
Journal of Transportation Technologies, 2015, 5, 102-112 
Published Online April 2015 in SciRes. http://www.scirp.org/journal/jtts 
http://dx.doi.org/10.4236/jtts.2015.52010     

How to cite this paper: Shimada, H., Yamaguchi, A., Takada, H. and Sato, K. (2015) Implementation and Evaluation of Local 
Dynamic Map in Safety Driving Systems. Journal of Transportation Technologies, 5, 102-112.  
http://dx.doi.org/10.4236/jtts.2015.52010 

 
 

Implementation and Evaluation of Local 
Dynamic Map in Safety Driving Systems 
Hideki Shimada1, Akihiro Yamaguchi2, Hiroaki Takada2, Kenya Sato1 
1Mobility Research Center, Doshisha University, Kyotanabe, Japan 
2Center for Embedded Computing Systems, Nagoya University, Nagoya, Japan 
Email: hideki-s@is.naist.jp, ksato@mail.doshisha.ac.jp, yamagut@nces.is.nagoya-u.ac.jp, hiro@ertl.jp 
 
Received 3 February 2015; accepted 27 March 2015; published 31 March 2015 
 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
Cooperative safety driving systems using vehicle-to-vehicle and vehicle-to infrastructure commu-
nication are developed. Sensor data of vehicles and infrastructures are communicated in the co-
operative safety driving system. LDM (Local Dynamic Map) is standardized by ETSI (European 
Telecommunications Standards Institute) to manage the vehicle sensor data and the map data. 
Implementations of LDM are reported on documents of ETSI, but there are no numerical results. 
The implementations of LDM are deployed the database management system. We think that the 
response time of the database becomes higher as the number of vehicles grows. In this paper, we 
have implemented and evaluated the LDM with the collision detection application. 

 
Keywords 
Local Dynamic Map, ITS, Cooperative Safety Driving Systems 

 
 

1. Introduction 
In addition to autonomous Intelligent Transport Systems (ITS) that use only the sensor information of an ego 
motor vehicle, recent studies have also been examining cooperative ITS systems that exchange sensor informa-
tion through the use of vehicle-to-vehicle (V2V) communication and infrastructure-to-vehicle (I2V) communi-
cation. In Japan, the Advanced Safety Vehicle (ASV) [1] system promoted by the Ministry of Land, Infrastruc-
ture, Transport and Tourism (MLIT), Driving Safety Support System (DSSS) [2] overseen by the National Po-
lice Agency (NPA), and other systems are progressing toward actual implementation. Meanwhile, in Europe, the 
standardization of cooperative systems is progressing at standardization bodies such as the European Committee 
for Standardization (CEN) and European Telecommunications Standards Institute (ETSI). The adoption and 
spread of such cooperative ITS systems will generate a need for managing not only the sensor information of an 

http://www.scirp.org/journal/jtts
http://dx.doi.org/10.4236/jtts.2015.52010
http://dx.doi.org/10.4236/jtts.2015.52010
http://www.scirp.org
mailto:hideki-s@is.naist.jp
mailto:ksato@mail.doshisha.ac.jp
mailto:yamagut@nces.is.nagoya-u.ac.jp
mailto:hiro@ertl.jp
http://creativecommons.org/licenses/by/4.0/


H. Shimada et al. 
 

 
103 

ego motor vehicle but also the sensor information of other motor vehicles obtained through some means of 
communication. 

As an Automotive Data Integration Project, we have been studying a mechanism for achieving vehicle control 
by integrated management of multiple types of in-vehicle sensor information using a database [3]. 

Against the above background, this paper focuses on Local Dynamic Map (LDM) [4] technology that is now 
being standardized in Europe. LDM achieves integrated management of map information and vehicle informa-
tion. It provides a mechanism for dividing up data into layers according to its characteristics and for managing 
data used in cooperative ITS systems. A key effort related to LDM is the SAFESPOT Integrated Project that de-
signs cooperative ITS systems to improve road safety [5]. The SAFESPOT development period ended in 2010. 
Portions of the project report have been released and research papers by project members have been presented 
[6]-[9]. These papers, however, while reporting on simulation-based evaluation experiments and field experi-
ments at test sites, have not described any performance evaluations, so it is still not understood whether LDM 
specifications are applicable to actual operations. 

In light of the above, we have performed an LDM implementation on computer based on the LDM specifica-
tions released by SAFESPOT. In this paper, we evaluate and analyze LDM performance while varying certain 
parameters such as the number of vehicle data items registered in LDM and the computer environment itself. 
The paper is organized as follows. Section 2 outlines the LDM concept, section 3 describes the LDM that we 
implemented, section 4 describes the evaluation experiment that we performed for this implementation and ana-
lyzes experimental results, and section 5 concludes the paper. 

2. LDM (Local Dynamic Map) 
LDM, which is now being standardized in Europe, is an aggregation of data for use by cooperative ITS. It 
adopts a four-layer model as shown in Figure 1 [10]. The first or bottom layer consists of static data such as 
road data, the second layer consists of relatively static data such as signals not included in map data, the third 
layer consists of relatively dynamic data such as congestion and other traffic conditions, and the fourth or top 
layer consists of dynamic data such as automotive sensor information. In terms of a concrete data model, data 
tables have been defined in the SAFESPOT project for each of these four layers as shown in Figure 2. 

Examples of LDM implementations have been reported including PG-LDM by Bosch and Tele Atlas and 
NAVTEQ-LDM by NAVTEQ [10]. The PG-LDM implementation adopts PostgreSQL as its database engine 
and provides for PostGIS stored procedures and spatial operations. The NAVTEQ-LDM implementation, mean- 
while, adopts SQLite as its database engine. 
 

 
Figure 1. The four layers of the LDM. 



H. Shimada et al. 
 

 
104 

 
Figure 2. LDM data model. 

3. LDM Implementation 
3.1. Overview 
Based on the SAFESPOT specifications described in section 2, we set out to implement LDM on a general- 
purpose computer. We used PostgreSQL as a database management system (DBMS), PostGIS as a library for 
spatial operations extending PostgreSQL, and PL/pgSQL to implement stored procedures within PostgreSQL, 
all on Linux (Fedora10). We also used C++ to create an application programming interface (API) to access 
LDM from an application. In this section, we present the LDM elements needed by the safety driving system 
that we implemented and describe the structure of those elements. 

3.2. Schema Definition 
We created a schema of LDM tables as needed for achieving a safety driving system in conformance with cur-
rent SAFESPOT specifications. In particular, we designed this schema with separate tables for managing static 
data such as road and map data and dynamic data such as vehicle data. Specifically, for map data on the first 
layer of LDM, we implemented a roadelement table for managing road data and a junction table and roadinter-
section table for managing intersection data. We used these tables of map data to manage road data such as in-
tersections and associated location information. Next, for vehicle data on the fourth layer, we implemented an 
egomotorvehicle table for managing information of the ego motor vehicle and a motorvehicle table for manag-
ing information of other motor vehicles. We used these tables of vehicle information to manage vehicle IDs, ve-
hicle sensor data, and associated location information. We also implemented the along road element table, which 
is one example of a relationship table defined by SAFESPOT for spanning and interconnecting different layers. 
Although road data on the first layer and vehicle data on the fourth layer are managed as independent layers, this 
relationship table relates map-data IDs to vehicle-data IDs enabling powerful searching to be performed. For 
example, the IDs of vehicles driving on a certain road can be obtained from the ID of that road and a road ID 
can be obtained from the ID of a vehicle driving on that road. 

3.3. API 
The LDM mechanism is essentially a database to which an application sends queries to obtain data. For this 
reason, an API is defined so that an application developer can work with the data stored in LDM. The LDM API 
is divided into Level 1 API and Level 2 API for performing basic operations and specialized processing, respec-
tively. 

In more detail, Level 1 API defines database operations like “select” and “update” also defined in SQL and 
includes spatial operations and transaction processing. Level 2 API extends Level 1 API and defines an API for 



H. Shimada et al. 
 

 
105 

special queries submitted by an application. For example, searching for vehicles on a certain road can be ac-
complished by calling Level 1 API several times, but Level 2 API enables such a search to be defined in the 
form of LDM:: L2API.getVehiclesOnRoadElement thereby simplifying the writing of an application. 

Defining the LDM API in this way enables an application developer to implement an application without 
having to worry about the actual database software used to implement the LDM. 

3.4. Data Used in Implementation 
LDM groups data into layers according to the characteristics of that data. In this implementation, we used map 
data (first layer) and vehicle data (fourth layer) as described below to implement a safety driving system. 

3.4.1. Map Data 
We used OpenStreetMap [11] as our source of map data. The road information in OpenStreetMap can be used 
and edited as an XML file in OSM format. If the contents of this XML file are converted to PostgreSQL, roads 
and intersections can be managed as LineString and Point data, respectively, as defined in PostGIS. Point data is 
a data type consisting of latitude and longitude in the form of point (x, y) while LineString data is a data type 
that connects Point data in the form of LineString (Point a, Point b,...). However, registering XML data in Post-
greSQL does not in itself assign IDs, so we do this by extracting target areas and assigning IDs to intersections 
and roads. 

The process flow for registering map data is shown in Figure 3 and summarized below. 
1) Select area to be used from the OpenStreetMap Web page. 
2) Download file in .osm format after selecting the target area. 
3) Register the downloaded .osm file in the PostgreSQL database using the osm2pgsql [12] program. This 

 

 
Figure 3. Registration process of map data. 

OpenStreetMap Web page Display using GIS Viewer

1

2
3

4

51 2

8

9

36

4

7

5

id geometry

x Point()

junction

id geometry

y LineString()

roadelement

id type

z …..

roadintersection

<?xml version="1.0" 
encoding="UTF-8"?>
<osm version="0.6" 
generator="CGImap 0.0.2">
<bounds minlat="52.0680800" 
minlon="4.3013140" 
maxlat="52.0691020" 
maxlon="4.3035620"/>
<node id="726425054" 
lat="52.0685910" lon="4.3025438" 
user="3dShapes" uid="195219" 
visible="true" version="1" 
changeset="4638268" 
timestamp="2010-05-
08T12:43:53Z"/>

XML file (.OSM format) GIS table LDM table

1

2
3

4

5

junction
roadintersection

planet_osm_line
planet_osm_point

planet_osm_polygon
planet_osm_roads



H. Shimada et al. 
 

 
106 

action will create planet_osm_line, planet_osm_point, planet_osm_polygon, and planet_osm_roads tables under 
an arbitrary database name. 

4) Extract LineString end points from LineString data contained in planet_osm_line as Point-type data and 
store those data in the LDM junction table. 

5) Extract adjacent Point-type data from LineString data contained in planet_osm_line in the manner of Line-
String (Point a, Point b)… and store such LineString data in the LDM roadelement table. 

6) Search for intersections of LineString data contained in planet_osm_line and store points where such data 
cross in the roadintersection table. 

3.4.2. Vehicle Data 
In LDM, vehicle-related tables (egomotorvehicle, motorvehicle) contain entries for managing various types of 
sensor data such as location information, velocity, and acceleration. Using the PreScan [13] simulation platform, 
we created vehicle sensor models and driving scenarios. In PreScan, it is possible to apply the control logic of 
Matlab/Simulink [14], so we were able to perform simulations using a vehicle model even closer than usual to 
an actual vehicle. The process flow for creating vehicle data is summarized below. 

1) Read map data of OpenStreetMap into PreScan. 
2) Arrange vehicles on the roads indicated on the map and set vehicle-movement scenarios. 
3) Create a Simulink model and set automotive sensor blocks. 
4) Execute the simulation and output vehicle location together with sensor data as a.csv file. 

4. LDM Evaluation 
4.1. Overview 
Based on the LDM design described in the previous section, we implemented a collision detection application as 
a safety driving system and evaluated and analyzed the LDM that we implemented using a database. Specifically, 
we performed an experiment while varying the computer environment and simulation parameters and investi-
gated whether the response time of the database could be applied to a safety driving system. 

4.2. Evaluation Environment 
The computer hardware that we used in the experiment is summarized in Table 1. Computer A, a high-perfor- 
mance computer compared to computer B, ran Fedora10 on VMWare, while computer B ran a similar environ-
ment as a host. We used PostgreSQL, PostGIS, and PL/pgSQL on both computers to implement LDM. 

In this experiment, we used one computer at a time having an architecture made up of LDM, API, Longitu-
dinal Collision Risk Warning (LCRW) application, update program, and vehicle data as shown in Figure 4. To 
perform this experiment on one computer, we took no communication with other motor vehicles into account 
resulting in a network environment by V2V communication with no delay or packet loss. The map data regis-
tered in LDM was for a portion of a city (approximately 300 m square) in the Netherlands having a grid street 
plan as shown by the map in the upper-left portion of Figure 3 accessible by a URL1. We registered this 
 

Table 1. Evaluation environment. 

 
Computer A 

Computer B 
VM (host) VM (guest) 

CPU 
Core i7-2600 

3.4 GHz 
8-core 

Core i7-2600 
3.4 GHz 
4-core 

Pentium D 
2.8 GHz 
1-core 

Memory 8.00 GB 2.00 GB 1.00 GB 

HDD 1 TB SATA 
6 Gb/s, 7200 rpm 20 GB SCSI 150 GB SATA 

OS Windows 7 (64 bit) Fedora 10 (32 bit) Fedora 10 (32 bit) 

 

 

1http://www.openstreetmap.org/?lat=52.068491&lon=4.302388&zoom=18&layers=M 

http://www.openstreetmap.org/?lat=52.068491&lon=4.302388&zoom=18&layers=M


H. Shimada et al. 
 

 
107 

 
Figure 4. Architecture of experimental computer. 

 
OpenStreetMap data in LDM using the procedure described in section 3.4.1. In addition, we created a vehicle- 
movement model using this map data and PreScan and a vehicle model using Simulink, and we collected the lo-
cation of vehicle movement obtained from GPS together with velocity and other sensor data. This collected ve-
hicle data, which is stored in CSV format, is read by the update program and registered in the LDM vehicle-data 
tables at a frequency based on the sensing period (50 ms). In the experiment, one vehicle is registered in the 
egomotorvehicle table and the remaining vehicles in the motorvehicle table. 

4.3. Collision Detection Application 
We use LCRW as a collision detection application in this evaluation experiment. Written in C++, this applica-
tion calls Level 1 API and Level 2 API to obtain information within LDM with the aim of checking whether the 
ego motor vehicle and lead vehicle are about to collide. The LCRW application flowchart is shown in Figure 5. 
First, the application gets the ID of the road that the ego motor vehicle is currently driving on using L2API. 
getNetworkRoadElement() of Level 2 API. It then gets the IDs of the vehicles driving on the same road using 
L2API. getVehiclesOnRoadElement() of Level 2 API and determines the ID of the vehicle driving immediately 
ahead of the ego motor vehicle. Next, the application calculates the distance between the ego motor vehicle and 
lead vehicle using location information and queries LDM for the velocities of each vehicle. It then applies this 
information to a stopping distance algorithm (SDA) [15] and outputs a warning message if necessary. This 
checking for a lead vehicle and associated operations processing are performed in 100 msor 500 ms cycles. 

4.4. Update Program 
Map data consists of static data and can therefore be registered in LDM beforehand—it does not change during 
the experiment. Vehicle data, on the other hand, is dynamic and must be updated during the experiment. We use 
an update program for this purpose. This program, like the collision detection application, is written in C++. It 
uses Level 1 API to update the tables in LDM related to vehicle data, that is, the egomotorvehicle and motorve-
hicle tables. As for vehicle data to be updated, the number of CSV files prepared using PreScan is equivalent to 
the number of vehicles used in the experiment. The updating of these vehicle data is accompanied by the updating  

Level 1 API Level 2 API
getVehiclesOnRoadElement

getNetworkRoadElement

LDM tables

LCRW
Application

motorvehicle egomotorvehicle alongroadelement

DBMS (PostgreSQL)

SQL API Spatial API (PostGIS)
LDM

Client

2. getVehiclesOnRoadElement
Send ID of roadelement being driven
and get ID of lead motorvehicle.

3. Send ID of egomotorvehicle
and ID of  lead motorvehicle
and get velocity and location
information.

1. getNetworkRoadElement()
Send ID of egomotorvehicle and
get ID of roadelement being driven.

Update Program

.csv.csv.csv.csv.csv



H. Shimada et al. 
 

 
108 

 
Figure 5. Flowchart of LCRW application. 
 
of the alongroadelement relationship table in LDM by a stored procedure in PostgreSQL. Here, the updating of 
the vehicle data tables by the update program is used as a trigger to call this procedure and update the alongroa-
delement table. This updating process is described using the PL/pgSQL procedural language that is used to 
achieve PostgreSQL stored procedures. 

4.5. Evaluation Experiment 
As shown in Figure 6, we performed this evaluation experiment by running the collision detection application 
and update program simultaneously as separate processes that submit queries to LDM. 

Given that vehicle data is obtained at 50 ms intervals, the update program performs update operations with 
respect to LDM in 50 ms cycles. The collision detection application, meanwhile, sends queries to LDM to check 
for a lead vehicle at intervals of 100 ms or 500 ms. In addition, the number of vehicles to be updated is variable 
at 5, 10, and 20 vehicles. In the experiment, we measured the response time for outputting a warning message by 
the collision detection application as an evaluation value. Response time here can be expressed as follows: 

response time = warning-message output time − sensing time 
= communication delay time + API processing time + operations processing time 

In this experiment, communication delay is taken to be zero, so response time can be expressed as the sum of 
Level 2 API processing time and operations processing time with respect to the target vehicles as shown in 
Figure 5. 

Response-time results for computers A and B are shown in Figure 7 and Figure 8, respectively. For each of 
these bar graphs, the horizontal axis represents variable parameters, that is, number of vehicles (5, 10, 20) and 
the checking interval (100 ms, 500 ms) of the collision detection application, while the vertical axis represents 
response time (ms). Here, as explained above, response time can be expressed as the sum of the processing time 
associated with two API calls in LCRW (getNetworkRoadElement(), getVehiclesOnRoadElement()) and the 
SDA operations processing time. 

A significant difference can be seen in response time between computer A and computer B having different  

L2API.getNetworkRoadElement()
Get ID (=x) of road that ego motor vehicle is driving on 
and direction (=y)

L2API.getVehiclesOnRoadElement()
Get list of IDs of vehicles driving on road x in direction y

Size of vehicle ID list > 1

select id from alongroadelement …
Get ID (=a) of nearest vehicle driving ahead of ego motor 
vehicle (use a subquery)

select … from egomotorvehicle,
select … from motorhevhicle
Get velocity and location information of ego motor
vehicle and vehicle a

PostGIS distance_sphere()
Calculate distance (=xr) between ego motor vehicle 
and vehicle a

Sda = ego-motor-vehicle velocity * 1.3 + 
(ego-motor-vehicle velocity2 /5 – vehicle a velocity2 /5) + 3
Calculate SDA

sda > xr

Output warning

Yes

No

Yes
No



H. Shimada et al. 
 

 
109 

 
Figure 6. Overview of experiment. 

 

 
Figure 7. Response time (computer A). 

alongroadelement
L2API.getNetworkRoadElement
L2API.getVehiclesOnRoadElement

egomotovehicle
select

motorvehicle
select

Perform PostGIS operations
Perform SDA operations
Output warning

alongroadelement
L2API.getNetworkRoadElement
L2API.getVehiclesOnRoadElement

egomotovehicle
select

motorvehicle
select

Perform PostGIS operations
Perform SDA operations
Output warning

0ms

100ms

200ms

300ms

alongroadelement
L2API.getNetworkRoadElement
L2API.getVehiclesOnRoadElement

egomotovehicle
select

motorvehicle
select

Perform PostGIS operations
Perform SDA operations
Output warning

Collision detection applicationUpdate program

Open .csv files and store the 
update statement in a structure,.
Delete previous results and initialize

LDM

motorvehicle
egomotorvehicle

Execute update by number of 
vehicles present

motorvehicle
egomotorvehicle

Execute update by number of 
vehicles present

motorvehicle
egomotorvehicle

Execute update by number of 
vehicles presentmotorvehicle

egomotorvehicle
Execute update by number of 
vehicles present

motorvehicle
egomotorvehicle

Execute update by number of 
vehicles present

motorvehicle
egomotorvehicle

Execute update by number of 
vehicles present

motorvehicle
egomotorvehicle

Execute update by number of 
vehicles present

0

1

2

3

4

5

6

7

8

9

10

5 cars 10 cars 20 cars 5 cars 10 cars 20 cars 

100ms 500ms 

Ti
m

e 
(m

s)

getNetworkRoadElement() getVehiclesOnRoadElement() Calculation of  SDA 



H. Shimada et al. 
 

 
110 

 
Figure 8. Response time (computer B). 
 
levels of performance. In contrast to a response time of about 6 ms overall for high-performance computer A, 
computer B exhibits a response time of about 15 ms. Although the performance of individual computer elements 
like CPU, memory, and hard disks differs between these two computers, performing the same experiment when 
varying the number of CPU cores and memory size by VMW are settings on computer A revealed no changes in 
response time. This result indicates that hard-disk performance represents a major hardware effect. In addition, 
no significant differences in response time could be observed between checking intervals of 100 ms and 500 ms 
of the collision detection application. Furthermore, no major change in response time could be observed when 
increasing the number of vehicles managed by LDM as shown in Figure 7 and Figure 8. 

As shown in Figure 8, response-time calculations could not be performed for the case of 20 vehicles on 
computer B. The reason for this is related to the update processing time of vehicle data shown in Table 2, which 
lists the time needed by the update program to update vehicle data in LDM for the various parameters of this 
experiment. These results show that no major change in update processing time could be observed for different 
checking intervals of the collision detection application. They also show, however, that update processing time 
increased nearly in proportion to an increase in the number of vehicles. In addition, the time needed for update 
processing was significantly different between the two computer environments. For the case of 20 vehicles, up-
date processing time was about 36 ms for computer A but about 71 ms for computer B. 

In this experiment, the sensing interval for vehicle data was set to 50 ms so update processing of vehicle data 
was performed at intervals of 50 ms. However, update processing time on computer B for 20 vehicles became 
larger than this required update interval of 50 ms. In other words, updating could not keep up with the sensing 
interval, and as a result, no response time could be obtained for 20 vehicles on computer B as shown in Figure 
8. 

4.6. Summary of Evaluation Experiment 
We evaluated the performance of an LDM implementation using a collision detection application. In this expe-
riment, we used computers differing in performance as evaluation environments and analyzed LDM perfor-
mance while varying the frequency of data registration with LDM and the number of data items. We found that 
the response time of the collision detection application did not significantly change with an increase in the  

0

2

4

6

8

10

12

14

16

18

5 cars 10 cars 20 cars 5 cars 10 cars 20 cars 

100ms 500ms 

Ti
m

e 
(m

s)
getNetworkRoadElement() getVehiclesOnRoadElement() Calculation of SDA



H. Shimada et al. 
 

 
111 

Table 2. Update processing time. 

Checking interval 100 ms 500 ms 

No. of vehicles 5 cars 10 cars 20 cars 5 cars 10 cars 20 cars 

Update processing time (compter A) 8.9 ms 16.8 ms 36.4 ms 8.9 ms 16.9 ms 35.5 ms 

Update processing time (computer B) 23.1 ms 42.2 ms 70.9 ms 18.6 ms 37.4 ms 72.1 ms 

 
number of vehicles but that a situation in which the updating of vehicle data could not keep up with the sensing 
interval could occur depending on the computer environment. We considered that this was caused by a differ-
ence between the processing load of the SQL select statement within the collision detection application and that 
of the SQL update statement within the update program. In general, processing load of the select statement is 
less than that of the update statement, which would support this result. In addition, processing the update state-
ment with respect to LDM means executing stored procedures implemented by PL/pgSQL and updating the 
along roadelement relationship table. This would also explain why processing of the update statement cannot 
keep up with the sensing interval as the number of vehicles increase. 

The above problem did not appear when using the high-performance computer for the number of vehicles 
used in this experiment. We consider, however, that a similar problem would eventually occur here if the num-
ber of registered vehicles were to be further increased. The number of vehicles to be registered and the frequen-
cy of vehicle registration should therefore be set according to the computer environment being used. 

5. Conclusions 
Local Dynamic Map (LDM) has been attracting attention as a mechanism for managing map and vehicle data in 
ITS using vehicle-to-vehicle and infrastructure-to-vehicle communication. In this paper, we reported on a com-
puter-based implementation of LDM using an RDBMS based on the LDM specifications released by the Euro-
pean SAFESPOT project for improving road safety. In particular, we registered map data for an actual environ-
ment and vehicle data in LDM and evaluated and analyzed this implementation of LDM on computer using a 
collision detection application. Based on the results of the evaluation experiment, we found that operation 
processing in the collision detection application had no problems but that LDM internal processing experienced 
a high load as the number of vehicles increased, which did have an impact on the application. Although exam-
ples of LDM implementations had been reported in the past, experimental results had not been released in pa-
pers or elsewhere, so the numerical results presented in this paper should serve as a reference for future imple-
mentations of LDM. 

The experiment described in this paper was performed in an ideal environment with no consideration of ve-
hicle-to-vehicle communication and therefore no delay or packet loss. We consider, however, that a wireless 
network would be used in an actual environment and that data delay and/or loss would occur owing to a variety 
of factors such as moving nodes. We leave for future research an experiment that simulates a network environ-
ment close to such a real-world environment. We also plan to implement a filtering mechanism for reducing the 
volume of vehicle data updates. 

Acknowledgements 
This work was partly supported by Japan Society for the Promotion of Science(JSPS), Grant-in-Aid for Scien-
tific Research (KAKENHI), and Strategic Information and Communications R&D Promotion Programme 
(SCOPE) by the Ministry of Internal Affairs and Communications Japan. 

References 
[1] Report on Advanced Safety Vehicle (ASV) Promotion and Planning. (In Japanese) (2011).  

http://www.mlit.go.jp/jidosha/anzen/01asv/resourse/data/asv4pamphlet.pdf 
[2] Kobayashi, M., Oota, T. and Kamata, K. (2010) Research and Developments for Practical Use of DSSS. Journal of So-

ciety of Automotive Engineers of Japan, 64, 43-48. (In Japanese). 
[3] Yamada, M., Kamada, H., Sato, K. Teshima, S. and Takada, H. (2010) Integrated Sensor Data Management Method 

http://www.mlit.go.jp/jidosha/anzen/01asv/resourse/data/asv4pamphlet.pdf


H. Shimada et al. 
 

 
112 

for Vehicle Control System. IEICE Transactions on Information and Systems, J93-D, 1189-1201. 
[4] ETSI TR 102 863 (V1.1.1) (2011) Intelligent Transport Systems (ITS): Vehicular Communications; Basic Set of Ap-

plications; Local Dynamic Map (LDM) Rationale for and Guidance on Standardization. 
[5] SAFESPOT Integrated Project (2012) http://www.safespot-eu.org/ 
[6] Zott, C., Yuen, S.Y., Brown, C.L., Bartels, C., Papp, Z. and Netten, B.D. (2008) Safespot Local Dynamic Maps - Con-

text-Dependent View Generation of a Platform’s State & Environment. Proceedings of the 15th ITS World Congress. 
[7] Ibanez-Guzman, J., Lefevre, S., Mokkadem, A. and Rodhaim, S. (2010) Vehicle to Vehicle Communications Applied 

to Road Intersection Safety, Field Results. 2010 13th International IEEE Conference on Intelligent Transportation 
Systems (ITSC), Funchal, 19-22 September 2010, 192-197. http://dx.doi.org/10.1109/ITSC.2010.5625246 

[8] Schendzielorz, T., Vreeswijk, J. and Mathias, P. (2009) Intelligent Cooperative Intersection Safety Implementation, 
Test and Evaluation. Proceedings of the 16th ITS World Congress. 

[9] Netten, B. and Wedemeijer, H. (2010) Testing Cooperative Systems with the Mars Simulator. 2010 13th International 
IEEE Conference on Intelligent Transportation Systems (ITSC), Funchal, 19-22 Septembwe 2010, 186-191.  
http://dx.doi.org/10.1109/ITSC.2010.5624981 

[10] SAFESPOT SP 7 SCORE - SAFESPOT Core Architecture, D7.3.1 Annex2 - LDM API and Usage Reference (2010). 
http://www.safespot-eu.org/documents/SF_D7.3.1_Annex2_LDM_API_and_Usage_Reference_v0.7.pdf 

[11] OpenStreetMap (2012) http://www.openstreetmap.org/ 
[12] osm2pgsql (2012) http://wiki.openstreetmap.org/wiki/Osm2pgsql 
[13] Tass: PreScan (2012) http://www.tass-safe.jp/prescan/index.html 
[14] MathWorks: Simulink (2012) http://www.mathworks.co.jp/products/simulink/ 
[15] Burgett, A.L., Carter, A., Miller, R.J., Najm, W.G. and Smith, D.L. (1998) A Collision Warning Algorithm for 

Rear-End Collisions. National Highway Traffic Safety Administration.  

http://www.safespot-eu.org/
http://dx.doi.org/10.1109/ITSC.2010.5625246
http://dx.doi.org/10.1109/ITSC.2010.5624981
http://www.safespot-eu.org/documents/SF_D7.3.1_Annex2_LDM_API_and_Usage_Reference_v0.7.pdf
http://www.openstreetmap.org/
http://wiki.openstreetmap.org/wiki/Osm2pgsql
http://www.tass-safe.jp/prescan/index.html
http://www.mathworks.co.jp/products/simulink/

	Implementation and Evaluation of Local Dynamic Map in Safety Driving Systems
	Abstract
	Keywords
	1. Introduction
	2. LDM (Local Dynamic Map)
	3. LDM Implementation
	3.1. Overview
	3.2. Schema Definition
	3.3. API
	3.4. Data Used in Implementation
	3.4.1. Map Data
	3.4.2. Vehicle Data


	4. LDM Evaluation
	4.1. Overview
	4.2. Evaluation Environment
	4.3. Collision Detection Application
	4.4. Update Program
	4.5. Evaluation Experiment
	4.6. Summary of Evaluation Experiment

	5. Conclusions
	Acknowledgements
	References

