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ABSTRACT 

Hilbert transform is a basic tool in constructing analytical signals for a various applications such as amplitude modu-
lation, envelope and instantaneous frequency analysis, quadrature decoding, shift-invariant multi-rate signal process-
ing and Hilbert-Huang decomposition. This work introduces a complex Hilbert transform (CHT) filter, where the real 
and imaginary parts are a Hilbert transform pair. The CHT filtered signal is analytic, i.e. its Fourier transform is zero 
in negative frequency range. The CHT filter is constructed by half-sample delay operators based on the B-spline trans-
form interpolation and decimation procedure. The CHT filter has an ideal phase response and the magnitude response 
is maximally flat in the frequency range 0 ≤ ω ≤ π. The CHT filter has integer coefficients and the implementation in 
VLSI requires only summations and register shifts. We demonstrate the feasibility of the CHT filter in reconstruction of 
the sign modulated CMOS logic pulses in a fibre optic link. 
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1. Introduction 

Hilbert transform has an essential role in constructing 
analytical signals for a variety of signal processing ap-
plications, for example in envelope and instantaneous 
frequency analysis and in design of amplitude modula-
tors and digital quadrature encoders. The recent applica-
tions include Hilbert-Huang decomposition [1], the 
shift-invariant wavelet transform algorithms [2-5], geo-
physical [6], seismic, ultrasonic radar and biomedical 
signal analyses [7-11]. The Hilbert transform theory is 
well established, but the computational methods are still 
under development. The frequently used methods are 
based on the fast Fourier transform (FFT) [7,12]. Also 
other methods have been proposed, such as the paramet-
ric modelling approach [13,14] and digital filtering 
[12,15]. 

In this work we describe a complex Hilbert transform 
(CHT) filter, where the real and imaginary parts are a 
Hilbert transform pair. The CHT yields analytic signals, 
whose Fourier transform is zero in negative frequency 
range. We construct the CHT filter by half-sample delay 
operators based on the B-spline transform. The phase re-
sponse of the CHT filter is ideal and the magnitude re-

sponse is maximally flat in the frequency range 0 ≤ ω ≤ π. 

2. Theoretical Considerations 

2.1. Hilbert Transformer 

Let us denote the frequency response of the z-transform 
filter  H z  as 

    en j n
n n

n n

H z h z H h           (1) 

where ,nh n N  is the impulse response of the filter. 
Correspondingly, we have the relation 

   πH z H                 (2) 

Our purpose is to design a Hilbert transform operator 
  for the discrete-time signal nx , 0,1,2,n    as 

      X z z X z             (3) 

where  z  denotes the Hilbert transform filter.  
The frequency response of the Hilbert transform op-

erator is defined as  

   sgnj                (4) 

where the sign function is 

 
1, for 0

sgn
1, for 0







  
          (5) *This work was supported by the National Technology Agency of Fin-

land (TEKES). 
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In this work we apply the Hilbert transform operator in 
the form  

   π 2e sgnj              (6) 

2.2. Hilbert Transform Filter 

We define the half-sample delay filter  D z  by the 
infinite impulse response (IIR) structure 

   
 

1/2 A z
D z z

B z
               (7) 

where  A z  and  B z are polynomials in 1z . In fre-
quency domain we have 

   /2e jB A                (8) 

The corresponding quadrature mirror filters are  
 A z  and  B z . Due to (2) we have in frequency 

domain relation between them 

     2π e πjB A              (9) 

Now we may construct the Hilbert transform operator 
as 

        21 2 π 2π e e ejjD D            (10) 

In z transform domain we have the Hilbert transform 
filter 

         
   

1 A z B z
z D z D z

B z A z
 

  


      (11) 

2.3. Design of the Half-Sample Delay Filter 

Our approach is to construct a half-delay filter  
  1/2

pD z z , which has an exactly linear phase. We 
apply the fractional delay (FD) filter design method 
based on the B-spline transform interpolation and deci-
mation procedure for implementation of the fractional 
delays N M   ( ,N M  ) [16]. The FD filter has 
the following representation 

       1
, , N

p p M
p

D N M z z z F z
z







      (12) 

where  p z  is the p’th order discrete B-spline  and 
 F z  the polynomial 

 
1

1 1 1

1 1 1

1

p pM M
k

p p
k o

z
F z z

M z M

 


  


          
   (13) 

The half-sample delay operator   1/2
pD z z  is 

yielded by inserting 1N   and 2M   in (12) 

     
 

1, 2, p
p

p

Q z
D z D z

z
          (14) 

where  Q z is a polynomial in 1z . The phase of the 

half-delay operator is exactly linear in the frequency 
range π π    independently of the B-spline order 
p.  

Example. For the discrete B-spline order p = 4  

 
1 2

4

1 4

6

z z
z

  
           (15) 

we have 

 
1 2 3

4

1 23 23

48

z z z
Q z

    
        (16) 

The phase spectrum of the Hilbert transform filter 
         4 4 4 4z Q z z z Q z     follows exactly 

the definition (4) in the frequency range π π   . 
The IIR type Hilbert transform filter can be implemented 
by the inverse filtering procedure [16]. 

2.4. Adjustment of the Magnitude Response 

The Hilbert transform filter (11) designed by the B-spline 
transform has an ideal phase response. However, for 
even p the half-sample delay operator  pD z  has zero 
magnitude response at π   due to the zero at 1z   . 
Therefore the magnitude response Hilbert transform filter 
intensifies at 0   and π. Usually the main demand for 
the Hilbert transformer is a maximally flat magnitude 
response centered at π 2  . However, we may revisit 
the design by defining the Hilbert transform filter as 

     1
1p pz D z D z
            (17) 

For even p the half delay operator  1pD z  has a 
pole at 1z    ( π  ). Hence, the  1

1pD z
   opera-

tor has a zero at 1z   ( 0  ). 
Example. For the B-spline of the order p = 5  

 
1 2 3

5

1 11 11

24

z z z
z

    
         (18) 

we obtain 

 
1 2 3 4

5

1 76 230 76

384

z z z z
Q z

      
     (19) 

The magnitude response of the Hilbert transform filter 
     4 5z D z D z   has a flat maximum at π 2   

(Figure 1). The flatness of the magnitude response in-
creases by using the B-spine of the higher order p, e.g. 

     6 5z D z D z  .  

2.5. Complex Hilbert Transform Filter 

In order to avoid the IIR type implementation of the Hil-
bert transform filter the key idea in this work is to write 
(11) as 

   
 

 
 

1p p

p p

D z R z
z

D z S z
 

           (20) 
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Figure 1. Magnitude and phase spectra of the Hilbert 
transform filter using the B-spline order p = 4. 
 
where the polynomials 

     
     

1

1

p p p

p p p

R z z Q z

S z z Q z








 

 
         (21) 

work as a Hilbert transform pair and we may construct 
the complex Hilbert transform (CHT) filter as 

     p pz S z jR z            (22) 

The real and imaginary parts of the FIR type CHT fil-
ter form a Hilbert pair. 

3. Experiments 

The versatility of CHT filter was tested experimentally 
by transmitting the modulated logic pulses using the fibre 
optic link. The logic pulses (Figure 2(a)) were obtained 
from the CMOS gate and modulated by the waveform 

   sin π 2M n n , 0,1,2, ,n    which yields the sign 
modulation sequence [+1 0 –1 0 +1 0 –1  ]. A diode 
laser was used to generate the modulated light pulses 
(Figure 2(b)), which were fed through a 10 m long opti-
cal fibre and measured with a PIN photo diode. The out-
put signal was measured using a 16 bit analog-to-digital 
converter (ADC) and 100 kHz sampling rate (Figure 
2(b)). The measured zero mean signal was fed to the 
CHT filter (22), which was constructed using the poly-
nomials (21) with the B-spline order 4p  . Figure 2(c) 
shows the reconstructed logic signal, which equals the 
envelope (absolute value) of the output of the CHT filter. 
The correspondence with the original logic signal is ex-
cellent and only limitation is the time delay generated by 

the CHT filter. The Fourier magnitude spectrum of the 
CHT filter output lacks almost totally the negative fre-
quency components (Figure 3). It should be pointed out 
that the dc level of the modulated signal is removed be-
fore the CHT filtering. This can be done by inserting a 
small capacitor in front of the ADC or subtracting the 
mean value from the measured signal. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Figure 2. Reconstruction of the logic pulse sequence via the 
envelope of the CHT filtered signal. X-axis denotes the 
sampling number and Y-axis is in volts. 
 

 

Figure 3. Fourier magnitude spectrum of the CHT filtered 
sign modulated logic pulse sequence. 
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4. Discussion 

In this work a novel method for designing the Hilbert 
transform operator is introduced. The idea is based on the 
half-sample delay operator  pD z , which is constructed 
by the B-spline transform interpolation and decimation 
procedure [16]. The method yields a half-sample delay 
filter, which has a precisely linear phase. Some compet-
ing fractional delay design methods, such as Taylor se-
ries expansions of    , expD j     and Thiran 
filters produce phase distortion [17-21]. However, the 
magnitude response of the Hilbert transform operator (11) 
is intensified at DC and at Nyquist frequency, which is 
not satisfying for many purposes. We solved the problem 
using even and odd order half-delay operators in cascade 
(17). The resulting Hilbert transform operator has a 
maximally flat frequency response in the range 
0 π   (Figure 1). The flatness of the magnitude 
response can be increased by using the higher B-spline 
order p. It has been shown that the B-spline interpolation 
approaches asymptotically the sinc-interpolation with 
increasing p [22]. However, in practice a compromise 
has to be made between the length of the filter and the 
flatness requirements.  

One of the advantages of the B-spline transform based 
operators is the integer valued filter coefficients. The 
CHT filter is feasible to implement in VLSI environment 
requiring only register shifts and summations. To avoid 
the implementation of the IIR-type filter, we divided the 
Hilbert transform filter into a complex FIR-type filter (21, 
22). The real and imaginary parts of the resulting com-
plex signal are a Hilbert pair. However, it should be 
pointed out that as in classical Hilbert transformers the 
real part of the Hilbert transformed signal equals the 
original signal, the CHT filter (22) results in a half-sample 
delayed version. The perfect reconstruction of the origi-
nal signal requires the inverse filtering by  1

pS z . 
However, in many communication systems this is not a 
restriction since the relative phase relations of the signals 
is of significance. 

The CHT has a plenty of applications such as compu-
tation of the envelope and instantaneous frequency and 
the construction of the digital quadrature encoders and 
amplitude modulators. The FFT-based Hilbert transform 
algorithms [5,7] can be directly replaced by the CHT 
prefilter in the shift-invariant multi-scale analysis. We 
demonstrated the feasibility of the CHT filter in recon-
struction of the sign modulated CMOS logic pulses tra-
verling through a fibre optic link. Compared with the 
direct transmission of the light pulses, the sign modula-
tion concentrates the power spectral density of the signal 
in the vicinity of the modulation frequency (Figure 3) 
and the DC-level variation in the transmitted light pulses 

do not interfere the reconstruction. For example in ro-
botics the mechanical vibrations in fibres may originate 
errors in direct transmission method. 
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