The area is characterized by 
intermittent precipitation and limited water availability. Model output could be 
beneficial for exploring structural and non-structural SCM approaches to wa-
tershed management for targeted vulnerable areas within the county. The pre-
mise herein is that areas with high soil erosion potential and low infiltration po-
tential are most vulnerable. An AHP based vulnerability map was developed 
concurrently [9] [10]. 

2. SCMs in the Desert Southwest 

Irrespective of the wide acceptance of SCM approaches in stormwater control 
projects, there has been little representation of such approaches in the desert 
Southwest [6]. This lack of representation in SCMs has often been attributed to 
the perception that these regions experience little or no rainfall and hence the 
expense and burden of SCMs are unjustifiable. Contrary to such belief, Gautam 
et al. [6] have argued that this perception is false and there is much need of SCM 
approaches for such areas. One important reason for this argument is that the 
limited but high-intensity episodic rainfall experienced in this region is a major 
contributing factor to the elevated levels of harmful pollutants found in natural 
watercourses. Another contention is that this region often suffers from water 
availability and sustainability problems, which is an indicator for a greater need 
of SCMs. Finally, Gautam et al. [6] suggest that, due to the rapid urbanization 
and severe water availability issues in the desert Southwest, the best strategy for 
implementing SCMs in such areas should be based on sustainable landuse, water 
conservation, and water reuse techniques. The authors note that one critical 
SCM for long-term sustainability is through low-impact development by reduc-
ing impervious areas and limiting the directly connected impervious surfaces. 
Water harvesting is another sustainable practice to address water quantity and 
quality in an integrated manner. 

3. Economic Justification of SCMs 

Use of economic argument to justify the expense and burden of SCM projects is 
a difficult task. One reason for this perception can be attributed to the fact that 
direct economic benefits of SCM projects are not readily quantifiable. Contrary 
to this belief, a study of the economic benefits of conservation practices in five 
states (Florida, Nebraska, New Mexico, Maine and Oregon) indicated a direct 
relationship between economic growth and watershed health [11]. Maintaining a 
clean and healthy watershed can greatly reduce healthcare cost and the risk of 
exposure to harmful chemicals and pollutants [11]. Additionally, maintaining a 
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forested watershed has been shown to greatly reduce the capital investment and 
operational and maintenance cost of drinking water treatment facilities [12]. 
Considering watershed protection as an asset and a national capital could pro-
vide numerous health, social, and economic incentives over time. 

4. MCDS Approach to SCM and Watershed  
Vulnerability Using FIS 

Fuzzy Inference Systems (FIS) 
Fuzzy inference systems (FIS) uses fuzzy set theory to classify data based on 

the degree of memberships. In classical set theory, an element can either exist as 
a member of a set (1) or a non-member (0). Contrary to classical set theory, 
fuzzy set theory classifies data based on the degree of memberships ranging from 
0 to 1 (Figure 1). The ability to classify environmental factors to reflect spatial 
variability makes fuzzy logic a suitable system for watershed studies. Another 
important component of FIS is the ability to incorporate human thinking and 
linguistic variables into fuzzy membership functions. Incorporating human 
knowledge is an important step in recognizing the gray areas in memberships 
and minimizing the errors associated with modelling uncertainties in environ-
mental data [13]. 

Numerous attempts have been made to investigate the significance of fuzzy 
logic in watershed studies. Previous approaches, such as that by Nielsen and 
Hjelmfelt [14], have focused on the placement of soil into hydrologic soil groups. 
The study concluded that fuzzy logic can be an effective technique in predicting 
hydrologic soil groups that correlates well with existing placements. Several au-
thors have also conclusively shown that a fuzzy logic approach can be an 
in-expensive method of estimating soil erosion risk at considerable accuracies 
[15] [16] [17]. The need to incorporate water quality data, runoff data, and lan-
duse information into fuzzy-based soil erosion risk models have been addressed 
by Black [18]. Other studies have highlighted the importance of using rule-based 
decision approach in developing groundwater susceptibility and contamination 
maps [19] [20]. 

In recent years, there has been an increasing amount of literature on fuzzy 
based water conservation techniques. One example of such approaches is that by 
Shamsudin et al. [21], involving the use of fuzzy logic to develop a rainwater  

 

 
Figure 1. Fuzzy set versus conventional set. 
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harvesting system as an alternative source of potable water. A more innovative 
example has been presented by Ki and Ray [22], using fuzzy logic to analyze in-
filtration trenches in order to determine the optimal locations for BMPs. 

5. Factors Influencing Watershed Vulnerability 

Watershed vulnerability, defined herein as high soil erosion and low infiltration 
potential, is a complex process to model. Several watershed factors such as slope 
gradient, length slope factor, soil texture, soil erodibility, soil permeability, lan-
duse and landcover, vegetation cover, and drainage density influence the devel-
opment of the watershed vulnerability model. The characteristics and effect of 
these factors on soil erosion and infiltration are outlined in this section. 

Slope Gradient (S) 
Slope gradient (S), usually expressed as percent slope or degree slope, is used 

to represent the degree of variability in elevation and is found to strongly influ-
ence the velocity and direction of stormwater runoff [1]. Generally, areas of wa-
tersheds with steeper slopes are characterized by high soil erosion susceptibility, 
whereas areas with mild or gentle slopes are suitable for infiltration and water 
harvesting practices. 

Length Slope Factor (LS) 
The length slope factor (LS) is an important topographic factor used in the 

Revised Universal Soil Loss Equation (RUSLE) computations to predict long 
term soil loss risks [23]. It is the ratio of soil loss from the field slope length to 
that from a 22.1 m (72.6 ft) length on the same soil type and gradient. Slope 
length is the distance from the origin of overland flow along its flow path to the 
location of either concentrated flow or deposition. High LS values represent wa-
tershed regions that are highly susceptible to soil erosion. 

Soil Texture 
Soil texture, classified with respect to percentages of sand and clay, is known 

to have a strong influence on the rate of infiltration and runoff potential of wa-
tersheds [24]. The National Resources Conservation Service (NRCS) have iden-
tified four distinct soil groups (A, B, C and D) based on their soil textures. 
Group A soils generally have higher infiltration potential, while Group D soils 
have lower infiltration potential. 

Soil Erodibility (K) 
The soil erodibility (K) factor is a quantitative soil property that plays a major 

role in determining the extent to which soil particles are eroded or transported 
by runoff water. Parameters such soil moisture, soil permeability, and organic 
matter content influence the degree of soil erodibility and stability. Soils with low-
er K values are highly stable compared to those with higher K values. The K factor 
is also an important parameter in the RUSLE soil erosion prediction calculations. 
Values for the K factor are available via the NRCS soil map STATSGO [25]. 

Vegetation Cover 
Normalized Difference Vegetation Index (NDVI) is a widely used standardi-
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zation parameter to represent vegetation cover and land surface. NDVI values 
typically range from +1.0 to −1.0 with non-vegetated areas such as streams and 
rivers producing small or slightly negative values, and vegetated areas producing 
values ranging from 0.4 to 1.0 [26]. However, most processes for generating 
NDVI parameter values in GIS create a single band 8-bit raster which scales 
NDVI values of −1 to 1 to conform to a 0 to 255 range. The NDVI map used 
herein ranged from 115 to 160 based on New Mexico average maximum annual 
NDVI values from 1995-2009 [26]. 

Soil Permeability (Ksat) 
Soil permeability, or more correctly saturated hydraulic conductivity (Ksat), is 

an important physical soil property that refers to the ability of soils to conduct 
water. Ksat values give an indication of the degree of perviousness or imper-
viousness of soils. High Ksat values represent the portions of watersheds that are 
highly drained and are suitable for infiltration practices. Conversely, lower Ksat 
values correspond to watershed regions that experience high runoff and are 
prone to soil erosion. 

Landuse and Landcover (LULC) 
Landcover refers to the physical materials such as forest, crops, grass, and wa-

ter covering the earth’s surface, while landuse refers to the use of land for human 
activities. LULC directly translates to the amount of water penetration into soil 
layers or being produced as runoff water. For example vegetative surfaces act as 
a protective layer which slows down runoff and allows adequate detention time 
for infiltration and groundwater recharge to occur [27]. A dense vegetation cov-
er reduces soil erosion in an area even though the slope and rainfall may be rela-
tively high; in contrast, fallow land results in increased soil erosion compared to 
other types of land covers [28]. Impervious surfaces such as concrete pavements, 
roads, roof tops, and frozen land, however, act as an impermeable layer that al-
lows stormwater to flow directly to natural watercourses downstream. 

Precipitation 
Area precipitation characteristics (type, duration, intensity, and amount) are 

highly important in drainage projects due to their direct influence on the volume 
of generated runoff. Precipitation that falls on impervious surfaces eventually is 
carried to natural drainage. On porous surfaces, however, precipitated water 
may serve as a significant source of recharge for groundwater aquifer zones and 
rainwater harvesting sites. Precipitation characteristics play a significant role in 
soil erosion. Precipitation intensity and duration on soil erosion are important 
factors. In semi-arid watersheds, high intensity precipitation storms are believed 
to be main component for soil erosion. However, an event based erosion model 
applied to a catchment in southeast Spain indicated that large magnitude, low 
frequency events potentially contribute significantly to total soil erosion [29]. 
Regardless of the site characteristics, healthy watersheds are expected to be more 
resilient to the effects of precipitation changes [11]. 

Drainage Density 
Drainage density is a quantitative indicator that represents the ratio of the total 
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length of streams to the total watershed area. Low drainage density values are 
favorable for infiltration while larger values indicate high runoff potential. Re-
cent findings indicate that adequately drained watersheds have drainage densi-
ties less than 1 km/km2 while poorly drained watersheds have drainage densities 
greater than 5 km/km2 [27]. High drainage density values are an indication of 
extreme soil erosion vulnerability whereas lower values signify minor risk. 

6. Modelling 

The overall modelling approach used herein is based on using a MCDS FIS ap-
proach (Figure 1). The principal benefit of the method as it relates to developing 
watershed vulnerability is its ability to objectively and simultaneously consider 
an unlimited number of relative criteria. In this case, two sub-models are used to 
assess soil erosion potential and infiltration potential, respectively, each having 
multiple criteria. 

Soil Erosion Sub-Model 
Soil erosion is considered as one of the leading causes of environmental de-

gradation in the world, contributing to long-term poor land productivity, sur-
face and groundwater contamination, and loss of valuable natural resources. 
Nearly 99% of the total suspended solids (TSS) found in rivers and streams can 
be attributed to soil erosion in the United States [30]. Several models and me-
thods have been suggested as a means of predicting soil erosion risks. Empirical 
methods like RUSLE continue to play a major role in soil erosion predictions 
and soil conversation programs. However, according to Black [18], the best 
strategy for modelling environmental data and watershed attributes should be 
based on a decision support approach. Rainfall characteristics, vegetative cover, 
soil characteristics, slope gradient, and land-use are considered as main factors 
affecting soil erosion. Therefore, aspects of these factors, for example rainfall 
frequency and duration, and soil erodibility, may be used within a MCDS FIS 
approach to assess soil erosion vulnerability. 

Infiltration Sub-Model 
In order to fully address water availability concerns, it important to under-

stand the impact of infiltration in water conservation programs. About 48% of 
irrigation water and 98% of domestic water in the United States are derived from 
groundwater [30]. Water planning and water conservation issues are predomi-
nantly at the forefront of regional priorities especially in arid regions which tend 
to experience limited water availability. Gautam et al. [6] proposed that the best 
strategy for addressing water availability concerns in the desert Southwest must 
be based on appropriate water harvesting and infiltration practices. Rokus [31] 
explained that well-intentioned infiltration policies must sustain groundwater 
recharge requirements and improve overall surface quality. 

To examine infiltration potential within a MCDS FIS framework, attributes 
such as soil characteristics, vegetative cover, slope gradient, drainage density, 
and land-use are needed as input. For example, soil hydraulic conductivity sig-
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nificantly influences infiltration, as does vegetative cover with respect to surface 
entry of water. Slope gradient and drainage density affect surface runoff, which 
impacts overall infiltration. Thus, these interrelated factors may be used to assess 
infiltration potential using a MCDS FIS approach. 

Soil Erosion Infiltration Potential (SIP) Model 
Watershed protection programs should not only focus on soil erosion, but al-

so infiltration as it is an integral component of the watershed surface and 
groundwater hydrology. Soil erosion potential is reduced with increased infiltra-
tion as overall surface runoff decreases. An innovative approach to watershed 
management is to develop a watershed vulnerability model that incorporates soil 
erosion and infiltration models. Mosadeghi et al. [32] explained that intersecting 
the areas of outcomes of multiple decision support models can be a useful tech-
nique in identifying spatial extents with greater confidence. In this study, a 
unique watershed model is presented on the basis of overlapping the areas of 
risks, or vulnerability, predicted by the soil erosion potential and the infiltration 
potential sub-models. An integrated watershed model could prove more benefi-
cial especially in arid regions where water availability is a huge concern. 

7. Site Description 

This study was conducted using maps and digital data from Bernalillo County, 
New Mexico. The county has a total area of about 3023 km2 (1167 mi2) and is 
centrally located at longitude 106.669 and latitude 35.054. Having a population 
density of 220 persons/km2 (571 persons/mi2), Bernalillo County is the most 
populous county in the State of New Mexico, largely due to the City of Albu-
querque. The region is covered by shrubs and scrubs (71%), deciduous, mixed, 
and evergreen forests (18%), associated urban (9%), and open water (1%). The 
two dominant soil orders are Entisols (47%) and Aridisols (32%). Bernalillo 
County is selected for this study because it falls within urban growth and high 
residential areas within New Mexico. Much of the region has an elevation of 
more than 1400 m. The 100 year 24 hour (100P24) storm event ranges from 96 to 
164 mm (2.45 to 4.16 in) across the area. Limited water availability, unique soil 
characteristics, dominant shrubland vegetation, and intricate climate, coupled 
with a forecasted 35% population growth over the next 20 years, makes Berna-
lillo County a suitable case study area for the current research. 

8. Materials and Methods 

Tools and Data 
A variety of software tools and databases are needed to facilitate implementa-

tion of an FIS approach to assess watershed vulnerability. The following sections 
summarize the tools and databases used for this research, as well as the extensive 
data preparation and processing required. 

ArcGIS®: A Geographic Information System (GIS) provides an extensive 
toolset to manage multiple layers of spatially-distributed geographic data. Mod-
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elling approaches based on GIS have been shown to be successful in assessing 
regional scale soil erosion risks [15] and evaluating groundwater vulnerability in 
order to aid policy formulation [18]. ESRI’s ArcGIS® environment provides an 
infrastructure for making maps and working with large datasets of geographic 
and remotely sensed data. In this study, ArcMap® was used for a range of 
geo-processing tasks including referencing geographic data, creating erosion and 
infiltration models, analyzing data from decision support tools, and creating 
custom watershed vulnerability maps. 

TauDEM: Terrain Analysis Using Digital Elevation Models (TauDEM) are a 
collection of Digital Elevation Model (DEM) processing tools [33]. TauDEM 
provides a variety of functions to extract hydrologic and topographic informa-
tion from a DEM. Some common functions include developing hydrologically 
correct DEMs (pit removed), calculating flow paths and slopes, calculating slope 
contribution areas using the multiple flow direction method (D-Infinity), and 
delineating stream networks and sub-watersheds. TauDEM v 5.3 was used in this 
study to create the upslope contributing area map necessary for the generating a 
LS-Factor map. 

Soil Data Viewer: The NRCS Soil Data Viewer is an ArcGIS® extension for 
analyzing soil data and building soil-based thematic maps. The program enables 
map makers to interpret soil attributes and properties without having to deal 
with the complexity associated with querying and processing soil databases. The 
Soil Data Viewer v 6.2 was used to create thematic layers such as soil texture, 
hydrologic soil groups, soil depth, and saturated hydraulic conductivity (Ksat) 
maps for the study area. 

Thematic Layers: Several factors such as slope, soil erodibility, precipitation, 
LULC, soil type and texture, and vegetation were used in developing the wa-
tershed vulnerability model. The majority of the thematic layers were derived 
from base map layers such as LULC, DEM, soil data, and national hydrographic 
dataset (NHD) maps. The LULC map was provided by the National Land Cover 
Database [34]. The LULC layer was reclassified into seven (7) classes in order to 
fit the requirements of the model (water (11), urban (21), barren (31), forest 
(41), shrub (51), cultivated (81), and wetlands (91)). The DEM map of the study 
area was obtained from the National Map Viewer Platform [35]. Length slope 
(LS) and slope gradient (S) factors were extracted based on the DEM map. A 
drainage density factor (km/km2) was derived from the NHD map. The NRCS 
Soil Survey Geographic Database (SSURGO) soil map [36], hydrographic data-
sets, and county boundary map were obtained from the New Mexico Resource 
Geographic Information System [37]. The soil texture and soil permeability fac-
tors were derived from the soil base map. Other input factors such as precipita-
tion depth as 100P24, soil erodibility, NDVI, and rainfall erosivity maps were pro-
vided by Bulut et al. [26], who developed a state-wide soil erosion risk factor 
map for New Mexico using the ArcGIS® environment. 

Data Preparation and Processing: A grid size of 30 × 30 m pixel was chosen 
for all spatial layers to cover the study area extent. All acquired data with cell size 
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different than 30 m pixel size were geometrically corrected using the cubic re-
sampling technique in the Data Management toolbox of ArcGIS®. The Data 
management toolbox was then utilized to clip the input thematic layers to con-
form to the spatial extent of the study area. The Define Projection tool was used 
to project maps to the appropriate coordinate system in order for the maps to 
line up and display correctly in ArcGIS®. All layers were projected using the 
NAD 1983 Albers projection and the North American 1983 datum. In order to 
produce the soil texture and Ksat maps, the soil map together with the soil survey 
database (SSURGO) was loaded into the NRCS’s Soil Data Viewer program. 
Fuzzy membership functions, rule generation, and defuzzification of crisp inputs 
were conducted using the Fuzzy Rule Builder and FuzzyCell programs. In order 
for FuzzyCell to function properly, all input maps for the program were con-
verted to the GRID raster format. All final map manipulations and overlay anal-
ysis were completed using the ARCGIS10 platform. 

Derived Model Attributes 
For the watershed vulnerability analysis herein, multiple objective criteria may 

be derived using the ArcGIS® environment. 
Slope Gradient: A slope gradient map (degrees) was extracted from a digital 

elevation model (DEM) of the study area using the Slope tool in ArcGIS®. The 
resulting slope gradient map revealed that the eastern portions of the study area 
had high slope gradient values, while slope values varied from low to moderate 
towards the west. 

D-Infinity Flow Accumulation: A flow accumulation (flowacc) map is 
needed to determine LS factor values for the RUSLE application. The flowacc 
map was created based on a three-step procedure within the TauDEM environ-
ment. The first step involved the development of a depressionless DEM raster 
using the Pit Remove tool. The purpose of creating a depressionless DEM raster 
was to ensure that areas enclosed by higher elevation values are filled in order to 
avoid erroneous flow-direction computations. Secondly, the D-Infinity 
Flow-Direction tool was then used to create a flow direction raster layer. The fi-
nal flowacc raster was created using the depressionless DEM and the 
flow-direction maps by means of the D-Infinity Contributing Area tool in Tau-
DEM. 

Length Slope Factor (LS): The LS map for the study area was generated ac-
cording to the overland flow method [5]. The LS model was developed in Arc-
GIS® using the Model Builder window. The model required a DEM in TIFF 
format and a D-Infinity flow accumulation map as model inputs. The output of 
the model was a 30 × 30 m 2D LS map of the study area. 

Drainage Density: The Line Density function in Spatial Analyst toolbox of 
ArcGIS® was used to extract drainage density values from a hydrographic data-
set. Drainage density values for the study area ranged from 0 to 25.54 km/km2. 

Support Practice Factor (P): The support practice factor (P) value thresholds 
were determined based on the slope gradient (S) map expressed as percentages 
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as proposed by Ahamed et al. [17]. The P factor is a quantitative representation 
of the soil loss ratio, and it is mostly used as a discretionary parameter in the 
RUSLE to determine long term average soil loss. P values for the study area 
ranged from 0.5 to 1 depending on their relationship with the percent slope gra-
dient map. For example, for slopes between 5% and 8%, P is set at 0.5; for slopes 
greater than 25%, P equals 1 [17]. 

Development of FIS Model 
Fuzzy logic is a decision support tool that contributes to a better representa-

tion and modeling of GIS-based data [38]. Two common types of fuzzy infe-
rence systems (Mamdani and Sugeno) are identified in literature [39]. Regard-
less of the type inference, the basic of structure of any FIS involves developing 
membership classes, aggregating fuzzy rules, and the defuzzification of crisp in-
put parameters. 

FuzzyCell: FuzzyCell is among the most widely used fuzzy logic tools for 
processing geographic data. It allows users to incorporate human knowledge 
spatial analyses, classify data into membership functions, generate “if-then” rule 
aggregation, and provide inference methods for defuzzification. FuzzyCell was 
used as the main fuzzy inference system for classifying GIS raster data in fuzzy 
memberships and defuzzifying inputs. All generated fuzzy output maps are 
based on the Mamdani inference system and the Center of Area (COA) defuzzi-
fication method. 

Fuzzy Rule Builder (FRB: Fuzzy Rule Builder (FRB) is a custom fuzzy infe-
rence tool developed in Microsoft Visual Studio 2010® express in order to handle 
fuzzy standardization and generating “if-then” fuzzy rule aggregation. The fun-
damental concept behind fuzzy inference processing involves the construction of 
a collection of “if-then” rules. The role of the “if then” rules are to establish a 
framework for converting crisp input data into defuzzified outputs. The total 
number of rules generated was determined as Fn, where n is the total number of 
input factors and F is the number of membership functions. A total of 243 fuzzy 
rules were generated for each model. Rules from the program were subsequently 
exported to FuzzyCell environment for fuzzy inference and defuzzification. 

Fuzzy Membership Classifications for Watershed Vulnerability 
Each input variable for fuzzy logic processing was coded into 3 membership 

classes (low, moderate, and high). The relationships between each input para-
meter and the output risk maps were used to establish membership classification 
threshold values. The trapezoidal shaped membership function (with a partial 
overlap to account for uncertainty) was used as the basis of establishing mem-
bership classes. Trapezoidal membership function curves were chosen due to its 
unique potential to optimize the performance of fuzzy inference processing [15]. 
The shape of membership function curves were established based on published 
threshold values and expert knowledge. All input variables were subsequently 
processed and defuzzified for decision making using the Mamdani fuzzy infe-
rence engine available in FuzzyCell. The quantitative description of the mem-
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bership functions are given in Table 1 & Table 2. The output risk memberships 
were categorized based on the five suitability classes (Figure 2). 

Fuzzy Standardization and Weighting 
To be able to utilize input layers of variable spatial representation in fuzzy analy-

sis, it was important that layers be associated with a common scale of measurement. 
This process of transforming input layers to a common scale (0 - 1) is termed stan-
dardization. All fuzzy input variables were transformed into a standardized input 
layer either using Equation (1) or Equation (2) for positive and negative correla-
tions, respectively, with soil erosion or infiltration thematic layer inputs. 

min

max min

i i
i

i i

x x
w

x x
−

=
−

                        (1) 

 
Table 1. Fuzzy membership classes for soil erosion models. 

Thematic Layer Low Medium High 

Slope (˚) 0 - 5 5 - 8 8 - 72.37 

100P24 (in) 2.45 - 2.70 3.0 - 3.40 3.70 - 4.16 

K-Factor 0 - 0.1 0.2 - 0.3 0.4 - 0.55 

NDVI 160 - 145 145 - 125 125 - 115 

Landuse Wetlands, Forest, Cultivated, and Water Shrub Urban, Barren 

 
Table 2. Fuzzy membership classes for infiltration models. 

Thematic Layer Low Medium High 

Drainage Density (km/km2) 0 - 1 1 - 5 >5 

Ksat (μm/s) 141.14 - 10 10 - 1 <1 

Soil A B, C A/D, C/D, D 

Slope (˚) 0 - 5 5 - 8 8 - 72.37 

Landuse 
Wetlands, Forest,  

Cultivated, and Water 
Scrubs Urban, Barren 

 

 
Figure 2. Suitability classes for fuzzy logic models. 
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                        (2) 

where wi is a standardized weight, xi is an initial value of criteria i, xi max is the 
maximum value, and xi min is the minimum value [40]. 

9. Vulnerability Assessment 

The development of the watershed vulnerability model presented in this study 
involved 3 major steps: 1) preparation of thematic layers, 2) extraction of fuzzy 
memberships using Fuzzy Cell, and 3) overlaying FIS results to produce the wa-
tershed output map. The watershed model depended on the determination of soil 
erosion and infiltration potential and identifying factors involved. Two 
sub-models were created including a soil erosion model and an infiltration model. 

Vulnerability Map: The final watershed vulnerability map is a 30 × 30 m cell 
raster produced by overlaying soil erosion and infiltration potential maps ob-
tained from the FIS process. The overlay process was conducted in ArcGIS® us-
ing the Weighted Overlay Tool. Equal weight was assigned to each map in the 
overlay analysis. A detailed illustration of the vulnerability assessment procedure 
is given in Figure 3. The various GIS Model Builder tools implemented herein 
are provided in Amankwatia [9]. 

Model Comparison with RUSLE: Empirical soil erosion risk prediction 
models such as RUSLE continue to play a vital role in soil conservation and pro-
tection programs. RUSLE is a universally accepted empirical method developed 
by United States Agricultural Research Service [23] for assessing long-term soil 
loss. In this study, the resulting map of watershed vulnerability model was con-
trasted against annual soil erosion risk predicted using the RUSLE. The RUSLE 
map was developed in ArcGIS® based on annual soil loss as: 

E RKLSCP=                          (3) 

where E (tons/ac/yr = 2.242 tonnes/ha/yr) is the predicted average annual soil 
loss, R (hundreds of ft.tonf.in/ac/hr/yr) is the rainfall erosivity factor, K 
(ton/ac/unit R) is the soil erodibility factor, LS is the length slope factor, C is the 
cover management factor, and P is the support practice factor [5]. 

The soil erosion map by merging five input raster layers, as defined in Equa-
tion (3). In order to compare the results to the watershed vulnerability model, 
the RUSLE output was subsequently divided into five vulnerability groups in 
tons/ac/yr, where 1 ton/ac/yr equals 2.242 tonnes/ha/yr: 1) not vulnerable (0 - 2); 
2) slightly vulnerable (2 - 6); 3) moderately vulnerable (6 - 50); 4) highly vulner-
able (50 - 150); and 5) extremely vulnerable (>150). These groups span across 
what is considered sustainable soil loss at 2 - 5 ton/ha/yr [41] to rates associated 
with extreme gully erosion or disturbed bare soil areas, such as construction 
sites, and are patterned after groupings of Rahman et al. [28]. A statistical com-
parison of the RUSLE vulnerability map with the FIS vulnerability map is now 
possible on a pixel by pixel basis using the Band Collection Statistics tool in 
ArcGIS® Spatial Analyst extension. The result is a coefficient of determination  
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Figure 3. Risk assessment process for the BMP-SIP model. 

 
(r2) between the two maps. 

10. Results and Discussion 

Evaluation of Watershed Vulnerability 
The assessment of the watershed vulnerability for this study was performed in 

ArcGIS® through a weighted overlay analysis of infiltration and soil erosion po-
tential maps. The soil erosion maps were developed as a result of merging 5 in-
put raster data: slope gradient, precipitation, K factor, NDVI, and LULC. Simi-
larly, the infiltration map was developed by merging drainage density, soil per-
meability, soil texture, slope gradient, and LULC raster layers. The final output 
of each approach and subsequent overlay, which comprised an overall vulnera-
bility map, is given in Figure 4. 

As displayed in Figure 4, the study area was divided into five watershed vul-
nerability zones, namely, not vulnerable (N), slightly vulnerable (SV), mod-
erately vulnerable (MV), highly vulnerable (HV), and extremely vulnerable 
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(EV). Regions in red indicate extreme vulnerability, whilst regions in green 
represent no vulnerability. High to extreme vulnerability zones were mainly dis-
tributed in the eastern sections of the study area. The analysis indicated that 
about 76% of the study area is susceptible to moderate vulnerability (MV), and 
less than 12% of the area is subject to experience high or extreme vulnerability 
(HV/EV). The principal assumption in this study is that areas with low infiltra-
tion potential and high soil erosion potential are the most vulnerable and, there-
fore, require closer attention relative to other areas within the watershed. These 
results are summarized in Table 3. 

Evaluation of Soil Erosion and Infiltration Risks 
In this study, the distributions of soil erosion and infiltration risks were also 

considered. In order to compare the model outcomes, the five vulnerability 
classes (N, SV, MV, HV, and EV) used for the watershed vulnerability model 
were applied to both the soil erosion and infiltration risk models. The risk dis-
tribution of soil erosion and infiltration models followed a somewhat different 
pattern relative to the combined watershed vulnerability model, with soil erosion 
showing a higher percentage in the slightly vulnerable category and infiltration hav-
ing a higher percentage in the moderately vulnerable as did the combined overlay. 

 

 
Figure 4. Fuzzy logic watershed vulnerability risk map. 

 
Table 3. Percentage of vulnerability distributions for the watershed model. 

Suitability Rating N SV MV HV EV 

RUSLE 29.52 28.83 33.94 6.06 1.37 

Infiltration FIS 1.47 19.96 55.42 22.47 0.62 

Soil Erosion FIS 4.75 61.65 23.94 8.59 1.01 

Watershed FIS 0.65 12.09 76.01 9.87 1.38 

N = Not Vulnerable, SV = Slightly Vulnerable, MV = Moderately Vulnerable, HV = Highly Vulnerable, and 
EV = Extremely Vulnerable. 
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Figure 5 shows the FIS soil erosion vulnerability. As expected, the most prob-
lematic soil erosion prone areas were located near the eastern regions of the 
Bernalillo County. This area has a predominance of forested land cover; howev-
er, it is also characterized by high slope gradient coupled with a highly erodible 
soil and high 100P24 precipitation as depicted in these respective thematic layers 
developed for this study [9]. 

Infiltration risk followed a similar pattern; however, the infiltration risk dis-
tribution also revealed high risk areas around the central and western portions of 
the study area. The vulnerability distributions for soil erosion and infiltration 
risk are summarized in Table 3. 

Comparison with the RUSLE Model 
The areas of watershed vulnerability for the study area were contrasted against 

soil erosion prediction from the RUSLE model. The spatial distribution of soil 
erosion vulnerability for Bernalillo County is given in Figure 6. For the two 
lower vulnerability groups (N and SV), the RUSLE predictions were considera-
bly different with the results predicted by the soil erosion FIS vulnerability mod-
el, especially the not vulnerable class (Table 3). For both models, the percentage 
of the study area predicted to be susceptible to high and extreme vulnerability 
was small. For the slight vulnerability and moderate vulnerability groupings, the 
watershed vulnerability model predicted higher and lower percentage, respec-
tively. RUSLE predictions were much higher for the not vulnerable category 
compared to the soil erosion vulnerability estimates. Soil erodibility was high 
within parts of the study area based on the magnitude of the derived K factor 
map. A not vulnerable vulnerability group from 0 to 1 ton/ac/yr versus 0 to 2 
ton/ac/yr as modeled would better align the predictions of vulnerability between 
the FIS and RUSLE models for the two lower vulnerability classifications. For 
thin erodible soils, a tolerance level for sustainability of 1 ton/ac/yr soil loss is 
recommended [23], and is taken herein as the lower bound of vulnerability. 

 

 

Figure 5. Fuzzy logic soil erosion risk map. 
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Figure 6. RUSLE soil erosion (tons/ac/year) prediction. 

 
Table 4. Risk distribution (%) for LULC classes. 

 
LULC N SV MV HV EV 

11 Water 0 0.23 0.03 0.001 0 

21 Urban 0.02 1.75 6.91 0.053 0.012 

31 Barren 0.001 0.04 1.41 0.060 0.011 

41 Forest 0.69 2.71 9.84 6.12 0.32 

51 Shrub 0.04 5.96 33.87 1.96 0.75 

81 Cultivated 0.007 5.16 20.83 0.66 0.12 

91 Wetlands 0 0.17 0.24 0.001 0 

N = Not Vulnerable, SV = Slightly Vulnerable, MV = Moderately Vulnerable, HV = Highly Vulnerable, and 
EV = Extremely Vulnerable. 

 
Influence of Landuse and Landcover (LULC) 
An attempt was made to quantify the influence of landcover and landuse activi-

ties on the watershed risk assessment using the 7 LULC classes given in Table 4. 
LULC vulnerability was evaluated by intersecting the watershed vulnerability FIS 
map with LULC classes using the Combine tool in ArcGIS®. 

The results suggest that shrub, cultivated land, and forest zones are the most 
affected zones. About 65% and 9% of these LULC areas fell in the moderately 
vulnerable and highly vulnerable category, respectively, with slightly over 1% 
classed in the extremely vulnerable category. In general shrub lands were found 
to be the most vulnerable LULC category (highest total percentage in the top 
three vulnerability classes). This aligns with expectations based on area climate 
and literature. Ground cover, or vegetative litter, often may be sparse in 
semi-arid shrub lands. The role of this layer in modulating surface runoff and 
soil erosion remains poorly understood; however, in general, runoff volume and 
sediment yield are reduced in the presence of litter cover [42]. Langbein & 
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Schumm [43] reported that mean annual sediment yield correlates with annual 
precipitation and is highest for semi-arid shrub land. 

Use of Average Annual Maximum NDVI 
NDVI input was a criterion for the soil erosion sub-model only. Hydrological 

partitioning at the watershed scale is a function of vegetative cover. Seasonal 
precipitation in New Mexico is distinctly bimodal with less intense spring rains 
and late summer monsoonal rains. As such a bimodal NDVI seasonal cycle is 
observed with a late spring-early summer initial peak, a mid-late summer 
pre-monsoon dip, and a second maximum peak in early autumn [44]. For the 
watershed vulnerability study herein use of an average pre-monsoonal NDVI 
would be more appropriate to simulate the effect of vegetative cover on infiltra-
tion potential and soil erosion potential in lieu of an average maximum NDVI. 
Such data was not available at the time of study. 

11. Advantages of the MCDS Approach 

Multi-Criteria Decision Support approaches such as FIS provide a relatively easy 
way of determining watershed vulnerability distributions on a regional scale. 
From the viewpoint of decision makers, these methods can provide several stra-
tegic benefits including the ability to incorporate project objectives and a variety 
of quantitative data. One possible explanation for its gain in popularity is the 
lack of statistically meaningful data and methodology to deal with issues asso-
ciated with uncertainty. Overlapping memberships addresses some uncertainty 
in the FIS approach. 

As demonstrated in this study, FIS can be an effective means of generating re-
gional scale vulnerability map for watershed investigations. The FIS approach 
integrated both soil erosion potential and infiltration potential using specific 
criteria to characterize watershed vulnerability, whereas the RUSLE model only 
accounts for soil erosion. The FIS approach offers several benefits in developing 
regional scale watershed vulnerability model relative to conventional field sur-
veys of watershed vulnerability, in terms of time and effort and degree of com-
plexity. It is important to acknowledge, however, that detailed field investiga-
tions might be required in order to extend the applicability of the methodology 
discussed herein. 

12. Conclusion and Recommendation for Future Work 

Quantifying a regional scale risk index map can provide spatially relevant infor-
mation for engineering management and decision making. In view of this, a 30 × 
30 m watershed vulnerability risk map was generated for the Bernalillo County, 
New Mexico using an FIS methodology. The approach incorporated drainage 
density, slope, precipitation, vegetative cover, landuse and landcover, soil erodi-
bility, soil texture, and soil permeability as the primary factors contributing to 
watershed vulnerability. The final map was produced by merging soil erosion 
and infiltration potential using the Weighted Overlay method in ArcGIS®. 
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Analysis of the vulnerability map identified that the most problematic areas 
were present in the eastern portions of the study area. Based on the analysis, less 
than 12% of the study area was identified to fall within the high vulnerability 
(HV) or extreme vulnerability (EV) category, whereas less than 1% of the total 
area was associated with no vulnerability (N). Around 88% of the area was pre-
dicted to experience slight (SV) to moderate (MV) vulnerability. About 9% of 
shrubs, cultivated lands, and forest zones were predicted to have high vulnera-
bility (HV) with shrub land being most vulnerable class overall. 

In terms of spatial extent and general patterns, the FIS soil erosion vulnerabil-
ity output map visually compared with the RUSLE prediction. The AHP ap-
proach showed a higher correlation with RUSLE than the FIS method [9]. How-
ever, the AHP and FIS models revealed a strong correlation with each other (r2 = 
0.99). Data analysis on a pixel by pixel basis using Band Collection Statistics tool 
in Spatial Analyst indicated that the correlation coefficient (r2) between FIS wa-
tershed vulnerability and RUSLE vulnerability predictions was 0.66. However, 
further analysis and field investigations may be necessary in order to validate the 
usefulness of the FIS model. For example, watershed areas assessed as being po-
tentially vulnerable to soil erosion could be validated through ground-truthing 
of dominant erosion features such rill erosion, gully erosion, and cut-bank ero-
sion. Gopal et al. [45] used two experts in remote sensing and aerial photogra-
phy to assess accuracy in their fuzzy inference classification of urban landscapes 
based on a method by Zadeh [8]. 

The current lack of high resolution spatial data and current site-specific lan-
duse and land cover (LULC) information may limit the potential to field-test the 
watershed vulnerability model. It is, therefore, important that future extensions 
of the model focus on generating high resolution (e.g. a 10 × 10 m raster data) 
especially for the highly vulnerable regions and also obtaining detailed site-specific 
LULC information. NDVI data appropriate to the critical pre-monsoonal period 
should be developed to better address soil erosion potential. In addition, photo-
graphic documentation from various field sites is needed to understand how the 
landscape looks for different classes of soil erosion risk and infiltration potential. 
In order to improve on the functionality and applicability of the model, other 
factors such public awareness and economic indicators could be incorporated 
into the model. 

Information from the FIS watershed vulnerability model can be useful for 
managing new structural or non-structural SCM projects or improving existing 
ones to mitigate impact to stormwater quality and quantity for identified vul-
nerable areas. A recent study showed that runoff water originating from nearby 
urbanized watersheds in Albuquerque, NM carried high levels of polychlori-
nated biphenyls (PCBs) into the Rio Grande [46]. These findings have inspired 
the Bernalillo County Public Works Division (BCPWD) to adapt a proactive ap-
proach toward identifying potential source areas of PCBs in their stormwater 
discharges. As noted, the most vulnerable area in Bernalillo County is the eastern 
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portion with its high slope and higher precipitation. This large area may benefit 
from strategically placed structural SCMs, such as dry storage basins and filter 
strips, to manage and reduce runoff and sediment transport offsite. Having a 
MCDS FIS model that incorporates a multiplicity of technical, as well as 
non-technical, criteria can be beneficial in facilitating development of sustaina-
ble drainage programs. Use of this approach to identify potentially vulnerable 
watershed sites, pending validation by field investigations, is illustrated through 
its application to this study area. However, a sensitivity analysis of model criteria 
impact on watershed vulnerability should be conducted to evaluate the robust-
ness of the levels of watershed vulnerability indicated. 
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