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Abstract 
The Federal Railroad Administration (FRA)’s Web Based Accident Prediction 
System (WBAPS) is used by federal, state and local agencies to get a prelimi-
nary idea on safety at a rail-highway grade crossing. It is an interactive and 
user-friendly tool used to make funding decisions. WBAPS is almost three 
decades old and involves a three-step approach making it difficult to interpret 
the contribution of the variables included in the model. It also does not di-
rectly account for regional/local developments and technological advance-
ments pertaining to signals and signs implemented at rail-highway grade 
crossings. Further, characteristics of a rail-highway grade crossing vary by 
track class which is not explicitly considered by WBAPS. This research, 
therefore, examines and develops a method and models to estimate crashes at 
rail-highway grade crossings by track class using regional/local level data. The 
method and models developed for each track class as well as considering all 
track classes together are based on data for the state of North Carolina. Li-
near, as well as count models based on Poisson and Negative Binomial (NB) 
distributions, was tested for applicability. Negative binomial models were 
found to be the best fit for the data used in this research. Models for each 
track class have better goodness of fit statistics compared to the model consi-
dering data for all track classes together. This is primarily because traffic, de-
sign, and operational characteristics at rail-highway grade crossings are dif-
ferent for each track class. The findings from statistical models in this re-
search are supported by model validation.  
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1. Introduction 

A rail-highway grade crossing works as an at-grade junction to allow for traffic 
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movement between railroads and highways. These are one of the most vulnera-
ble spatial locations in a rail transportation system. The United States has about 
129,644 public crossings [1]. Data for the year 2010 show that there were 11,555 
incidents at public rail-highway crossings in the United States. These incidents 
resulted in 746 deaths and 8307 injuries [2]. The estimated cost of a rail-highway 
crash is about $2.6 million [3]. 

The Federal Railway Administration (FRA) has undertaken many measures to 
improve the safety at rail-highway grade crossings. The installation and main-
tenance of these measures are expensive. The cost of a warning device installa-
tion at each rail-highway grade crossing exceeds $250,000 in today’s dollars [4]. 
Therefore, it is crucial for the agencies to make intelligent as well as informed 
engineering decisions to effectively prioritize the implementation plans and im-
prove safety at such conflicting locations. The successful implementation of such 
engineering decisions depends on current techniques to model and assess risk at 
rail-highway grade crossings. 

The FRA provides users with an analytical tool called the Web Based Accident 
Prediction System (WBAPS). The intent of the tool is to help each individual 
state agency, railroad agency, and local highway authority with allocating funds 
for safety improvement. The WBAPS is based on the United States Department 
of Transportation (USDOT) FRA accident (hereafter referred to as “crash”) pre-
diction formula. This formula was developed in April 1968 and revised in June 
1987 to address the shortcomings of previous models-Peabody Dimmick For-
mula, New Hampshire Index, and the National Cooperative Highway Research 
Program (NCHRP) Hazard Index [4]. 

The FRA crash prediction formula uses: 1) basic data about a rail-highway 
grade crossing’s physical and operating characteristics, and, 2) five years of crash 
history data at the rail-highway grade crossing. A basic formula was first devel-
oped, using non-linear regression methods, based on the physical characteristics 
of the rail-highway grade crossing [4]. The basic formula was updated consider-
ing the un-normalized crash prediction based on the crash history [4]. The con-
stants for each category of the warning device are multiplied with the 
un-normalized crashes to obtain the final prediction. The normalization con-
stants are updated on a yearly basis. This is done to adjust for the change in the 
number of crashes and any warning device changes at the rail-highway grade 
crossings [4]. 

Approximately, two-thirds of rail-highway grade crossings have not had a 
crash in the last 5 years, while 93% have had two or fewer crashes [5]. The 
weighted formula described previously uses the crash history of rare events in 
order to predict the number of crashes in the future. Mutabazi and Berg [6] 
tested the various versions of FRA rail-highway grade crossing crash prediction 
formula for their accuracy. Their findings indicate that the basic formula per-
formed better when compared to the five-year crash history adjusted model [6]. 
Except for the aforementioned study, literature documents no research on a 
comparison of the FRA rail-highway crash predictions of a year and the actual 
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number of crashes at a rail-highway grade crossing. 
The three-step process of the FRA crash prediction formula includes 128 ex-

planatory variables but has its own shortcomings. The formula was developed 
almost three decades ago and has been used since without much improvement 
(apart from updating coefficients). The formula only gives a preliminary idea to 
the decision makers to allocate resources. It is quite complex and difficult to in-
terpret in terms of the most influencing factors of safety at a rail-highway grade 
crossing. It does not take into consideration regional/local level geographic and 
other site-specific data such as sight-distance, highway congestion, local topo-
graphy, and passenger exposure (train or vehicle). 

The causes of crashes, driver behavior, geometric features, topographical con-
ditions, and the presence of safety devices at rail-highway grade crossings vary 
for one state to another in the United States. As an example, North Carolina has 
active warning devices at more than 50% of its public rail-highway grade cross-
ings. Therefore, the warning device criteria as in the FRA rail-highway grade 
crossing crash prediction formula may be of little use to identify hazardous 
rail-highway grade crossings in North Carolina. The formula could also be sim-
plified if an analysis is performed and a method/model developed using state or 
regional-level data. 

WBAPS does not explicitly consider track class. Since design and operational 
characteristics vary by track class, developing models by track class may yield 
more meaningful results and assist rail practitioners. This research, therefore, 
focuses on the development of rail-highway grade crossing crash prediction 
models, using regional/local level data, by track class as well as considering data 
for all track classes. 

2. Literature Review 

Researchers have adopted various methods to develop crash prediction formulas 
for rail-highway grade crossing safety improvement. Negative Binomial (NB) 
crash prediction models were developed for rail-highway grade crossings using a 
simple one-step process [7]. NB distribution-based model was also found to be 
the best fit for the data to identify rail-highway grade crossing blackspots for 
three categories (passive, flashing lights, and gates) [8]. 

The relation between the number of crashes and characteristics of rail-highway 
grade crossings was also observed through the use of a gamma distribu-
tion-based model [9]. The results from their study showed that crashes would 
increase with an increase in the total traffic volume and the average daily train 
volume. Further, the proximity of an industrial area and the time between signal 
and gate activation was observed to be associated with higher crash frequencies 
[9]. 

Zero-inflated models were also developed, to examine the role of factors af-
fecting rail-highway grade crossing crashes, to tackle data scarcity even with a 
large number of rail-highway grade crossings [10] [11]. The literature also doc-
uments the application of logistic regression models to observe the trends in the 
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number of crashes at rail-highway grade crossings over time [5]. Stepwise re-
gression analysis was also adopted to develop the rail-highway grade crossing 
crash prediction formula that aids in prioritizing signal improvements [12]. 

The above discussion on models to estimate crash risk at rail-highway grade 
crossings clearly indicates that a single statistical distribution may not be appli-
cable to all datasets or locations. It also emphasizes on the development of a 
method and models that best fit the data, accounting for factors at the region-
al/local level. 

Literature also documents research to develop methods or examine the effect 
of the countermeasures on rail-highway grade crossing safety. Park and Sacco-
manno [13] examined the interactions between various countermeasures (such 
as warning devices and the posted speed limit) on safety at rail-highway grade 
crossings. They also studied the effect of a less explored combination of coun-
termeasures and control measures (highway class) on crash frequency using a 
sequential analytical strategy. This strategy combines the tree-based regression 
stratification of data with generalized linear regression models [14]. 

Saccomanno and Lai [15] categorized the rail-highway grade crossing inven-
tory variables into non-linear factors and assigned scores. The scores were used 
to cluster rail-highway grade crossings and then develop a separate model for 
each cluster using explanatory variables relevant to that cluster [15]. Bayesian 
data fusion method was used to tackle the problem of sparse crash data when 
evaluating countermeasure effectiveness. The method used previous research 
inferences for countermeasure effectiveness along with a calibrated model of the 
study area to finally generate a collision response and probability distribution for 
each countermeasure [16]. 

The type of countermeasure also plays a role in safety at rail-highway grade 
crossings. As an example, Yan et al. [17] showed that stop-sign treatment is an 
effective countermeasure to improve safety at rail-highway grade crossings. 
Likewise, upgrading flashing lights to gates on single track may be more effective 
than at a rail-highway grade crossing along multiple tracks. However, the train 
speed variation did not have much influence on the effectiveness of the upgrade 
[18]. 

While some new models for rail-highway crash prediction were developed, 
past research did not primarily account for regional/local factors, which influ-
ence the crash trends to a great extent. The States (California, Texas, Illinois, 
Georgia, and New York) that have been chosen for research in the past are 
usually the ones with high train traffic. States such as North Carolina with rela-
tively less train traffic may have different types of challenges. Considering such 
diverse geographic patterns is important. Therefore, this research aims at devel-
oping an approach to predict crashes at a rail-highway grade crossing based on 
regional/local data. Also, unlike most of the prediction models developed in the 
past, the models developed in this research do not make use of crash history in-
formation. This is mainly because crashes at rail-highway grade crossings in the 
study area are rare events, which makes the crash history of little use when pre-
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dicting crashes in the future. Such an approach will also help when planning, de-
signing and building new tracks with rail-highway grade crossings. 

Funds available and countermeasures implemented at rail-highway grade 
crossings vary based on train activity-levels and track design characteristics in 
addition to the risk. These characteristics differ for each track class. On a differ-
ent note, analyzing and modeling by track class could yield better results rather 
than developing models considering data for all track classes in a region. This 
research addresses the aforementioned aspects to add to the current state of 
knowledge on safety at rail-highway grade crossings. 

3. Methodology 

The methodology to model crash risk at rail-highway grade crossings is com-
prised of five steps. Each of those steps is discussed next in detail. 

3.1. Selection of Rail-Highway Grade Crossings 

The selection of rail-highway grade crossings needs to be performed so as to 
have the best representative sample of the population of all the rail-highway grade 
crossings in the study region. The selection should comprise of rail-highway grade 
crossings with zero as well as more than zero crashes. Likewise, the representa-
tive sample should have a fair distribution of rail-highway grade crossings per-
taining to all the track classes. 

3.2. Selection of Explanatory Variables 

The explanatory variables considered should represent the characteristics of the 
highway, rail-track and the types of warning devices at the rail-highway grade 
crossings. This research tried not to use minimal warning device variables so as 
to avoid endogeneity, which means that the cause of crashes is the reason a par-
ticular warning device is installed at a rail-highway grade crossing. The selection 
of the variables in this research is mainly based on the correlations between the 
variables and the dependent variable (“crashes per five years”) and amongst the 
other variables considered for the analysis. 

3.3. Development of Crash Risk Estimation Models 

The dependent variable for all the models is the “number of crashes per five 
years” at a rail-highway grade crossing. Crash count models were primarily ex-
plored in this research. Poison, NB and Gamma log-link distribution-based 
models are the popular count models. While count models provide a sensible 
output, they suffer from certain limitations. The Poisson model assumes the 
mean and variance to be equal, while the NB model is capable of handling data 
with variance greater than the mean (over-dispersed). The Gamma model, how-
ever, is capable of dealing with both over-dispersed and under-dispersed data. 

In this research, the analysis was conducted using SPSS software [19], in 
which the Gamma model excludes the zeroes in the dependent variable while 
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modeling. As both the zero as well as non-zero values of the dependent variable 
are crucial, the use of a Gamma log-link distribution-based model has been ex-
cluded in this research. Researchers have considered zero-inflated models when 
studying crash data in the past. The zero-inflated NB model could be a special 
case of the NB model, and the difference in performance might be trivial [20]. 
For this reason, only Poisson and NB distributions are only discussed in this re-
search. 

The Akaike’s Information Criterion (AIC) was used to assess the quality of 
various statistical models developed from the same data. The statistic provides 
an estimate of the information that has been lost as a result of using a particular 
model that generates the data. Given a set of candidate models for the data, the 
best model is the one with the minimum AIC value. 

The Corrected Akaike’s Information Criterion (AICC) was also checked to 
ensure that the model does not tend to over-fit the results. In general, the dif-
ference between AIC and AICC should be as low as possible. 

In addition, the likelihood ratio Chi-Square and Deviance values were also 
computed and considered to assess the goodness-of-fit of the developed models. 

The probability value of the selected explanatory variables was also tested at a 
95% confidence level (significance value ≤ 0.05). 

3.4. Validation of the Models 

The best-fitting model was then validated using data set aside for model valida-
tion (not used for the model development). The number of crashes at each se-
lected rail-highway grade crossing is computed and compared with the actual 
number of crashes at the rail-highway grade crossing. To test the predictability 
of models compared to WBAPS, the number of crashes were compared to the 
analogous term “number of collisions per year” from the WBAPS output. 

A t-test was then conducted in order to check if the two groups of data belong 
to the same population or not. The null hypothesis is that the two groups being 
tested are statistically different while the alternate hypothesis is that the two 
groups are not statistically different. The null hypothesis cannot be rejected if the 
P-value is less than 0.05 (at a 95% confidence level). 

4. Data 

The data collected for this research includes two databases: 1) The FRA Office of 
Safety rail-highway grade crossing inventory, and, 2) The FRA Office of Safety 
crash/incident database, both for the state of North Carolina. The rail-highway 
grade crossing inventory provides site-specific details of the rail-highway cross-
ing and highway characteristics—the number of daily through trains, warning 
devices, annual average daily traffic (AADT), and the posted highway speed lim-
it. The crash history data is available for each year. This database includes details 
of each incident at any of the operational rail-highway grade crossing in that 
year. The database also includes the type of railway equipment involved in the 
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crash (freight train, passenger train, and inspection car) and the circumstance of 
the crash (if the rail-user was struck by the train or vice-versa). Crash history 
from the year 2009 to the year 2013 was considered to develop models in this re-
search. Only rail-highway grade crossing where conditions remained same over 
this five-year period were selected for analysis and modeling. 

The rail-highway grade crossings were identified using the unique rail-highway 
grade crossing ID number. This number is a common element in both the data-
bases. The rail-highway grade crossing ID was used to merge the rail-highway 
grade crossing inventory data with the crash frequency information from the 
crash/incident database to generate a database that was used for further analysis. 
Almost 97% of rail-highway grade crossings in the study area have warning de-
vices installed at them. In such a case, including variables related to warning de-
vices may pose endogeneity issues. In this study, it would imply that the pres-
ence of warning devices may result in zero crashes (which are the frequency of 
crashes found in abundance at rail-highway grade crossings) and the zero crash-
es are caused at a rail-highway grade crossing due to the warning devices in-
stalled at these locations. Hence, warning device variables were not included in 
the models as far as possible. They also were observed to be correlated to other 
variables considered for modeling in this research. 

All rail-highway grade crossings without data for a five-year period were re-
moved from the database and further analysis. In addition, only public and 
at-grade rail-highway grade crossings were retained in the database. 

The data had certain variables that were categorical in nature. For example, 
“highway near crossing” had four fields—less than 75 ft, 75 to 200 ft, 200 to 500 
ft, and no highway nearby. These variables were reduced to indicator variables 
i.e., one variable for each of the four fields. Also, AADT was converted to a rate 
of per 10,000 vehicles. All other continuous variables were used in the analysis 
without any changes. 

Based on the FRA guidelines [21], the following range of train time table 
speed was used for track classification: 0 - 10 mph—Track class 1; 10 - 25 
mph—Track class 2; 25 - 40 mph—Track class 3; 40 - 60 mph—Track class 4; 60 
- 80 mph—Track class 5. Data was segregated based on each track class, forming 
five subsets; one for each class. 

Overall, the dataset considered had 681 rail-highway grade crossings in track 
class 1; 1432 rail-highway grade crossings in track class 2; 870 rail-highway grade 
crossings in track class 3; 656 rail-highway grade crossings in track class 4; and 
133 rail-highway grade crossings in track class 5. About 20% of the rail-high 
grade crossings were randomly selected for each track class and set aside for the 
model validation. 

The data from each track classes were combined for comparing the results for 
each track class model with a model for all track classes data taken together. 

5. Variable Selection to Develop Models 

Table 1 summarizes the list of variables considered in this research. The correlation  
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Table 1. Variables considered for analysis and modeling. 

Variable Description 

CROSSING Crossing ID 

Crashes # of Crashes 

LTM Less than one train movement per day; 1 = yes, 0 = no 

MTS Maximum time table speed 

TRKCLS Track class (1 - 5) 

MNS Minimum train speed 

MTK # of main tracks 

OTK # of other tracks 

WDCD 

Warning device code 1 = no signs or signals, 2 = other signs or signals,  
3 = crossbucks, 4 = stop signs, 5 = special active warning devices,  
6 = wigwags, bells 7 = flashing lights, 8 = all other gates  
(two and three quadrant gates*), 9 = four quadrant (full barrier) gates 

BL # of bells 

NS 1 = no signs or signals; 0 = at least one sign or signal 

SGEQ Is track equipped with train signals? 1 = yes, 0 = no 

OS Development type open; 1 = yes, 0 = no 

RS Development type residential; 1 = yes, 0 = no 

COM Development type commercial; 1 = yes, 0 = no 

INDUS Development type industrial; 1 = yes, 0 = no 

INST Development type institutional; 1 = yes, 0 = no 

STPL If stop lines are present; 1 = yes, 0 = no 

RRX If rail road crossing symbol is present; 1 = yes, 0 = no 

NMK If there are no pavement markings; 1 = yes, 0 = no 

STPL If there are stop lines and rail-road crossing signals; 1 = yes, 0 = no 

L75 If the highway is less than 75 ft away; 1 = yes, 0 = no 

B200-500 If the highway is in the vicinity of 200 to 500 feet; 1 = yes, 0 = no 

B75-200 If the highway is in the vicinity of 75 ft to 200 feet; 1 = yes, 0 = no 

NHWY If there is no highway nearby; 1 = yes, 0 = no 

TRFLN # of trafficlanes 

STHWY Is crossing on state highway? 1 = yes, 0 = no 

AADT Average annual daily traffic 

PCTRK % of truck traffic 

SCHLB Average number of school buses passing through the crossing on a school day 

WHISTB If there is a whistle ban; 1 = 24 hr, 0 = no ban 

TTRN Total number of trains 

TSWT Total number of switching trains 

XBUCK # of crossbucks 

GT # of gates 

FLP # of flashing light pairs 

HWYSP Posted highway speed limit 

*Three quadrant gates: gates at a rail-highway grade crossing along with a median on the approach to the 
rail-highway grade crossing that only has a gate on the entrance lane. 
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between these variables as well as with the number of observed crashes during 
the five-year period was examined by constructing a Pearson correlation coeffi-
cient matrix. The examination was done for Pearson correlation coefficient ma-
trix for the all track class dataset as well as a dataset for each track class. 

The maximum train time table speed was considered as a key variable in-
fluencing safety and risk at the rail-highway grade crossings. The maximum 
train time table speed was included in the analysis and modeling process for the 
model considering data for all rail-highway grade crossings. The number of 
main tracks and AADT were also forced into the models. However, the maxi-
mum train time table speed was not forced into the model for each track class as 
the track class is based on the maximum train time table speed. The AADT 
and/or the number of main tracks were selected as the key variables influencing 
safety risk at the rail-highway grade crossing in this case. The variables that were 
found not to be correlated to the key variables (at a 95% confidence level) were 
identified and used in the development of models (only if correlated with the 
observed number of crashes during the five-year period). 

Table 2 summarizes the explanatory variables selected based on correlation to 
develop models for each track class. 

6. Analysis and Results 

Track class 1 has two-quadrant gates and crossbucks installed at 38.3% and 
30.9% of the total rail-highway grade crossings. Similarly, track class 2 has 51.4% 
and 31.5% rail-highway grade crossings with two quadrant gates and crossbucks, 
respectively. Track class 1 has 15.6% rail-highway grade crossings with flashing 
lights installed, while track class 2 has a higher number i.e., 121 rail-highway 
grade crossings with flashing lights installed. Further, for track class 3 and above, 
more rail-highway grade crossings have flashing lights and gates installed at 
them rather than just crossbucks. Track class 5 has 92.7% of its total rail-highway  
 
Table 2. Variables considered for developing each track class model. 

Track Class Variable 

1 
1) AADT 
2) Total number of trains 
3) # of main tracks 

2 
1) If stop lines present 
2) # of traffic lanes 
3) % of trucks 

3 
1) # of main tracks 
2) Total number of switching trains 
3) No highway nearby 

4 
1) # of main tracks 
2) No highway nearby 

5 
1) # of main tracks 
2) # of traffic lanes 

https://doi.org/10.4236/jtts.2019.93016


S. Sharma, S. S. Pulugurtha 
 

 

DOI: 10.4236/jtts.2019.93016 270 Journal of Transportation Technologies 
 

grade crossings with two quadrant gates. Four quadrant gates seem to be rarely 
installed at rail-highway grade crossings in the study area. The warning devices 
across track classes are justified as track class is related to the speed of the train. 

Track classes 1, 2 and 3 have rail-highway grade crossings with mostly zero or 
one main track while track classes 4 and 5 have a few rail-highway grade cross-
ings with one or two main tracks. There are fairly a low number of rail-highway 
grade crossings in any of the classes with three or four main tracks. Also, a high-
er number of rail-highway grade crossings with one main track is found to have 
a higher number of reported crashes at them. This can be mainly due to the ab-
undance of rail-highway grade crossings in this category (# of main tracks = 1) 
or may be due to some other unexplainable factor. The rail-highway grade 
crossings with two main tracks have more than 90% of the rail-highway grade 
crossings with two quadrant gates. 

6.1. Modeling Based on All Track Class Data 

Models were first developed considering data for all the track classes together. 
The model developed is shown in Table 3. 

The number of main tracks is positively correlated to crashes, while the high-
way speed limit has a negative coefficient (possibly because warning devices and 
signals are provided at rail-highway grade crossings with the higher posted speed 
limit on the highway). The model also has a negative intercept. The significance 
value for the likelihood ratio Chi-Square is less than 0.01. The AIC and AICC are 
equal to each other for both the models. However, the NB distributed-based 
model has marginally lower AIC, AICC, and Deviance values than the Poisson 
distribution-based model. Further, the computed variance is greater than the 
mean. Therefore, NB distribution-based model is considered to better fit the da-
ta used in this research. 
 
Table 3. All track class data model. 

Variable 
Poisson (Log-link) Negative Binomial (Log-link) 

C P C P 

Intercept −3.92 <0.01 −4.17 <0.01 

# of main tracks 1.49 <0.01 1.68 <0.01 

Posted highway 
speed Limit 

−0.02 0.03 −0.02 0.05 

Likelihood 
Ratio Chi-Square 

90.2 <0.01 84.4 <0.01 

AIC 1176.6 1157.4 

AICC 1176.6 1157.4 

Deviance 891.8 760.7 

*C is coefficient and P is probability or significance value. 
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6.2. Modeling Based on Each Track Class Data 

The crash distribution, the mean and the variance for each track class are shown 
in Table 4. The data for track classes 1 and 5 were found to be under-dispersed, 
while the data for track classes 2, 3, and 4 were found to be over-dispersed. Since 
the model based on all track classes data and three out of five track classes have 
variance greater and then the mean, NB distribution-based models are devel-
oped for each class and summarized in Table 5. 

From Table 5, the explanatory variables that have an effect on crashes at 
rail-highway grade crossing vary by the track class. The AIC and AICC are rea-
sonably close to each other for each track class model. The significance value for 
the likelihood ratio Chi-Square is less than or equal to 0.01 for each track class 
model. The AIC, AICC, and Deviance values are lower than the corresponding 
value for the model based on all track class data. This indicates that developing 
models for each track class may lower prediction errors and improve accuracy 
than compared to all track class data model. 
 
Table 4. Descriptive statistics of data based on track class. 

Track Class 1 2 3 4 5 

Mean 0.02202 0.02269 0.0546 0.14095 0.06024 

Variance 0.02153 0.02392 0.06024 0.20147 0.05661 

Frequency (# of Crashes) 

0 97.80% 97.90% 95.40% 89.30% 94% 

1 2.20% 2.09% 4.60% 7.80% 6% 

2 0% ~0% ~0% 2.30% 0% 

3 0% 0% 0% 0.60% 0% 

 
Table 5. Models by track class. 

Variable C P C P C P C P C P 

Track Class 1 2 3 4 5 

Intercept −4.77 <0.01 −4.99 <0.01 −5.35 <0.01 −3.37 <0.01   

Total # of trains 0.06 <0.01         

# of main tracks 0.61 0.41   2.24 <0.01 1.23 <0.01 −1.89 <0.01 

No highway nearby     −1.23 0.03 −0.86 0.02   

Total # of switching trains     0.20 0.02     

Stop lines present   1.47 0.01       

# of Traffic Lanes   0.37 0.04       

% of trucks   0.04 0.01       

Likelihood  
Ratio Chi-Square 

8.9 0.01 12.9 0.01 30.1 <0.01 34.0 <0.01 70.3 <0.01 

AIC 112.9 244.6 276.9 420.0 53.7 

AICC 113.0 244.6 276.9 420.0 53.7 

Deviance 73.7 166.2 168.7 241.0 37.8 
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The total number of trains, the number of main tracks, the total number of 
switching trains, the percent of heavy vehicles, and the number of traffic lanes 
have generally, a positive coefficient, while no highway near the rail-highway 
grade crossing has a negative coefficient. All the models have a negative inter-
cept indicating that the number of crashes per year would be very low (almost 
zero). 

The negative coefficient for the number of main tracks in the case of track 
class 5 could be attributed to the warning devices and signals implemented at 
such rail-highway grade crossings. 

6.3. Model Validation 

The model validation was performed using data set aside for each track class. 
The computed WBAPS collision per year was converted to a five-year scale by 
multiplying the value with 5 (assuming conditions remain constant over the 
five-year period) to assist with the comparison. The T-test was performed by 
comparing the difference between the predictions from the developed model and 
the observed number of crashes with the difference between predictions from 
WBAPS and the observed number of crashes. 

Table 6 shows the mean, standard deviation, significance value, and the abso-
lute value of T-statistic comparing the model output from this research and 
WBAPS output for each track class. The mean difference for the developed 
model is lower than WBAPS for track class 1 and track class 2 (also shown in 
Figure 1), while the standard deviation is lower than WBAPS for track classes 1, 
2 and 3. The significance value is less than 0.05 and the absolute value of 
T-statistic is greater than 2.0 for track class models 1, 2, 4, and 5. Overall, the 
results obtained from the model validation indicate that the predictions vary by 
track class and are comparable or better than those obtained from WBAPS. 
 
Table 6. Comparison of errors. 

Track Class Parameter Model Developed WBAPS P |T-statistic| 

1 
Mean 0.020 0.030 

0.0003 3.7 
St. Dev. 0.025 0.032 

2 
Mean 0.030 0.040 

0.0027 3.0 
St. Dev. 0.027 0.048 

3 
Mean 0.080 0.070 

0.1357 1.5 
St. Dev. 0.043 0.085 

4 
Mean 0.160 0.020 

0.0001 17.2 
St. Dev. 0.094 0.013 

5 
Mean 0.070 0.020 

0.0001 6.9 
St. Dev. 0.038 0.013 
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Figure 1. Comparison of mean errors. 

7. Conclusions 

The NB model for each track class model was found to be the best fitting model 
to predict the number of crashes at rail-highway grade crossings. The total 
number of trains, if stop lines are present, the number of traffic lanes, the per-
centage of trucks, the number of main tracks, the total number of switching 
trains and no highway near the rail-highway grade crossing are critical explana-
tory variables to model crash risk by track class at rail-highway grade crossings. 
The variables in each track class are different from one another, which support 
the fact that rail-highway grade crossings for each track class must be considered 
separately when modeling crash risk.  

The comparison of WBAPS with the developed model outputs suggests that 
these models give a more conservative picture of the number of crashes. It also 
shows that track class is a critical factor related to the risk at a rail-highway 
grade crossing. The track class governs the number of crashes at rail-highway 
grade crossings largely and should thus always be considered when addressing 
rail-highway grade crossing safety problems. 

The models suffer from certain limitations as they have been developed using 
data available which is very scarce in nature. In the models based on track class, 
there are classes in which only a marginal number of rail-highway grade cross-
ings exist and so a very accurate estimate could not be made. 

In the absence of funds or to enhance design standards, the agencies make 
the decision of closing some rail-highway grade crossings. This leads to an in-
crease in the vehicular traffic and, hence, the risk at the other nearby 
rail-highway grade crossings. There are also other factors that contribute to 
crash reduction which could not be accommodated in the models developed in 
this research and are potential topics for future research. These include driver 
behavior at rail-highway grade crossings, driving under the influence of alcohol, 
and rail-highway safety awareness among users. 
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