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ABSTRACT 

Using fine electromagnetic signals to measure observables of other fields like curvature and torsion of a space, and the 
corresponding value of their integrals of the action of perception of curvature through electronic signals that detect cur-
vature on a curved surface, it is designed and constructed a sensor of curvature of accelerometer type that detects and 
curvature measures in 2 and 3-dimensional spaces using the programming of shape operators on spheres and the value 
of their integrals along the curves and geodesics in their principal directions. 
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1. Introduction 

The construction of an electronic sensor with base in 
accelerometers as transducer is an instrument that makes 
possible to measure curvatures of solid bodies in the 
space [1,2]. This promotes the development of systems 
applied to provide automatons with intelligence to exe-
cute accurate movements, between other technological 
and scientific applications that will be mentioned soon 
after. The design and construction of this sensor needs 
the recognition on the part of the accelerometer of the 
property of roundness of a surface or body, their percep-
tion of this roundness from the point of view of the sig-
nals of the sensor that the accelerometer will involve in 
their advance, and their aptitude to cause information in 
real-time, according to this perception as curvature of the 
surface or body (reading of the sensor). In our design 
analysis, we will consider like model of curvature, the 
obtained one by the Gaussian curvature, which involves 
from the mathematical point of view curvatures along 
geodesic, curves on surfaces and space, sections of cur- 
ved surfaces and bodies in the space, considering the 
design of an operator of shape based at the beginning in 
the geometry of the sphere S2. 

Due to this there are no electronic instruments for de-
tection and direct measurement of curvature, we can 
suggest the design of an indirect detector based on the 
concept of roundness sensor to detect curvature in re- 

gions near a curved surface or curved body. As the mo-
bile moves on the solid surface, the device sensor of the 
accelerometer will perceive an angle between nearby 
points (with a step qn (= mm)), doing that, the curvature 
could be measured in angles. This establishes certain 
advantages as for the handling of the interface of pro-
gramming of the information that throws the sensor and 
the demodulation of the proper electronic signals of the 
sensor to recognise angles according to frequencies cor-
responding to micro-voltages given in Mv [3-5]. 

In fact the frequencies range is designed to record in 
information electronically codified the range of curvature 
established by the principal curvatures on a surface. In 
case of 2-surfaces, there are two principal directions on 
which there measures itself the maximum and minimal 
value of curvature of the surface determining their shape 
[6]. These maximum and minimal values for the curva-
ture k, determine the interval k1  k  k2 [6], on which we 
design the programming of our sensor. 

The previous interval re-interpreted from the point of 
view of the energy of the sensor to detect these values 
considers the domineering energy condition (using the 
eigen-values k1, and k2, of the corresponding shape op-
erator [6-8]): 

     
222 2 21

V d d AV
2C

hk s h k s k d      ,  (1) 

where V, is the applied voltage in the sensor to detect 
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curvature, A, is the area of the plate inside the acceler-
ometer that detect curvature through their deviation, h, 
their mean curvature and the last integral correspond to 
the curvature energy employed by the accelerometer in 
their detection of curvature along the principal direction. 

Also we can use certain studies of the models of Gaus-
sian and normal curvatures to determine through Hilbert 
inequality and based on certain bound of roundness ob-
tained through the implementation of the spherical op-
erator [9], and using one particular case given by meas-
urement for light waves contemplate in the Bulnes theo-
rem published in ASME 2009 [10,11], the possible inte-
gral expression of the total Hamiltonian of electromag-
netic energy, establishing a condition of domineering 
energy [11], when there is curvature in the 3-dimensional 
space (that means, if the energy is given by this round-
ness censor, there is curvature measured like energy that 
makes the censoring appear and measured directly using 
positioned of the sensor device). This makes possible to 
us to obtain a curve of perception of curvature that mea- 
sures the condition of domineering energy in the sensor 
to establish its position in the surface [12], and this way 
to measure in every point of the surface their curvature. 

The latter condition is somehow in a certain sense, in 
the mathematical context to the property of obstruction to 
the integrability of the field equations studied in theo-
retical physics but in a practical form (similar of engi-
neering) who can serve to us to design a detector and 
curvature meter in the space, using theoretical hypothe-
ses [9,11]. 

To realise curvature detection it is necessary to be sure, 
that the above mentioned property or observable comes 
from an intrinsic property of the shape of body in ge-
ometry, as a matter of fact, this is more important geo-
metrical invariant and let us know all of a space or body. 

2. Experimental Section 

The experimental problem will consist in designing and 
developing a sensitive device to recognise curvature in 
round surfaces measuring the magnitude of roundness of 
these and their data encoding from voltage to curvature. 
Thus our device must be of type of accelerometer to re-
cover in deviation information, the dynamic movements 
that cause the variations of round surfaces. We also wish 
that the signal of voltage keeps in the signaling process, 
doing that our system is of type LTI (Linear Time In-
variant). In Figure 1, we establish the corresponding cir- 
cuit of our accelerometer. 

The electrical resistance is considered to be a constant, 
without nevertheless the capacitance is variable and it is 
according to the angular position β, (inside the device) 
and of the time t. With base in the Kirchoff law for volt-
age , the integral equation is [13]:  V , V Vin R Ct  

 

 

Figure 1. In general, the accelerometers contain an onboard 
2-pole switched capacitor filter [5]. A Bessel implementa-
tion is used because it provides a maximally flat delay re-
sponse (linear phase) thus preserving pulse shape integrity 
[5,8]. Because the filter is realised using switched capacitor 
techniques, there is no requirement for external passive 
components (resistors and capacitors) to set the cut-off fre-
quency [5]. The surface z(x, y) = 1 + exp(–2y2)(2J1- r, p(x, y)) + 
Y1 – r, 1 – r(x, 2x), shows a 2-dimensional model of the filter 
that we use. This surface represents the domineering energy. 
 

     1
V , , , din t Ri t i t

C

     ,t  

One considers β, constantly in a time t0. For effect of 
obtaining an output and an input variable, the transfer-
ence function is obtained [13]. Thus applying the Laplace 
transform we have 

 
 

1V ,

V , 1
out

in

RCs

s s RC










, 

In the domain of the time through the inverse Laplace 
transform it is had that: 

     
V ,

V ,
RC tin t

t e Volts
RC






  . 

In Figure 2(e), it shows the time of sudden discharge 
of a capacitor, this must be like that since the variations 
must be instantaneous to be able to have electrical  
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(a) 

 
(b) 

     
          (c)                         (d) 

 
(e) 

Figure 2. (a) Impress circuit to accelerometer; (b) SOIC 
accelerometer with recommended connection diagram; (c) 
Template designed to put the different components of the 
transduction [1,13]; (d) Our analog system is a RC-circuit 
and their transference function; (e) In the mathematical 
modeling of the analog system it is despised R, for effect of 
bringing the real accelerometer behavior near. This meas-
urement was realised to little counts of micro-volts [1,5]. 
 
signals that are processed to an analog or digital elec-
tronic system. 

Since we want to measure curvature through the en-

er

s 
si

f treat-
in

gy transduction in mV, using the condition of domi-
neering energy that exists in curvature given by Equation 
(1), we can consider the following equivalence table be-
tween the deviation measured on the curved surface and 
the output of domineering energy in mV (see Table 1). 

Considering experiments in laboratory a continuou
gn of voltage is had according to the time. This varia-

tion of continuous voltage allows to relate in real-time 
the position of the mobile system (see Figure 3). 

This analogical signal is digitalised for effect o
g by means of digital system position information in 

any application. Considering the sectional curvature on 
one geodesic of the curved surface, we have than in a 
point P, this is defined as: 

   
1

K p
r p

 ,               (4) 

where K, is the curvature and r, the radius of the osculat-

 
ing circumference in the point p. Let’s consider an arbi-
trary direction where we realize a curvature measurement.
The sensor advances on the geodesic correspondent in 
this direction. The circular section or corresponding os-
culating circumference is a section of the sphere S2, that 
we will program for the securing of other curvatures 
when it changes r. But thinking that the Gaussian curva-
ture is the product of its principal curvatures we have 
that: 

 
1 2

1 1
r p

k k
  .               (5) 

Considering the output voltage with pulse 

      2 2, 4exp 0.2 0.2x y x y      , 

we observe, that there is an osculatriz circular section in 

able 1. Standard table of measurements of the acceler-

the point p, such that the product of principal curvatures 
k1k2, corresponds within a radius of the sphere that is 
detected, depending on the roundness perceived by the 
sensor, which we confirm in the graph for a point p, with 
 
T
ometer for different inclination angles. The perception in 
our accelerometer is designed in base to the formula of sen-
sibility s = g*V, where g, is the factor of gravity and V, is 

the voltage measured in mV. Likewise 
 


11610 mV 1

s  

and the sensibility s = 129 mV/g [8]. 
90

#Measurement Degrees Output in mV  

1 0 0 V Flat surface 

2 45 58 V 
Region of variation of curva-

Constant curvature perception

05 m

3 90 11610 mV 

4 135 17415 mV 

ture perception (there is con-
vexity) 

5 180 23220 mV 
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Figure 3. Graph of degrees vs output voltage. Sensor-perception curve. The curvature is detected throu h the deviations in 

 case, in the field of the fre-

g
angles perceived. The second column measures the electronic perception of this curvature through exits of the accelerometer 
given in mV. 
 

 = 50 cycles/second. In thisω

 

quencies, said radius of sectional curvature is recognized 
by two directions of the principal curvatures through 
their Fourier transform 

       2i Sng1F r F      

[5] (see Figure 4). 
oves on the solid surface, so that 



As the mobile m
watching it in a transverse way that is a semi-circumference, 
the radius at the point p, and to any other pn, the measure 
is 10 centimeters, according to the designed pulse and 
given in the Equation (4), it is had that k(pn) = 0.1. 

With base in the Figure 5, if the radius is a constant 
then it is possible to calculate total curvature in function 
of energy [12]. For this case is established degree angular 
displacements in degree, where the curvature length be-
tween the points q and p is given for (Figures 5 and 6): 

 
90

senK long k r

(a) 

 

0

             (6) 

Considering that for every value of θ, a sign of voltage 
is

of curvature using the 

dy  

 proposed the block diagram of an electronic circuit that 
realises the sum to obtain the total curvature indicated in 
the Equation (6). 

3. Results and Discussion 

The detection and measurement 
value of the integrals of a field interacting on the geo-
metric pattern along their geodesic ones will be made on 
the signals of finite energy defined in [11], and that they 
will code the information of curvature in a spectral space 

   2L H M  (spectral range of frequencies) though 
t n in the frequency ω, that detects and 
measures curvature. 

The corresponding design to our sensor obeys the 
st

he signals give

andards of design of accelerometers with capacity of 
namic perception given by the electrostatic force (b) 
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e1 

e2 

 
(c) 

Figure 4. (a) The Fourier transform of k1k2, shows through 
the function Sng(w), the directions of the principal curva-
tures on the sphere S2. Sensor-perception curve [8]; (b) The 
curvature is detected through the deviations in angles per-
ceived; (c) The showed surface establishes the detectable 
curvature range in two directions (e1, and e2) on 2-dimen- 
sional surfaces. 
 

2 21 2 AV deF 
component. This f

, that the deflection causes in g-cell 
orce is designed in our sensor by the 

basic isotopic component of Gaussian factor to lectures 
of curvature defined as α(–1)2 × 1 × (4π2), where 1)2, is 
the basic charge given in tion of the milimetric po-
tential V, the factor A = 42, that there is the surface of 
the sphere of radius the unit S2(1), α, is the degree of the 
spherical map used in the transduction of the physical 
model to measure, which comes like a factor of electro-
magnetic adjustment of the sensor on the curved surface 
and the factor 1, is the positive charge generated inside 
the sensor (see Figure 7(a)). This is equivalent to the 
product of the force for the square of the distance of 
separation between the plates sensors of the nucleus of 
the sensor, where one gathers the change of the load ac-

ctioning. 
The EDMC-sen

(–
func

cording to the surface (negative load), and other gathers 
the charge invested in the process of detection (positive 
charge). The resultant deflection is measured by the ac-
celerometer’s control ASIC and a proportional output 
voltage results [1]. This procedure assures that both the 
mechanical (g-cell) and electronic sections of the accel-
erometer are fun

sor is based on the emission of signals 
in two directions for the register of their g-cell curvatures 
of 2-dimensional surfaces. This way, the total curvature 
will come given by the information of the areas of shades 
and the geodesic information that sends the accelerome-
ter (integral of line) to the computer (see Figure 7(b)). 

Theorem (F. Bulnes). Let an accelerometer given by 
the device D, defined for their g-cell whose curvature 
energy to the case 2-dimensional is the bounded by the 
integral 

2d
C

k s   

[12,14], where Λ, is an output electromagnetic factor 
from D, (to obtain curvature). Let S, the corresponding 
shape operator on S2 (and their contours), that is to say, is 
that whose normal curvature is given for  
     = 1 1pk u uS u u r u r    . Then our curvature is 

defined for the inequality of voltage-curvature energy 
given by (1) whose energy is Ek = (1/2)V2Asen2θ. 

Proof. Considering the condition of minimization of a 
geodesic segment on the length of a position p, up to a 
position arch q, of our sensor D, we have that of the os-
culating sphere (Figure 4(b)) exists a polar circumfer-
ence Cε, sufficiently near the geodesic γ, where the cur- 
vature measurement is realised in a principal direction 
[9]. 
 
r

V(θ1)

ADC 
& 

interface
V(θ2)

V(θn)

 

 
11.6

0

V

V

rV 

 
(a) 

 
(b) 

Figure 6. (a) Block diagram to our circuit of interface; (b) 
Checking interface on curved surface. 

 

x

f(x)

Mobile device. The 
accelerometer inferior part 
doing contace with curved 
surface

θ

Figure 5. Schematic that de

 

scribes the experimentation. 
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Acceleration 

A). Transducer 
Physical Model 

B). Equivalent 
Circuit Mo  

(a) 

del 

accelerometer 
Curved Surface

Geodesic 
X 

Y 

Z 

 
(b) 

 
(c) 

Figure 7. (a) Diagram of transduction to the g-cell compo- 
nent; (b) Schematic in the 2-dimensional surface of the ac- 
celerometer action; (c) Equipment to prove the accelerome- 
ter: test surface, multi-meter. 
 

Then it is necessary to satisfy that L(Cε)  L(γ), where 
the Equation (6) is their particular case to the design of 
our sensor. 

But whose polar circumference Cε, with center in the 
point p, it is in fact an ordinary circumference of Euclid- 
ean radio r senθ, where the angle θ, it is the negligible 
arch length between the radio of the osculating sphere. 
We consider the bound given by the integral 

where Λ, to our sensor accelerometer type according to 
our experiments is a voltage factor [2,14]. Then one in-

tegral that establishes our maximum of energy used in 
the detection and curvature measurement [2] (using the 
fact of that Work = Energy = Fe  L) is: 

2d
C

k s  , 

2 2
2 2 2 2

2 2

V V 1
V d d

sen senp
C C

hk s hk s k s
r 

  d
C

   ,    (7) 

where Vp, is their peak-voltage or output maximum 
voltage. On the other side, applying the inequality L(Cε

 L(γ), we can establish th or extreme given
in the Equation (7) is a cond ion of curvature energy of 
majoring curvature given on a geodesic γ, if their longi- 
tude of curvature is the given by the Equation (6), to 
know: 

) 
 at the superi

it

 
22

2 2
2

0

V 1 1
d V A

2sen k
C

k s E k
r



d 


        (8) 

where Ek, is the curvature energy that is bounded for the 
energies originated from its geodesic and normal curva- 
tures. In effect, considering that k(θ), is their normal 
curvature (this one is given for the polar circumference 
Cε, as the function   2 2

1 2cos senk u kk    and calcu- 
lating says k(u), on the sphere S2, given in the Figure 4(b) 
(that is to say, k1 = k2 = k, and 1k  r ) we have that the 
Inequation (8) takes the form: 

2 2 2 21
V d V Asen

2k
C

k s E    .      (9) 

On the other side, if we consider the intermediate en- 
ergy E, like the originated in voltage V2, then we obtain 

2 2

2 2 2
4

2 1 2
V d

C C

hk s h 


  d
r r

k s
r

   



.  (10) 

We have to Little contours resulting of the variations 
of position inside from Daccelerometer, (and in fidelity to 
their programming in S2) that 

  2

2
d 2

C

h s h
r


   . 

Then the inferior extreme of E, is entirely subordinated 
to this studied level since 

 2 2π
2 2

2
0

2 1 2 1
d V

2C

r r
h k s k

r
A d

   
   

 
  , 

which gives us the integral  

 
2

2

0

1
V A d

2
k  



 . 

Observe that the intermediate term in last inequality is a 
function f(r), that can be deduced by the bound designed 
for Bessel functions in the energy of the g-cell device. 
Finally Ek  E. This complete our demonstration. 

In the case n = 3 (curvature to objects in the space or 
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solid objects) the shades projected by the object are 
2-dimensional, useful to calculated curvature for 3-di- 
mensional objects through plane images in the two main 
directions as the one shown (two accelerometers). You 
can use a rotating system for obtaining of 3-dimensional 
image through a type accelerometer that sends the data 
directly to the microprocessor computational of the sur-
face of the body or object like spectral signals 

   0
1

e d ( , ,
2

i kv t )f t S 
   u L v       (11) 

The Equation (11) encoded in curvature data (see 
Figure 8). The accelerome ve a curvature sen-ter will ha
sor given for 

   2d ,E KHom M S O       (12) 

 

 

rotary head 

Shadow shapes 
and light 
projections 

50 cm 

support 

girll 

(a) 

(b) 

(c) 

50 cm 

30 cm 

 

 

air acclelrometer 

rotating device 
programming 
curvature data 

curved object 

K 

 n

0r
sen

 
(d) 

Figure 8. Device of measurement of curvature that uses 
light waves to measure curvature of 2-dimensional and 
3-dimensional objects (presented in ASME, 2009 [11]): (a) 
Photosensitive grill with complexes phases. The grills are 
two, which receive the reflexes of the incidental waves of 
light in the object or body to measure their curv
Device of rotation and control of wave emission

g the flight automaton e

 Gaussian factor  

ature; (b) 
 under a 

constant electromagnetic field; (c) Shades of main direc-
tions of emission only for control of position of the body. 
These get connected to a computer with a program that it 
transforms the sheen intensities in angles though the phases 
of the photosensitive grills [4,11]; (d) The same principle 
that before device usin quipped with 
rotating device to send light waves and angular lectures to 
computer monitor. The theoretical support was given in 
[11]. 

Then sensor have the constant
2 2 2 2 1 1 (4 ) 8EO       

very nearly to the factor of 
. The measure obtaining is 

gravity considere
sign of the g-cell system in our sensor through S3. Also 
ob

 
study related with optimization proves that the optimal 
surface in the development of an informatics dete
this case informatics curvature detector) is an ellipsoid 
tending t

e of light [9,11] 

(13) 

 and the information of devia-
tions that detects the accelerometer can be obtained of 
equal forms for the installation of a rotating base th a 
device that reads the incidences of the rays reflected in 

igures 8(a)-(d)). 
The recovering of all data given by the Equation (11) 

and re-interpreted by the Equation ( ) in the space (for 
example a 3-dimensional space) realizes through the in-

d in the de-

serve that the Equation (12), is the minimum part of 
energy in the inequality given by the Inequation (1). A

ctor (in 

o sphere, this last as exceptional case. 
The such according to our curvature studies comes 

from a theoretical sensor of curvature in presence of the 
incurve and detected by a wav

       222 2log log 1 logs s            
4  

The adjournment effect



wi

the surface of the body (see F

12

tegral transform [14] (which reconstruct all space through 
of values of light geodesics (cycles)): 

 dT fK c p p  


 

 
  

 

All the processed data will be gathered by a computer 
to process them, giving 2-dimensional planes as a result. 
Using the integrals given by the Equation (14), we re-
cover the total curvature of the object through all those 
data gathered in those planes and lines (see Figure 9(c)). 

A second idea that can substitute the accelerometer 
system in the device, is the evaluation of derivation suf-
fered by these rays when impacting in the curv

          (14) 

ed surface 
and code these data like spectral signals given for the 
Equation (11) for those different deviations.

The deviations can be coded by the Doppler effects of 
th

 
e following result [1], applying the Gaus-

sian curvature sensor given in spherical ope
Equation (12) and the property given by voltages and 

ght signals used for its measurement. 

4. Other Developments in the Study of  
Curvature from Gravity: One Proposal of 
Ultra-Sensitive Interstellar Accelerometer 

The curvature perception in the space is associated in- 
creasingly with their interpretation as a distortion of the 

 

e reflected signals [15] (Figure 8(b)). The consistency 
of the summary of data and their code in curvature values,
is given by th

rator in the 

li
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surface 
u 

θ 

 

θ 

u

Accelerometer

   
         (a)                          (b) 

 

surface 

γ 

u 

 
(c) 

Figure 9. (a) Normal curvature concept; (b) Accelerometer 
measuring curvature using normal curvature on geodesic in 
the curved surface; (c) Geodesic used to measure curvature 
on surface. 
 
micro-local structure of the space-time due to the interac-
tion of particles of the matter and energy with diverse 
field manifestations. The matter is shaped by hypotheti-
cal particles that take as basic the background radiation 
of the space, which in the last studies due to QFT, SUSY- 
theory [16] and brane theory [16], the strings are organ-
ised and tacked to form spaces of major dimensions rep-
resented by diverse particles of the matter as they are 
gravitons, barions, fermions of three generations, etc., 
shaping the gravity at quantum level, obtaining represen-
ta  of the 
QFT, like for example the FR

tions of the same one for classes of cohomology
W-cohomology, which con- 

siders diverse symmetries of cylindrical and spherical 
type for the gravity modeling like a wave of gravitational 
energy “quasi-locally”. Their integrals of action define a 
energy density (Hamiltonian) given for the gravitational 
case like [17]: 

1 1

8 2TOTAL
M

H L T X
G

 
  

         (11) 

w

ent of the 
particles in the space moving for action of Lα, influenced 
by the tensor one of matter and energy Tαβ. It is nece
to indicate that Lα has component that is invariant y
under movements influenced by the tensor Tαβ, which is 

th

he super- 
sy

here Lα is the Lagrangian, Tαβ, is the corresponding 
tensor of matter and energy, Γ, is a Hamiltonian density 
and Xβ, is the corresponding field of displacem

ssary 
et 

eir electromagnetic component LMAX, (Maxwell La-
grangian). 

One of the important ideas inside the study of the mi-
croscopic space-time there are the group representations 
of SU(2), where one of which considering t

mmetry is S3 (sphere of dimension 3) [14]. In r the 
topological invariant of their 2-form ω3, given in 

  3 2 , 0H SU R  , and whose cohomology in not null 
[14], shows clearly that the gravity presence can be 
warned at least on the surface of this sphere, which can 
be considered to be a mini-twistor in the presence of 
gravity considering a ambitwistor space o
Wα), to the microscopic space-time, where Z , are the 
fie

actor G. 
rome-

so
so

detour to the ball inside the device provokes stretch 
marks and waves on the surface of the ball, having the 
twistor model S3. The above mentioned undulations can 
be codified like curvatures of quantum level, since our 
ultra-sensitive sensor will be designed to detect quantum 
gravity (Figures 11(a) and (b)). 

Curvature Applica ion like Light Natural

A simple application (of ordinary type) on the curvature 
measurement through electromagnetic fields can happen 
in the design and construction of sensors of natural 
lighting to distribute the lamps light in ideal form ar-
ranged inside a building or house room. Likewise the 
curvature concept in this case appears like the obstacle of 
darkness that it wants to eliminate in an area of the 
building under a sensor of perception of lighting, which 

f couples (Zα, 
α

lds of gauge nature (in this case electromagnetic fields) 
and the fields of particles of the gravity (gravitons), (that 
in this case is the background). 

Based on it, and considering the value of curvature to 
be the contour deformation on a surface (initial idea cre-
ated by relativity to understand curvature in a space-time 
surface [10,14]), at the same time that a field distortion 
created like an undulation in the space time for back- 
reaction for photon propagation in the presence of grav-
ity (see Figures 10(a) and (b) (using string theory)), we 
can extrapolate this idea to the design of a type of accel-
erometer that can be connected to the devices of naviga-
tion of a traveling satellite by the space, where said ac-
celerometer involves in their interior a sensor of ultra- 
sensitive gravity based on a solid sphere S3, of material 
similar to a colloid, captured the changes of the weight of 
a liquid also of colloid type (perhaps of major density 
that of the ball S3) due to the universal f

We are basing in the design of a classical accele
ter, respect to their g-cell component, to establish a sen-

r of dynamical movements designed and proposed on a 
lid ball of colloid material inside other colloid media in 

the box of device (with more density than ball) such due 
to little variations of movements the colloid that make a 

5. t  
Obstacle 
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normal wave       distorted wave 

distortions 
2e + 12 

flat spaceflat space 

–6   –4   –2    0    2     4    6 

2e + 6 

 
(a) 

Backgroud 

Dilaton 

Backreaction

Φ 

 

Φ 

 
(b) 

Figure 10. (a) We have the wave propagation of the back-
ground radiation (green), propagation of quantum electro-
magnetic waves, without background radiation (black) and 
propagation of quantum electromagnetic waves distorted 
with background radiation (blue). The stripe in brown re- 
presents the flat space with the corresponding distortions 
that create the angle θ, in the Figure (a). The difference be- 
tween the two waves come reflected in the corresponding 
hollows of the (a). Also this Figure (a) gives us the micro- 
local aspect of the space-time in Max Planck dimension; (b) 
Dilaton measuring distortion due to quantum gravity, ac-
cording to the model computational magnetic 

       1 1 2 log 1 1 cosy sqrt y x x x x         . 

In the case when θ = 0, (there is not photon ba
 

 by v

ckreaction). 

discards the grade of high lighting (areas where it will 
not be necessary to illuminate for the existence of light of 
the exterior to the building) and that applies the lighting 
in the obscure areas (places where there are shades pro-
jected by obstacles that generate darkness). 

6. Conclusions 

The curvature is a geometrical and of field observable 
very difficult to define and therefore measuring in direct 
form. Nevertheless, it is the most important invariant of 
the form of a geometric body. The methods that we pro-
pose are based on the idea of measuring this one observ-
able of field and geometric form through energy that can 
be defined oltages of output calibrated in micro- 
volts and generated from an interface that relates grades 
of angular deviation to output voltages of a sensor with a 

DYNAMIC ACCELERATION 

+g 

–g 

0 g
Vout = 2.50 V

0 g
Vout = 2.50 V

– 1 g 
Vout = 1.3 V 

+ 1 g 
Vout = 3.7 V 

Direction of Earth’s
gravitity field 

 
(a) 

Distortions
captured by 
hyper-sensitive 

3surface of the ball S

Non-distorted
Ball 

Distortions 
Ball 
by Gravity

with gravity acting without gravity acting

SENSOR ON S3:

Statellite endowed
with device to  
measure curvature:

 
(b) 

Nevertheless we coincide that the development of this 
type of sensors must be improved as for its sensibility of 
curvature perception which will have to be obtained 
through thinner and better signals calibrated in order to 
diminish problems of dispersion, directional adjustment 
of the accelerometer, process of transference of informa-
tion of voltage recorded in curvature and the manipula-
tion of the sensor to measure and to detect curvature. 
Also their application way: along this work we have 

Figure 11. (a) Classical accelerometer in the earth’s gravity; 
(b) The curvature will be able to express itself like a Gaus-
sian curvature according to spherical harmonics given by 
Legendre polynomials. The sensor is a sensor of free fall 
that can register different force factors G. The actions of 
change can be reprogrammed by the proper device consid-
ering these to be a Lagrangian action given for [10,14]. 
 
type transducer accelerometer (see Figure 12). 
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Curvature Energy/cm2 = 

20480 

10240 

–2.5 2.5 

–1 g +1 g 

Voutput

     22 1 2 1nS r r r    
 

 
(a) 

accelerometer 1 

accelerometer 2 

3-Dimensional 
Body 

 
(b) 

Figure 12. (a) Curve of curvature energy estimated and 
used in the theorem (F. Bulnes) to design our accelerometer 
device with relation voltage-curvature energy (Curvature 

Energy/cm = k(r) =     22 1 2 1r r    ). Its similar one 

observes with the form of pulse for a sphere (Figure 4(a)). 
In this case and using developments of cylindrical functions 
(Bessel functions) the pulse is thinner. A small calculation 
on the output voltages in the g-cell: 3.7V – 2.5V

g 
the earth gravity (Figure 10(a)); (b) To calculate curvatures 
on 3-dimensional objects only there are considered to b

 = 1.2V, they 
verify the standard design for accelerometers considerin

e 
o principal directions on the surface that bound it, in the 

s of the way of application of sensors 
 of accelerometers (at least in idea, 

their torsion will be their geometric image of the proper 
field as well as the effects that this one produces in the 
matter. 
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Notation and Abbreviators 

K—Curvature as general concept of roundness prop-
erty. Also used in the paper as Gaussian curvature in a
point p;  

k—Gaussian curvature along of the geodesic or sur-
face; 

OE—Spherical operator which related;  
ki—Principal curvature in the principal ith-direction. In 

our research i = 1, 2, only; 
V—Voltage; 
A—Area; 

ensional surfaces o

dimensional spaces; 
 first specie; 

The 

 
Y1 –

L(H(Ω2(M))—Space of spectral transformations on 
curvature 2-forms given in space Ω2(M); 

M—Space whose curvature is measured. In our study 
M, represent 2-dim r 3-dimensional 
bodies; 

S2—2-dimensinal sphere. Also is the 2-dimensional 
sphere used in the spherical map to design our curvature 
sensor; 

r(P)—Evaluation of curvature radius from the product 
 

from their inverse principal curvatures; 
Ω—Curvature form in the 4 and 4-
J1 – r, p —Bessel function of

 r, 1 – r—Bessel function of second specie; 
(Zα, Wα)—Ambitwistor element whose elements are 

invariant-covariant fields; 
R—Set of real numbers; 
SU(2)—group that defines the finite actions through 

unitary anti-Hermitians matrix of range 2. 
Abbreviations 
SOIC—Small-outline integrated circuit; 
mV—Micro-volts; 
EDMC—Electromagnetic device to measure curvature; 
ASIC—Application-specific integrated circuit; 
QFT—Quantum field theory;  
SUSY—Super-symmetry theory; 
FRW—cohomology-Friedman-Robertson-Walker 

metrics. The cosmological principle (principle of homo-
geneity and isotropy of the universe to great scale). 
cohomology are the relations of similarity in dual spaces. 


