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ABSTRACT 

Recurrent Neural Networks were invented a long time ago, and dozens of different architectures have been published. 
In this paper we generalize recurrent architectures to a state space model, and we also generalize the numbers the net- 
work can process to the complex domain. We show how to train the recurrent network in the complex valued case, and 
we present the theorems and procedures to make the training stable. We also show that the complex valued recurrent 
neural network is a generalization of the real valued counterpart and that it has specific advantages over the latter. We 
conclude the paper with a discussion of possible applications and scenarios for using these networks. 
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1. Introduction 

Current paper aims to give the complete guidance from 
the state space models with complex parameters to the 
complex valued recurrent neural network of a special 
type. This paper is unique in translating the models sug- 
gested by Zimmermann in [1] to the complex valued case. 
Moreover one can see unique approach for managing the 
problems with transition functions which arise in com- 
plex-valued case, new approach for treating the error 
function which gives the unique advantages for the com- 
plex-valued neural networks. A lot of research in the area 
of complex valued recurrent neural networks is currently 
ongoing. One can find the works of Mandic [2,3], Adali 
[4] and Dongpo [5]. Mandic and Adali pointed out the 
advantages of using the complex valued neural networks 
in many papers. This paper will supply the neural net- 
work community with new architecture which shows 
better results in its complex-valued case. 

We start the paper with the description on the state 
space models and then proceed with the very detailed 
explanations regarding the complex valued neural net- 
works. We discuss complex valued system identification, 
error function properties in its complex valued case, 
complex valued back-propagation and break points with 
transition functions. Paper ends up with the small discus- 
sion on applications and advantages which arise form the 
complex valued case of the considered architecture. 

State space techniques may be used to model recurrent 

dynamical systems. There are two principle ways of 
modeling dynamical systems: 1) use a feed-forward neu- 
ral network and use delayed inputs or 2) use a recurrent 
architecture and model the dynamics itself. The first ap- 
proach is based on Takens theorem [6] that a dynamical 
system or the attractor of the dynamical system can be 
reconstructed by a set of previous values of the realiza- 
tions of the dynamical system (expectations). This is true 
for chaotic systems, but in real world applications feed 
forward networks cannot be used for forecasting the 
states of dynamical systems. Therefore, recurrent archi- 
tectures are the only sensible way of forecasting dyna- 
mical systems, i.e. to represent the dynamics in the re-
current connection weights. This approach was first sug- 
gested by Elman [7] and later extended by Zimmer- 
mann [8]. As an example for this paper we will consider 
the so called open-system for which we will build a state 
space model based on the recurrent complex valued neu- 
ral network. Such an open-system (open means that the 
system is driven not only by its internal state changes but 
also by external stimuli) is given as follows: 
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Here, the states of the system ( 1t n  ) depend on the 
previous states as well as some system input t  through 
some non-linear function f. The output of the system de- 
pends on the current state of the system mapped through 

S
u

Copyright © 2012 SciRes.                                                                                 JSIP 



Complex Valued Recurrent Neural Network: From Architecture to Training 193

another non-linear function g. A graphical representation 
is in Figure 1.  

In the rest of this paper, we will use networks described 
by Equation (1) and Figure 1. In order to generalize the 
approach, we now assume that the dynamic system’s 
behavior is described by complex numbers, which means 
that 1  and functions , , ,t t t tS u S y C , :f g C C  are 
defined on the domain of complex numbers. 

2. Complex Valued Neural Network 

The Complex Valued Recurrent Neural Network (further 
CVRNN) is a straight forward generalization of the real- 
valued RNN. The algorithms which are used for CVR- 
NNs can be also used for RNNs without loss of general- 
ity. To describe the CVRNN we start with a feed-forward 
path, and then we will discuss the error back-propagation 
algorithm (further CVEBP) and the training of such ar- 
chitectures.  

2.1. Architecture Description and Feed Forward  
Path 

The system represented by Figure 1 and Equation (1) 
can be realized as follows (as suggested by Zimmermann 
[9]): consider a set of 3-layer-feed-forward networks 
(further FFNN), whose hidden layers are connected to 
each other. This connection represents the evolution of 
the corresponding dynamical system inside the RNN. 
The structure of this type of network is shown in Figure 
2. 

The dynamical system develops based on 1) internal 
evolution of the system state governed by the matrix A and 
the activation function. Matrices B, C convert the exter- 
nal stimulus to the state (in the sense of data compression) 
and produce the output from the state (state decompres- 
sion). Therefore, one can write the following system of 
equations, which describe the system in Figure 2. 
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Figure 1. Dynamical system representation. 
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Figure 2. Recurrent neural network. 
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where we have selected  as an activation func- 
tion 

 tanh ·
 ·f , which performs the non-linear transformation 

of the state. Thus, all temporal relations of the dynamical 
system are represented in the matrix A  (to be learned 
during training), the compression, and the decompression 
ability represented by the matrixes B, C respectively 
(note that all elements of matrixes , ,ij ijij A B C C  are 
complex numbers).  

One word about the weights matrices: the matrices 
between the layers are always the same (suggested as the 
“shared weights concept” in [8]). It is exactly this prop- 
erty that makes this network recurrent. Next, we will 
discuss the back propagation for the shared weights con- 
cept.  

Summarizing, the RNN has actuation inputs tu C
s

; 
it has observable outputs t , it has states ty C C , 
which evolve under the regime of the matrix A , and it 
has a non-linear activation function  ·f .  

2.2. Error Back Propagation for the CVRNN 

The first variant of Complex Valued Error Back Propa- 
gation was described by Haykin in [7]. First, we have to 
define the error function. Since, in the complex valued 
case there are no “greater/less than” relations, the output 
of the error function must be a real number in order to 
make it possible to evaluate the training result and to 
guide it into the direction of an error reduction. The pro- 
cedure of the whole network training is as follows: find 
the network parameters, which are those weights that 
produce the minimum of the error function: 

    ˆ,t
w

tt
E w f u w y   min         (3) 

where w are weights, f is the activation function, u are the 
complex valued inputs of the system, and  are ob- 
servables.  

ˆty

One class of functions, which produces real-valued 
output from complex arguments, is the following: 

       ˆ ˆ, ,t t t tE w y w u y y w u y R       (4) 

where the over bar denotes complex value conjugate 
 a ib a ib   .  

This current error function is not analytic, i.e., the de- 
rivative d dE w  is not defined over the entire range of 
input values. Therefore, back propagation cannot be ap- 
plied. 

The requirement for the analyticity of any function E 
is given by the Cauchy-Riemann conditions: 

       , , ,
 and  

u a b v a b u a b v a b

a b b a

   
 

   
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where the function E is described with the following 
equation: 

    ,E z u a b iv a b  ,

,

        (6) 

where  are some real differentiable functions 
of two real variables.  

   · ·,u v

The requirement for the error function to produce real 
output means that .    0·v 

    
0

,E z u a b i v a b



             (7) 

If we want , we have to take an error function 
similar to (4) since our error function 

  0·v 
   ,E z u a b , 

the optimality conditions are given by: 
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                (8) 

The function  ·u  makes a mapping of the following 
type:  instead of C . In order to calculate 
the derivative of the function  one should use the 
so called Wirtinger derivative (discussed, e.g., in Brand- 
wood [10]): the Wirtinger derivative with respect to z and 

2R R R
 ·u

z  can be calculated in the following way: 
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For the real functions of complex variables 0E z    
therefore the minimization of the error function can be 
done in both directions  or z z . 

Now we have the derivatives of the error function de- 
fined in the Wirtinger sense. 

Note that this error function “minimizes” the complex 
number, which in the Euler notation (see Equation (10)) 
would mean, that it minimizes both amplitude and phase 
of the com ich is in our case  

: 
plex number, wh
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This error function has very unique and desirable 
properties. Let us describe these properties more in detail. 
We rewrite (4) into Euler notation: 

   
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ˆ ˆ
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          (11) 

The discriminant of (11) is negative and only can be 
equal to zero that the equation has 1 root: 
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We can also rewrite (4) in the following way: 
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One can see that error function (4) minimizes both real 
and imaginary parts of the complex number. 

After defining a suitable error-function, we can now 
start with the CVEBP description. The procedure for 
CVEBP is shown in Figure 3. It follows the description 
in [9] or the RNN. The “ladder” algorithm allows a local 
and efficient computation of the recurrent network partial 
derivatives of the error with respect to the weights. The 
advantage of the algorithm shown in Figure 3 is that it 
intelligently unites the equations, the architecture and the 
locality of the CVEBP. 

In Figure 3, one can see the CVEBP which is done for 
the shared matrix A  and for the case when all NN pa- 
rameters are complex numbers. 

2.3. Weights Update Rule for the CVRNN 

In order to find the training rule for the weights update, 
we introduce the Taylor expansion of the error function: 

    1

2
T TE w w E w g w w G w             (13) 

where (one can note that w  has to be equal to the g  
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Figure 3. Complex valued error back propagation for the 
derivatives with respect to z . 
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that Taylor expansion exist): 

 
1

1
:

T
d

t t
t

E y
y y

w T w


 

  g


          (14) 

Following Johnson in his paper [11], two useful theo- 
rems to calculate the derivatives can be applied. 

Theorem 1. If the function ( , )f z z  is real-valued 
and analytic with respect to  or z z , all stationary 
points can be found by setting the derivatives in Equation 
(9) with respect to either  or z z  to zero.  

Theorem 2. By treating  and z z  as independent 
variables, the quantity pointing in the direction of the 
maximum rate of change of  ,f z z  is  .z f z  

The proof of the theorems was demonstrated by John- 
son in [11]. 

Following Karla in [12] and Adali in [13], if minimi- 
zation goes in the direction of z , then  

2
2 zg g    . Otherwise, if we minimize in the di- 

rection of , it results in z Re2 ,z z g g g     
which need not necessarily be negative. This will lead us 
in the direction of a different minimization.  

Following Theorem 2 and Equation (7), we consider  

0
E

w





. The Taylor expansion exists, since the deriva- 

tives are defined and we can obtain a training rule for the 
optimization of weights in the direction of z : 

w g                         (15) 

Notice that Figure 3 is very similar to the real valued 
RNN, despite the conjugations instead of the transposes. 

One should also note that this error function is univer- 
sal because it optimizes both the real and the imaginary 
part of the complex number. It has a simple derivative, 
and it is a parabola, which means it has only one mini- 
mum and smooth bounds. A typical convergence of the 
error during the training is presented in Figure 4. 

Note that this error function is a real value. Figure 4 
shows the modulus, i.e., exactly the error function, the 
angle error is: 

 
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Im Im
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y y   
     

   
      (16) 

After presenting the CVEBP and discussing the con- 
vergence of the error, we now discuss the final aspect of 
the CVRNN, which is the activation (or transition) func- 
tion. 

2.4. Activation Function in the Complex Valued  
Domain 

It is well known that for real valued networks, one of the 
requirements for the activation function is to be continu- 
ous (ideally: bounded), and it should have at least one  
derivative defined for the whole search space.  

Unfortunately, this is not the case for the complex 
valued functions due to the Liouville theorem [10]. More- 
over, all transition functions which are not linear have an 
unlimited growth at their bounds (example: sine-function) 
or have singularity points an (example is the tanh-func- 
tion, see Figure 5 below). 

Based on the following Theorem 3, we can make sev- 
eral remedies: 

Liouville Theorem 3. If a complex analytic function 
is bounded and complex differentiable on the whole 
complex plain, it is constant.  

This theorem has been proven in Remmert [14].  
Remedy 1. Choose bounded functions which are only 

real valued but not complex differentiable: 

    
   

tanh tanh

or tanhi i

f a ib a i b

f r e r e
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         (17) 

Remedy 2. Constrain the optimization procedure in 
order to stay in the area, where there are no singularities: 
 

 

Figure 4. Error convergence for the absolute part of the 
error (dashed line) and for the phase of the error (solid 
line). 
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Figure 5. Absolute part behavior of the tanh function: it 
shows two singularities, which are periodic at π/2. 
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   
      
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Remedy 3. All real analytic functions are differenti- 
able in complex domain using the Wirtinger Calculus. 

One can also try to substitute the problematic regions 
of the functions with different functions which do not 
have the problem in the following region (the problem is 
the presence of singularity point) following the (19) be- 
low: 
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        (19) 

The result of such experiment is shown in Figure 6 
below. 

Typical use of the CVRNN with the activation func- 
tion  tanh ·  will be possible with the non-linear func- 
tion, as long as the weights are initialized with small 
numbers and the error minimization goes in the correct 
direction (i.e., the error decreases and steps of the weight 
update becomes smaller as training time increases). Also, 
the weights do not go above 1, which means they do not 
approach the singularities of the function. 

3. Summary and Outlook 

In this paper we discussed several aspects of CVRNN. 
 

 

Figure 6. The transition function for the substitute functions. 

We showed the architecture of the CVRNN, discussed 
the feed forward operation as well as the back-propag- 
ation CVEBP and the weights update rules. We discussed 
problems with the activation and error functions and 
showed how to overcome these problems.  

There are many advantages of using CVRNN: continu- 
ous time modeling, modeling of electrical devices and 
energy grids, robust time series prediction, physical 
models of the brain, etc. Future work will focus on ap- 
plications and evaluation of CVRNNs. 
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