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ABSTRACT 

Linear interpolation has been adapted in many signal and image processing applications due to its simple implementa-
tion and low computational cost. In standard linear interpolation the kernel is the second order B-spline  2β t . In this 
work we show that the interpolation error can be remarkably diminished by using the time-shifted B-spline  2β t - Δ as 
an interpolation kernel. We verify by experimental tests that the optimal shift is 0.25Δ= . In VLSI and microprocessor 
circuits the shifted linear interpolation (SLI) algorithm can be effectively implemented by the z-transform filter. The 
interpolation error of the SLI filter is comparable to the more elaborate higher order cubic convolution interpolation. 
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1. Introduction 

Linear interpolation plays an important role in modern 
signal and image processing applications due to its sim-
ple implementation and low computational cost. Plonka 
[1,2] has extensively studied the effect of the shifted in-
terpolation nodes on the approximation error in the B- 
spline interpolation. According to the theoretical analysis 
the shift 0   yields the minimal error norm. Blu et al. 
[3] applied the same idea to the piecewise-linear interpo-
lation. On the contrary, they observed that interpolation 
error diminishes if the sampling knots are shifted by a 
fixed amount. Through the theoretical considerations Blu 
et al. [3] determined the optimal shift of the knots is 
close to 1/ 5   of the distance between the knots. 

In this work we consider a modification of the linear 
interpolation. In standard linear interpolation the kernel 
is the second order B-spline 2 ( )t . Instead of shifting 
the sampling knots we introduce the shifted linear inter-
polation (SLI), where the B-spline kernel has been 
time-shifted by a fraction   of the sampling period. We 
describe the z-transform SLI filter for efficient imple-
mentation of the shifted B-spline kernel 2 ( )t    es-
pecially for VLSI and microprocessor circuits. 

2. Theoretical Considerations 

2.1. B-Spline Signal Processing 

B-spline approximation of the continuous signal  x t  is 
based on the summation [4] 

     p
k

x t c k t k           (1) 

where  c k  are the scale coefficients. The B-spline 
 p t  is constructed by convolving an indicator func-

tion  t  by itself 
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The linear interpolation is obtained in the case 2p   

     2
k

x t c k t k            (4) 

where  2 t is the triangle function Figure 1 defined as 
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2.2. Shifted Linear Interpolation 

Let us consider the approximation of the continuous-time 
signal  x t  by a summation of the shifted B-spline 

 2 t    

     2,
k

x t c k t k            (6) 
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Figure 1. The shifted B-spline  2 t   . 

 
where    , , 0,1c k   is the scale sequence for the 
time-shifted kernel. In the sequel we call (6) the shifted 
linear interpolation (SLI). Usually the data points are 
known in discrete time intervals  0,1,2,t nT n   .   
In the z-transform domain we obtain 
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The SLI filter is now obtained from (6) as 

         1, 1Z x n d C z d d z             (8) 

By inserting the scale sequence  ,C z  from (7) we  

finally have 
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where  , ,SLI d z  denotes the SLI filter.  

2.3. Inverse SLI Filter 

In some applications it is required that the original signal 
has to be reconstructed from the delayed one. In the gen-
eral case the SLI filter (9) has no stable inverse since the 
roots of the nominator may lie outside the unit circle. For 

0.25   the roots are inside the unit circle in the range 
0 0.25d  . The inverse SLI filter can be realized by 
the inverse filtering procedure described in Appendix I. 

3. Experimental 

3.1. Experimental Verification of the SLI  
Algorithm 

We tested experimentally the quality of the SLI filter for 
a variety of synthetic signals with varying frequency 
components. The interpolation error was defined as the 
absolute difference between the analytically calculated 
and interpolated signal:      inte t x t x t  . The time- 
shift of the interpolation kernel was altered in the range 
0 1   . The interpolation error was strongly related  
to the time-shift. Irrespective of the type of the signal the 
minimum interpolation error was obtained in every case 
at 0.25  . Figure 2 shows an example of the interpo-
lation error versus   for signal  sin 0.1 t , when 

0.5d  . The worst case is the linear interpolation  
 

 

Figure 2. Interpolation error of function  0.1sin n in the case d = 0.5  for piecewise-linear interpolation  0Δ=  and for 

SLI filter from = 0.21Δ to = 0.25Δ . 



Shifted Linear Interpolation Filter 

Copyright © 2010 SciRes.                                                                                 JSIP 

46 

 

Figure 3. The magnitude and phase responses of the SLI filter for 0.1, ,0.5d =   = 0.25Δ . 

 
 0  . Then the interpolation error diminishes from 

0.21   to 0.25  . At bigger   values the inter-
polation error starts to increase. 

The magnitude and phase response of the SLI filter is 
given in Figure 3 for 0.25   and 0.1, ,0.5d   . 
Magnitude response of the SLI filter decreases at higher 
frequency values, albeit in the case 0.5d   the magni-
tude is constant in the whole frequency range. The phase 
shift is linear in the frequency range 0 1  . For 

0.5d   and 0.25   the magnitude response of the 
SLI filter turns to high-pass and tends to intensify the 
noise occurring in high frequency range. As a practical 
solution the interpolated signal can be time-reversed and 
1 d  can be inserted instead of d  in the SLI algo-
rithm. 

3.2. Half Delay Filter 

An interesting application of the SLI is the half delay 
filter, which delays the signal half of the sampling period 
and interpolates the intermediate points between the 
evenly spaced knots. For 0.25   and 0.5d   we 
have 

   
 

1

1

1 3
0.5,0.25,

1 1 3

z
SLI z

z









       (10) 

which is an all-pass filter having the unity magnitude 
response. The interpolation error of the half delayed filter 
(11) is especially low Figure 2. Figure 4 shows the 

phase response and the phase error compared with the 
ideal phase response. 

3.3. Comparison with the Cubic Convolution  
Interpolation 

The absolute interpolation error using the cubic convolu-
tion method [5] and the SLI-algorithm for signals 
   sinx n n  and    sin 2x n n  are given in Fig-

sures 5 and 6 for d = 0.5 and 0.25  . At 1   the 
cubic convolution interpolation performs slightly better, 
but at 2   the quality of the SLI algorithm equals the 
cubic convolution. 

4. Discussion 

The linear interpolation has been used in many micro-
processor and VLSI applications due to its simple and fast 
implementation. The new approaches based on higher 
degree B-spline interpolation kernels [6-8] suffer from 
computational complexity and usually require the time- 
reversed inverse filtering procedure, which is not possible 
to implement in real-time. In this work we examined the 
shifted linear interpolation, which outperforms the stan-
dard linear interpolation Figure 2. The SLI algorithm can 
be implemented via the z-transform filter (9) with integer 
coefficients. The interpolation error of the SLI filter is 
comparable to the more elaborate cubic convolution inter-
polation Figures 5,6, which is a standard image and signal 
processing tool. The computational complexity of the  
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Figure 4. Comparison of the phase responses of the piecewise-linear interpolation and the SLI filter(d = 0.5, 0.25Δ= ). 

 

 

Figure 5. The absolute interpolation error yielded by the 
SLI algorithm (d = 0.5, 0.25Δ = ) and the cubic convolu-

tion interpolation for the sinusoidal signal    x n = sin n . 

 
cubic convolution method is significantly higher com-
pared with the SLI algorithm. 

The interpolation function used as a kernel in the SLI 
algorithm correspond the B-spline order p = 2 Figure 1. 
The B-spline  2 t  has the z-transform   11 z    . 

 

Figure 6. The absolute interpolation error yielded by the 
SLI algorithm (d = 0.5, 0.25Δ= ) and the cubic convolu-
tion interpolation for the sinusoidal signal 

   2x n = sin n . 

 
Probably the main reason for the effectiveness of the SLI 
comes from the two term z-transform, which allows the 
solution of the scale coefficient sequence  ,C z in (7). 
This leads to the definition of the SLI filter (9). As a sur-
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prising experimental observation of the SLI algorithm is 
the strong dependence of the interpolation error on the 
time shift  . Our comparisons using a variety of func-
tions with different waveforms and frequency content 
showed that every time the interpolation error attains its 
minimum at 0.25  . Previously Plonka [1,2] has 
studied the B-spline interpolation with shifted nodes. In 
the theoretical analysis the shift parameter 0   
yielded the minimal error norm. Blu et al. [3] conducted 
theoretically the piecewise-linear interpolation error ver-
sus the shift  in the measurement knots. Their analysis 
predicted the optimal choice 0.21  . Blu et al. [3] 
used a pre-filter to shift the measurement knots and then 
the standard piecewise linear interpolation for computa-
tion of the interpolated signal. An advantage in this pro-
cedure is that the prefiltered signal can be directly im-
plemented by any existing linear interpolation hardware, 
while the implementation of the SLI filter needs a new 
hardware design. 

An essential observation in this work is that the SLI 
filter has low-pass frequency response characteristics 
only in the range 0 0.5d  . For 0.5d   the fre-
quency response of the SLI filter turns to high-pass and 
intensifies the noise occurring in high frequency range. 
The noise interference for 0.5d   can be avoided by 
time reversing the interpolated signal. Then 1 d  can 
be inserted instead of d  in the SLI algorithm. 

A shortcoming in the SLI algorithm is the phase error 
occurring in the high frequency range compared with the 
linear interpolation. Fortunately, in most of the signal 
processing applications the signal is band limited and the 
high frequency band 2    contains only some noise 
components. 

An interesting observation is that for 0.5d   and 
0.25   the half delay SLI algorithm reduces to the 

simple all-pass filter (10), which has the unity magnitude 
response and the phase response is close to the ideal 
phase response in the range 0 1  . If the signal 
bandwidth is limited to this range the SLI algorithm 
yields interpolation precision and accuracy, which is 
comparable to the more elaborate interpolation methods. 
The interpolation of intermediate points between the 
uniformly distributed knots is probably the most fre-
quently used operation is image and signal processing. 
The half delay filters are also important tools in con-
struction of shift invariant wavelet transform [9]. The 
half delay SLI filter (10) can be readily applied to replace 
the more elaborate half delay filters based on the Thiran 
filters [10]. For 0 0.25d  and 0.25  the SLI filter 
has a stable inverse. If the original data points have to be 
reconstructed from the interpolated ones, the inverse SLI 
filter for higher values of d can be realized by using the 

inverse filtering procedure (Appendix I). 

5. Conclusions 

In signal and image processing applications linear inter-
polation has been frequently used due to its simple im-
plementation and low computational cost. In standard 
linear interpolation the kernel is the second order 
B-spline  2 t . We show in this work that the interpo-
lation error can be remarkably reduced by adapting the 
time-shifted B-spline  2 t   as an interpolation ker-
nel. By experimental tests we verify that the optimal shift 
is 0.25  . The shifted linear interpolation (SLI) algo-
rithm can be effectively implemented by the z-transform 
filter in VLSI and microprocessor applications. The in-
terpolation error of the SLI filter is comparable to the 
more elaborate cubic convolution interpolation. The fu-
ture research goal is to extend the time-shifted interpola-
tion kernel to higher order B-splines. 

Appendix I. Implementation of the inverse fil-
ter  1 , ,SLI d z   for 0.25   and 0.25d  .  

By denoting the interpolated signal by 
    Y z Z x n d   the inverse filter  1 , ,SLI d z   is  
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                                          (11) 

The inverse filter  1 , ,SLI d z  is not stable which is 
not stable for 0.25   and 0.25d   , since the root 
in the denominator is outside the unit circle. However, 
the inverse filter can be implemented by the following 
inverse filtering procedure. First we replace z by z-1 
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                                         (12) 

The inverse filter  1 1, ,SLI d z   is stable for 
0.25   and 0.25d  . The  1X z  and  1Y z  

are the z-transforms of the time reversed signal 
 x N n  and the interpolated signal  y N n . The 

following Matlab program ISLI.m demonstrates the 
computation procedure.  
function x = ISLI(y,d,delta) 
y = y(end:-1:1); 
x = filter([delta  1-delta],[delta+d  1-delta-d],y); 
x = x(end:-1:1); 
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