
Journal of Signal and Information Processing, 2017, 8, 113-131 
http://www.scirp.org/journal/jsip 

ISSN Online: 2159-4481 
ISSN Print: 2159-4465 

DOI: 10.4236/jsip.2017.83008  July 19, 2017 

 
 
 

Fading Channels Parametric Data Simulation 
Supported by Real Data from Outdoor 
Experiments 

Azra Kapetanovic, Mohamed A. Zohdy, Redhwan Mawari  

Department of Electrical and Computer Engineering, Oakland University, Rochester, MI, USA  

 
 
 

Abstract 
Optimizing the estimates of received power signals is important as it can im-
prove the process of transferring an active call from one base station in a cel-
lular network to another base station without any interruptions to the call. 
The lack of effective techniques for estimation of shadow power in fading 
mobile wireless communication channels motivated the use of Kalman Filter-
ing (KF) as an effective alternative. In our research, linear second-order state 
space Kalman Filtering was further investigated and tested for applicability. 
We first created simulation models for two KF-based estimators designed to 
estimate local mean (shadow) power in mobile communications corrupted by 
multipath noise. Simulations were used extensively in the initial stage of this 
research to validate the proposed method. The next challenge was to deter-
mine if the models would work with real data. Therefore, in [1] we presented 
a new technique to experimentally characterize the wireless small-scale fading 
channel taking into consideration real environmental conditions. The two- 
dimensional measurement technique enabled us to perform indoor experi- 
ments and collect real data. Measurements from these experiments were then 
used to validate simulation models for both estimators. Based on the indoor 
experiments, we presented new results in [2], where we concluded that the 
second-order KF-based estimator is more accurate in predicting local shadow 
power profiles than the first-order KF-based estimator, even in channels with 
imposed non-Gaussian measurement noise. In the present paper, we extend 
experiments to the outdoor environment to include higher speeds, larger dis-
tances, and distant large objects, such as tall buildings. Comparison was per-
formed to see if the system is able to operate without a failure under a variety of 
conditions, which demonstrates model robustness and further investigates the 
effectiveness of this method in optimization of the received signals. Outdoor 
experimental results are provided. Findings demonstrate that the second-order 
Kalman filter outperforms the first-order Kalman filter. 
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1. Introduction 

Because wireless technology and smart cell phones are experiencing dramatic 
growth, the accurate estimation of local mean (shadow) power in a cell phone is 
becoming a popular area of challenge for engineers in both industry and acade-
mia. Researchers are encouraged to find ways to enhance device performance in 
power control and handoff, particularly to address mobility-induced fading in 
metropolitan areas.  

Wireless cell phones operate by transferring information over a distance be-
tween two or more stations that are not connected by cables. Instead, cell phones 
use radio waves to carry information, such as sound, by systematically modulat-
ing some property of electromagnetic energy waves transmitted through space, 
such as their amplitude, frequency, phase, or pulse width [3]. A transmitted sig-
nal from a cell tower will undergo changes while traveling through the propaga-
tion path to the cell phone. These changes may fluctuate with time, geographical 
position, and radio frequency. The term fading is used to describe the effect of 
these changes. As a result, the quality of communications decreases. 

Two significant forms of fading in cellular communications are multipath and 
shadow fading. Since cell phone users tend to move a lot, received signal 
strength fluctuates with these two multiplicative forms of fading [4]. In the out-
door environment, shadow fading in cell phones causes long-term variation 
primarily caused by nearby mountains or tall buildings. Tall building structures 
shadow the radio signal, which results in a power drop at a receiver input. Mul-
tipath, as illustrated in Figure 1, results in fluctuations of the signal amplitude 
because of the addition of signals that arrive with different phases [2]. 
 

 
Figure 1. Versions of the same signal can take many different paths between cell tower 
and cell phone which causes fading effect in the resultant received signal. 
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Having an accurate estimate of the shadowing component of a received power 
signal will allow the mobile communication system to efficiently compensate for 
the signal degradation that will occur. As a result, it can help the system perform 
handoff at the most effective times (predict when and where to handoff user). In 
[5], the authors have presented and discussed the limitation of different types of 
windows-based estimators that are utilized to filter multipath noise from the in-
stantaneous received power signal to estimate the local mean shadow power. 
Unfortunately, window-based estimators work well only under the assumption 
that the shadowing component is relatively constant during the window period. 
However, shadowing components are not constant; the fluctuations can vary and 
at times can significantly decrease the performance of the windows-based esti-
mate. In [2], we proposed a second-order KF-based estimator as an alternative 
method to windows-based estimation for estimating local mean (shadow) pow-
er.  

Kalman filtering is a very effective algorithm that uses a series of measured 
observations and produces optimal estimates of states as explained in [6] [7] [8]. 
We applied this method to derive equations for an estimator that can estimate 
local mean (shadow) power profiles. In the initial stage of research, we used si-
mulation models to validate the proposed method. The next challenge was to see 
if the model would work with real data. Therefore, in [1] we presented a new 
technique to experimentally characterize the wireless small-scale fading channel, 
taking into consideration real environmental conditions. This new two dimen-
sional measurement technique provided essential information regarding the 
constructive and destructive interference patterns caused by the interaction be-
tween the mobile station (while in motion) and surrounding obstacles. The two 
dimensional measurement technique enabled us to perform indoor experi- 
ments and collect real data, which we then used to confirm validation of the 
simulation model for the second-order KF-based estimator.Based on results 
from the indoor experiments, we concluded that the second-order KF-based es-
timator is more accurate in predicting local mean (shadow) power profiles than 
the first-order KF-based estimator, even in channels with imposed non-Gaussian 
measurement noise. 

The next challenge was to find a way to measure cell phone signal strength 
outside of the lab environment and to test our second-order KF-based estimator. 
In this paper, we looked at mobility-induced fading and present experimental 
results from the outdoor environment that further confirmed validation of the 
proposed method. We will explain how Kalman filter method can be applied in 
optimization of received signals in mobile communications. The system was able 
to operate without a failure under a variety of conditions, which demonstrates 
model robustness. In subsequent sections, it will be demonstrated that the 
second-order KF based estimator we designed exceeds the performance of the 
first-order KF-based estimator, even in the outdoor environment where para-
meters for mobile velocity varied.  
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Figure 2. Model for the received power at cell phone. 

2. Model for Multipath Signal 

The description of Shadow Power Signal and its models as they pertain to our 
problem are presented in this section. In a wireless cellular radio environment, a 
model for an instantaneous received power signal l(t) at a cell phone is given in 
Figure 2, where ( ) 2

w t  represents fast power fluctuation due to multipath and 
x(t) represents slow power fluctuation due to shadowing. Many common sha-
dow power estimation methods in industry rely on an accurate model for multi-
path. Multipath is often modeled as Rayleigh noise for modeling purposes. It is 
customary to express power measurements in decibels. Handoff algorithms rely 
on estimates of shadow power in decibels [9]. 

To solve the problem, we start with the multipath model shown in Equation (2). 

( ) ( )( ) ( )( ) ( )( )1 2 21cos cos cos
1 2

1 e e eD D D R Rj t j t j t
Rw R a a a

R
ω θ φ ω θ φ ω θ φ+ + + = + +        (1) 

( ) ( ) ( )( )1 1cos
1

11 e
1

D R Rj t
Rw R w R R a

R
ω θ φ+ ++

+
 + = ∗ + +           (2) 

where: 
• v  is the magnitude of the mobile velocity [10 m/s - 30 m/s],  
• λ  is the wavelength corresponding to the carrier frequency, which is typically

83 10 0.42 Hz
700 MHz

×
= , 

• Dω  is the Doppler spread equal to 2πv
λ

. Range used here is [ 2 π 10m s
3 Hz
7

∗ ∗  - 

2 π 30m s
3 Hz
7

∗ ∗ ], 

• R  is the number of paths in the multipath power [20 - 30],  
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• ra  is gain [0 - 20],  
• rθ  represents angles between incoming waves and mobile antenna. The value 

range is uniformly distributed [ ]π,π− . Other distributions like Normal can 
be used,  

• { } 1
R

r rφ
=

 represents phase random variables whose values are also uniformly 
distributed [ ]π,π− . 

3. Model for Shadow Power Signal 

Equation (3) shows a widely accepted first-order state space model for the sha-
dow process given by [10]. We derived a second-order state space model for the 
shadow process as shown in Equation (4).  

1 1k k kx a x φ−= +                          (3) 

2 2 1 1k k k kx a x a x φ− −= + +                       (4) 

First shadow power coefficient 1a  is given by Equation (5) and second sha-
dow power coefficient 2a  is given by Equation (6): 

1
1 e

s

c

vT
Xa
−

=                            (5) 

2
2 e

s

c

vT
Xa
−

=                            (6) 

where, v  is the magnitude of the mobile velocity, sT  is time sample, and cX  
is effective correlation distance. The effective correlation distance is key attribute 
of the wireless environment. In urban area it can be as low as 10 m while in sub-
urban areas it can be as high as 500 m. The effective correlation distance is given 
in Equation (7), where variable D  is the distance between cell tower and cell 
phone measured in meters. Term Dε  is the correlation coefficient of shadow 
process between two points separated by distance D.  

( )lnc
D

DX
ε

−
=

                          (7) 

Finally, system noise covariance is given in Equation (8), where term 2
sσ  de-

notes the shadow variance which depends on environment. In urban areas, typi-
cal value for shadow variance is 4 dB while in suburban areas typical value is 8 
dB. Term kφ  in Equations (3) and (4) denotes zero mean white Gaussian noise 
with variance 2

φσ . 

( )2 2 21 saφσ σ= − ∗
                       (8) 

4. Kalman Filter Algorithm 

Kalman Filter theory was developed and introduced in 1960 by Dr. Rudolf Kal-
man. This led to the use of the Kalman filter during the Apollo program, carried 
out by NASA, which accomplished landing the first humans on the Moon. Since 
then, his contributions and thoughts educated and inspired inventors across 
many disciplines. As a result, the Kalman filter has been the subject of extensive 
research and application, especially in digital computing. 
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In this research, we applied the Kalman filter algorithm to estimate power 
signal in a mobile communication corrupted by multipath noise. The Kalman 
filter is a form of a linear algorithm for optimal recursive estimation of a system 
state with a specific set of output equations. The estimates are calculated every 
time a new measurement is received. Data received is processed sequentially, so 
it is not necessary to store the complete data set or to reprocess existing data 
when new measurement data is received.  

4.1. Derivation of the Discrete-Time Linear Kalman Filter 

This section derives the equations of the discrete-time Kalman filter. This filter is 
applied as a recursive solution to the estimation problem studied in this research. 
To use the Kalman filter to estimate signal of interest, one must first create ma-
trices to fix the system model into a Kalman filter format. The following sets of 
equations describe the format of the linear discrete-time system: 

1 1 1 1 1k k k k k kx A x B u w− − − − −+ +=                    (9) 

k k k ky H x v+=                         (10) 

The Kalman filter is a great tool, but its computation is complex and requires 
some explanation. An optimal value for kx  in Equation (9) is calculated based 
on the available knowledge of the system dynamics and the noise measurement

ky . In Equation (10), ky  represents the measured output of the system (mea-
surement of system state) with measurement noise.  

The k’s on the subscripts are states and can be treated as discrete time inter-
vals. In general, when applying the Kalman Filter, the goal is to estimate state 

kx . For example, in signal processing, it is basically the estimate of some signal x 
that we want to find for each subsequent k. During this process, the Kalman fil-
ter forms ana priori estimate and an a posterior estimate denoted as ˆkx−  and 
ˆkx+ . Equation (11) computes the expected value of kx  conditioned on all of the 

measurement up to time k. Similarly, Equation (12) computes the expected value 
of kx  conditioned on all of the measurements after time k. 

[ ]1 2 3 1| , ,
estimate of before the measurement at time  is procces

ˆ

e
,

d
,

s
k k k

k

E x y y yx y
x k

−
−=

=



   (11) 

[ ]1 2 3| , ,
estimate of after the measurement at time is proccessed

ˆk k k

k

E x yx y y y
x k

+ = …

=     (12) 

Each system has to have initial values. Notation 0x̂+  denotes an initial esti-
mate of 0x  before any measurements are taken. The first measurement in this 
algorithm is taken at time k = 1. During this time period, the system does not 
have any measurements available to estimate 0x , and therefore 0x̂+  is formed 
as the best expected value of the initial state 0x   

( )0 0x̂ E x+ =                       (13) 

This algorithm takes into account the measurement noise, process noise, and 
the previous estimated output values so that it can minimize the prediction error 
upon a continuous cycle of prediction and filtering. It looks at the error between 
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the true state and the estimated state. Therefore, the next step is to derive an er-
ror equation. Equations (14) and (15) define an priori estimate error and an 
posteriori estimate error, respectively. 

ˆk k ke x x− −= −                         (14) 

ˆk k ke x x+ += −                         (15) 

Then, Equations (14) and (15) are used to compute covariance of the estima-
tion error, which is denoted as kP . The term –

kP  denotes the covariance of the 
estimation error of ˆkx− , and kP+  denotes the covariance of the estimation error 
of ˆkx+ :  

( )( )T
ˆ ˆk k k k kx xP E x x− − − 

 
− −


=                 (16) 

( )( ) T
ˆ ˆk k k k kP E x xx x+ + += − 

 −                 (17) 

After the measurement at time k − 1 is processed, the estimate of the 1kx −  is 
computed, which is denoted as 1ˆkx+

− . Also, the covariance of that estimate is 
computed at the same time, and it is denoted as 1kP+

− . Then, at time k, before the 
measurement is processed, estimate of kx  is computed and denoted as ˆkx−  
Then, the covariance of these estimates are computed and denoted as kP−  Then, 
at time k = 1, the measurement is processed to refine the estimate of kx . The 
resulting improved estimates of kx  and its covariance are denoted as ˆkx+  and 

kP+ . 
To begin the estimation process, initial values of the system determined in 

Equation (13) must be initialized. Then, with 0x̂+ , variable 1̂x−  is computed 
using Equation (18). Based on this equation, the time update equation for x̂  is 
computed as indicated in Equation (19).  

1 0 0 0 0ˆ ˆx xA B u− += +                         (18) 

1 1 1 1ˆ ˆk k k k kx xA B u− +
− − − −= +                       (19) 

From time ( )1k +−  to time ( )k − , the state estimate and its mean propagates 
the same way. As there are no additional measurements available between these 
two time-steps, the state estimate has to be updated based on a knowledge of 
system dynamics.  

Next step is to derive time-update equation for the covariance of the state es-
timation error. The term 0P+  represents the covariance of the initial estimate of 

0x  (the uncertainty in initial estimates of 0x ). If the exact value of the initial 
state is known, then 0P+  can be set to zero. However, if the initial value is not 
known, then then 0  P I+ = ∞ . The mathematical from for 0P+  is shown in Equa-
tion (20). The general description of how the covariance of the state of a linear 
discrete-time system propagates with time is given by Equation (21). The term 

–
1P  can be computed by substituting 0P+  value from Equation (20). The time 

equation for term P in general form is given by Equation (23).  

( )( ) T

0 0 0 0 0ˆ ˆP E x xx x+ + += − 
 −                   (20) 
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T
1 1 1 1k k k k kP A P A Q− − − −= +                     (21) 

T
1 0 0 0 0P A P F Q− += +                      (22) 

T
1 1 1 1k k k k kP A P A Q− +
− − − −= +                    (23) 

Final step requires derivation of measurement-update equations for x̂  and P. 
Given ˆkx−  from Equation (19), we need to find a method to compute ˆkx+ , the 
estimate of kx , which takes the measurement ky  into account. Recall ky  in 
Equation (10) represents the measurement of the system state with measurement 
noise kv . Measurement noise is usually caused by the measurement instrument. 
Based on the recursive least square estimation theory, we know that the availa-
bility of ky  changes the estimate of a constants x  as follows: 

( ) 1T T
1 1k k k k k k kK P H H P H R

−

− −= +                       (24) 

( )1 1ˆ ˆ ˆk k k k k kK y Hx x x− −= + −                          (25) 

( ) ( )

( )
( )

T T
1

11 T 1
1

1

k k k k k k k k k

k k k k

k k k

P I K H P I K H K R K

P H R H

I K H P

−

−− −
−

−

= − − +

= +

= −

            (26) 

where 1ˆkx −  and 1kP −  are estimates before the measurement is processed, while 
ˆkx  and kP  take the measurements ky  into account. The next step is to re-

write Equations (24) through (26) in a format that Kalman used when he derived 
his estimation theory. To formulate the measurement-update equations for ˆkx  
and kP , simply perform the following substitutions: substitute 1ˆkx −  with ˆkx− , 

1kP −  with kP− , ˆkx  with ˆkx+ , and kP  with kP+ . These substitutions lead to the 
following equations:   

( ) 1T T
k k k k k k kK P H H P H R

−− −= +                        (27) 

( )ˆ ˆ ˆk k k k k kK y Hx x x+ − −= + −                            (28) 

( ) ( )

( )
( )

T T

11 1

k k k k k k k k k

T
k k k k

k k k

P I K H P I K H K R K

P H R H

I K H P

+ −

−−− −

−

= − − +

= +

= −

 
  

             (29) 

The matrix kK  given in Equation (27) is called the Kalman filter gain. This 
gain is a blending factor that minimizes the a posteriori error covariance. If the 

kx  is a constant, then kA I= , 0kQ = , and 0ku = .  
The random variable kw  represents process noise and kv  represents mea-

surement noise. Terms kv  and kw  are independent of each other. They are 
assumed to be white and with normal probability distributions 

( ) ( )0, kp w N Q∼                       (30) 

( ) ( )0, kp v N R∼                       (31) 

In outdoor experiments, the process noise covariance matrix kQ  and mea-
surement noise covariance matrix kR  can change for every measurement.  



A. Kapetanovic et al. 
 

121 

4.2. First-Order Kalman Filter Application to Fading Channels 

The Kalman Filter is a form of a linear algorithm for optimal recursive estima-
tion of a system state with a specific set of output equations. To build a simulator, 
understanding of system model and its dynamic behaviors is necessary. Then, 
the system must be represented in the state space format to be able to apply 
Kalman filtering. In other words, we need to mathematically model its states and 
parameters. This section presents set of equations used to create first-order 
KF-based estimator. References [10] and [11] were useful for programming in 
MATLAB during the initial stages of research.  

To build an estimation model in MATLAB, we started with equations intro-
duced in Section 4.1 and substituted suitable entries from this problem to reflect 
the linear channel model [12]. Equations (9) and (10) can be rewritten as Equa-
tions (32) and (33). This assumes a linear time invariant system with a mean of 
zero and white noise on both the state and output.  

1 1 1k k k kx Ax Bu w− − −= + +                    (32) 

k k kl Hx v+=                         (33) 

where:  
• kx  is a symbol value of shadow signal state that needs to be estimated. 
• ku  is the control signal for handoff. 
• kw  is process white noise. 
• kv  is measurement noise.  
• kl  is the measurement value for both shadow and multipath. In this docu-

ment, kl  or L(k) is the measurement value used to update shadow power es-
timate. 
After initializing Kalman filter using initial values Ox  and OP  as explained 

in Section 4.1, time-update and measurement-update equations had to be identi-
fied. These equations are computed for each time step k = 1, 2, 3. Equations (34) 
and (35) represent the “Time Update” state of the Kalman Filter, also known as 
the “Prediction States.” Equations (34) and (35) are derived by substituting suit-
able entries from this problem into Equations (19) and (22). For first-order KF, 
matrix A was set to 1a , which represents the first shadow power coefficient 
given by Equation (5.5). Term for system noise covariance kQ  in Equation (22), 
was substituted with 2

φσ  in Equation (35) and it denotes variance defined in 
Equation (34). Here we project the current state estimate forward in time with 
Equation (34) projecting the state ahead and Equation (35) projecting the error 
covariance ahead as represented below: 

1 1ˆ ˆk kx xa− +
−=                         (34) 

2
1 1k kP a P φσ

− +
−= +                       (35) 

where ˆkx−  is the rough estimate before the measurement kl  is processed at 
time k.  

Similarly, Equations (37), (38) and (39) belong to the “Measurement Update” 
state of the linear Kalman Filter, also known as the “Correction State.” Equations 
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(37), (38) and (39) are derived by substituting suitable entries from this problem 
into Equations (27), (28) and (29). Here we adjust the projected estimate by an 
actual measurement at time k. Equation (37) was derived by substituting envi-
ronment noise covariance kR  with 2

Hσ  defined in Equation (36).  

[ ]
2

22 π 10 ln10
6Hσ =                        (36) 

Equation (37) computes the Kalman Gain, Equation (38) adjusts the projected 
estimate by an actual measurement kl , and Equation (39) updates the error co-
variance, as follows: 

( ) 12 .k k k HK P P σ
−− −= +                       (37) 

If R  is small and –
kP  is close to Identity, then ( ) 1T T

kK H HH
−

= , which is 
a well-known Pseudo inverse.  

ˆkx : Estimate of x after the actual measurement kl  at time k.  

( )ˆ ˆ ˆk k k k kKx xlx− −= + −                      (38)  

( )1k k kP K P+ −= −                         (39) 

The next step is to represent these estimates over a period of sufficient time. 
The output estimate in the previous step will be the input estimate in the next 
step. The main goal is to find an optimal value for ˆ .kx  

4.3. Second-Order Kalman Filter Application to Fading Channels 

In this research, we assumed that the first-order state space model can be used to 
model Shadow Power. To extend the first-order state space model equations [1] 
presented in Section 4.2, a second-order state space model for the linear Kalman 
Filter was formulated and applied as suggested in the equations below. With this 
notation, we can describe an algorithm for the second-order KF as follows: 
• 1a  is the first Shadow power coefficient as defined in Equation (5). 
• 2a  is the second Shadow power coefficient as defined in Equation (6). 
• cX  is the effective correlation distance as defined in Equation (7). 
• Dε  is the correlation coefficient of the shadow process between two points 

separated by a distance D as measured in meters,  

1

2

.k
k

k

x
x

x
 

=  
 

                          (40) 

Equation (40) shows kx  expressed in matrix format for second-order state 
space. 

Next set of equations present prediction states for second-order linear Kalman 
filter. Equation (34) can be rewritten as Equation (41). Therefore, Equation (41) 
in this section projects the state ahead, and Equation (43) projects the error co-
variance ahead. For the second-order KF, the matrices are defined as follows:  

1 2

1 0

k k

A
a a
 

=  
 

, 
0
0

B  
=  
 

, [ ]0 1H =  
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1 11

1 2 2 22

ˆ1 0 0ˆ
ˆ 0ˆ

.kk
k

k k kk

xx
u

a a xx

−
−

−
−

     
= +     



 

   
 


               (41) 

B is input matrix that relates the control input to the state .kx  Matrix H is 
output equation whose function is to relate state to the measured output .kl  

Parameter Q in Equation (42) represents the predicted process noise. Term 

sσ  denotes the shadow variance with range from 4 dB to 8 dB. The notation 

( )2 21 Sa σ− ∗  in Equation (42) denotes the variance of the zero mean white 
Gaussian noise. 

( ) ( )
( ) ( )

2 2
2 1

2 2
2

2
1

2
21

1 1

1 1

s s

s s

a a a
Q

a a a

σ σ

σ σ

 − −
 =
 − − 

              (42) 

Equation (43) can then be expressed in the following state space format: 

( ) ( )
( ) ( )

2 2
2 11

1 2 2
1 2 2

2
1

2
22 1

1 11 0 1
0 1 1

s sk
k k

k k k s s

a a aa
P P

a a a a a a

σ σ

σ σ
− +

−

 − −     = +     − −     
    (43) 

Next set of equations present correction states. Equation (44) was used to 
compute Kalman gain, which takes into consideration measurement noise due to 
multipath. 

[ ]0 1H =  
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Equation (45) updates the estimate via kl , a measured value, and Equation 
(46) updates the error covariance.  
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                (45) 

( )k k kP I K H P+ −= −                       (46) 
*X  in Equation (47) is the optimal estimate of the second order shadow 

process.  
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 

                        (47) 

It is assumed that channel variation is mainly due to the changing mobile ve-
locity and the correlation distance. Therefore, only the variation of the shadow 
process coefficient is considered. The smaller the sample period, the closer the 
shadow process coefficient is to one. 

When the channel is nonlinear, the Unscented Kalman Filter also can be ap-
plied to the state space model optimize the shadow power presented in this sec-
tion. In our problem, distribution of multipath is non-Gaussian. However, even 
when the white Gaussian noise assumption is not valid, the linear Kalman filter 
is still the optimal LMMSE estimator if the driving and measurement noises are 
white [5].  
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Figure 3. Block diagram of wireless communication system used in the outdoor experi- 
ment.  

5. Outdoor Experiments 

In [1], we presented a new technique to experimentally characterize the wireless 
small-scale fading channel, taking into consideration real environmental condi-
tions. Then, using the technique that we described in [1], laboratory experiments 
were performed to collect real data and to validate the simulation model for the 
second-order KF-based estimator (designed to estimate power signal in cell 
phones). In [2], we showed that our simulation results in the MATLAB envi-
ronment and laboratory experiment results validate the proposed algorithm and 
the theoretical analysis. We concluded that the second-order KF-based estimator 
is more accurate in predicting local shadow power profiles than the first-order 
KF-based estimator, even in channels with imposed non-Gaussian measurement 
noise. Next, we wanted to see how robust a second-order KF-based estimator is 
in the outdoor environment where we have different large-scale fading configu-
rations. Therefore, outdoor experiments were set up as shown in Figure 3 to test 
a second-order KF-based model designed to estimate shadow power where 
wireless communication takes place while the user is in motion. 

5.1. Measurements 

A cell phone or portable phone uses radio waves to establish connection with its 
base station. Radio waves can travel long distances, but they easily get inter-
rupted. As the transmitted signals travel from tower station to cell phone, they 
penetrate the atmosphere, and some signals are scattered, reflected, or observed. 
Objects obstructing the propagation path between the transmitter and receiver 
can cause variations in the received signal. All this can have a significant impact 
on signal strength in the cell phone device.  

In this experiment, a mobile phone signal refers to signal strength received by 
a mobile antenna from a cellular network. There are several ways to measure mo- 
bile signal strength. The two most common units of measurement used in radio 
signals are dBm (decibels) and RSSI (Received Signal Strength Indicator). RSSI is  
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Figure 4. Cell phone signal strength range.  
 
a measurement of the power present in a received radio signal. The higher the 
RSSI number, the stronger the signal. These values allow users to know when 
they are receiving a stronger signal or a weaker signal. Figure 4 shows that deci-
bel values are expressed as negative numbers, which implies that the closer the 
value is to zero, the stronger the received signal. In Michigan, the standard fre-
quency range for cellular phone operation is between −50 dB to −120 dB. User 
will get the best signal at −50 dB as it is considered full strength. On the other 
hand, −120 dB is considered a dead zone and the user will have no phone service. 
It also indicates that an ideal signal strength for optimum performance of a cell 
phone is about −65 dBm. 

5.2. Field Test Scenario 

Area or a region can impact signal strength or path loss. Therefore, as part of the 
experiment, we collected data in suburban and urban areas. Measurements have 
been conducted in two different environments while the user was driving a ve-
hicle at different speeds:  
1) Suburban environment, Oakland University campus in Auburn Hills, Michi-

gan. 
2) Urban environment, downtown Detroit, Michigan. 

5.3. Outdoor Experiment Prerequisites and Setup  

Valid research experiment must meet the certain criteria. To satisfy terrain re-
quirement, an experiment must be conducted in an area that has good wireless 
cell phone coverage. Presence of large obstructing objects such as tall building 
structures are essential for forming a fading channel. Finally, equipment re-
quired for power signal data acquisition and processing include: base station, 
mobile station, vehicle, telecom tool, and laptop with built-in Bluetooth model 
and MATLAB software. 
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Cell phones work by communicating via radio waves using a system of cell 
towers that send and receive calls. A base station, also known as a cell tower, is 
placed on a big metal pole about 300 ft. high. Cell towers have triangular plat-
forms on the top of the pole for cellular providers to keep their equipment. The 
process of a cell phone tower transmission requires the following equipment: ra-
dios, antennas for receiving and transmitting radio frequency signals, compute-
rized switching control equipment, GPS receivers, power sources, and some kind 
of protective cover. In this experiment, Verizon was the cellular provider and the 
location of the base station is shown in Figure 5. 

A mobile station consists of the physical equipment (radio transceiver, dis-
play and digital signal processors) and software package needed for communica-
tion with a mobile network. In this experiment, the Samsung Galaxy S5 smart-
phone was used as a mobile station. Any type of legal vehicle is acceptable to 
perform a driving test on public roads. As cell phone user moves around while 
using a cell phone, tall buildings will shadow the radio signal, which can result in 
a power drop at the receiver input. In this research, initial experiments were 
performed next to large buildings on the Oakland University campus to create a 
shadow fading phenomena in the outdoor environment. Supplementary experi-
ments were conducted in downtown Detroit. 

Telecom tool that was released to the market by Wylisis in March 2017 is 
recommended for recording captured data (Figure 6) and vehicle movement. 
Telecom software has the capability to save logging data, which can be imported 
into MATLAB. Measured data includes cell tower location markers, signal 
strength, position, velocity, and time. Alternatively, the Data Acquisition Tool-
box provides functions for connecting MATLAB to data acquisition hardware. 
Data can be analyzed as it is acquired or it can be saved for post-processing. 
Block diagram of wireless communication system used in the experiment setup 
outside of the lab environment is illustrated in Figure 3. The algorithm flow 
chart is presented in Figure 7. 
 

 
Figure 5. Showing distance between mobile station and base station during outdoor 
experiment at Oakland University. 
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Figure 6. Signal Strength measurement during outdoor experiment. 
 

 
Figure 7. The algorithm flow chart.  

5.4. Outdoor Experiment Results 

This section presents outdoor experiment results for shadow process estimation 
and pertinent performance analysis. The purpose of these experiments was to 
study and analyze output results of the first-order state space model and to 
compare them to the second-order state space model while applying a Kalman 
Filter technique to determine shadow power signal in mobile communications 
from measurements that have impinged Rayleigh fast fading noise. As stated 
before, we were able to validate this concept through laboratory experiments 
with data from real scenarios, but those experiments performed in the indoor 
environment were limited by lower speed and obstacle contribution. The out-
door experiment allowed us to conduct tests that include higher mobile velocity, 
exact shadow variance values, and large-scale fading configurations. 

Measurements have been conducted outside while the cell phone user was 
driving a vehicle at different speeds, which caused variation in default parame-
ters, such as mobile receiver velocity, shadow variance, and effective correlation 
distance. Multiple experiment trials were performed to collect sufficient amount 
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of data, but in this paper we include results from driving the vehicle at 36 mph in 
urban area as shown in Figure 7. The second-order KF-based estimator per-
formed equally well when we varied the parameters.  

The plots of outdoor experiment results supported by the field data are shown 
in Figures 8-10. These plots show results of the actual shadow power signal and 
estimations with Kalman Filtering. In Figure 8 and Figure 9, predicted power 
signal with the second-order KF-based estimator (marked in blue color) is very 
close to the measured signal (marked in black color). However, Figure 10 shows 
noticeable disparity between measured signal (marked in black color) and first- 
order KF estimate (marked in red color). These results clearly show that the 
second-order KF-based estimator tracks the actual shadow power more accu- 
rately than the first-order KF-based estimator. Average Error for the second- 
order KF-based estimator is lower than the first-order KF-based estimator. Also, 
 

 
Figure 8. Power estimation in amobile station with asecond-order KF-based estimator 
using real data from the outdoor experiment. 
 

 
Figure 9. Zoomed out version of Figure 8 for better visualization. 
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Figure 10. Comparison of system performance with the integrated second-order KF 
versus the same system with the first-order KF, which shows that the implementation of 
the second-order KF results in better estimation. 
 
the second-order Kalman filter output has less lag from the actual shadow pow-
er.  

Authors in [5] presented results demonstrating that the first-order Kalman 
Filter method is superior to conventional window-based estimators like the 
sample average estimator, the uniformly minimum variance unbiased estimator, 
and the maximum likelihood estimator. Our results show that the second-order 
KF-based estimator improves the signal estimate significantly over the first-or- 
der KF estimate. 

6. Conclusions 

In this work, a second-order KF-based estimator has been further investigated in 
the outdoor environment, which is able to estimate local mean shadow power in 
mobile communications corrupted by multipath noise. In our experiments, we 
mainly explored how the second-order KF-based estimator compares to the 
first-order KF-based estimator. Based on our results from the indoor experi-
ments of small-scale fading presented in [2], we concluded that the second-order 
KF-based estimator is more accurate in predicting local mean (shadow) power 
profiles than the first-order KF-based estimator, even in channels with imposed 
non-Gaussian measurement noise. To fully complete the proposed theory, we 
recently extended the research to the outdoor environment and compared how 
these two estimators handled variability due to higher vehicle speed, larger dis-
tances, and distant large objects in the outdoor environment, such as mountains 
or large buildings. A Telecom tool/software released to market in 2017 was used 
to measure cell phone signal strength and other key parameters outside of the 
lab environment. Signal measurements have been conducted in typical environ-
ments like urban and suburban areas.  

In this paper, we presented results from outdoor experiments which further 
confirmed validation of the proposed method and the theoretical analysis. The 
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results supported by field data are provided in Figures 8-10. These plots clearly 
show that the second-order Kalman filter tracks the actual shadow power more 
accurately than the first-order Kalman filter. The system was able to operate 
without a failure under variety of conditions, which demonstrates model ro-
bustness. With MATLAB software, we were able to efficiently explore, analyze, 
and visualize measured data from the outdoor experiment. Comparison analysis 
was performed as explained in [11] [12]. Simulations in the MATLAB environ-
ment, laboratory, and outdoor experiment results have been consistent in 
showing that our implementation of the second-order KF results in better 
estimation. 

7. Future Work 

Math Works currently offers some basic examples of Kalman Filter theory. 
Therefore, we will most likely share our code for a first-order KF-based estima-
tor and second-order KF-based estimator by deploying an Application with 
MATLAB, so others can use it too. According to MathWorks’ web site, there is a 
wide range of options for deploying and sharing an application that was devel-
oped in MATLAB. As future work, we will look into these options. 

When the channel is nonlinear, the Unscented Kalman filter also can be ap-
plied to the state space model to further improve and optimize the shadow pow-
er presented in this paper. The Unscented Kalman filter is popular due to its su-
periority in approximating and estimating nonlinear systems and its ability to 
handle non-Gaussian noise environments [13]. We may consider this optimiza-
tion in the future.  

As future work, we also are considering designing a third-order KF-based es-
timator. When the order of the filter is higher, we predict that there will be bet-
ter noise repair. However, there is a tradeoff between three things: order of filter, 
computational difficulty of filter, and accuracy. Therefore, we need to look at 
these to determine if higher order estimators are practical.  
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