
Journal of Software Engineering and Applications, 2017, 10, 721-733
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

An Augmented Framework for Formal
Analysis of Safety Critical Systems

Monika Singh, V. K. Jain

College of Engineering & Technology (FET), Mody University of Science & Technology, Laxmangarh, India

Abstract
This paper presents an augmented framework for analyzing Safety Critical
Systems (SCSs) formally. Due to high risk of failure, development process of
SCSs is required more attention. Model driven approaches are the one of ways
to develop SCSs for accomplishing critical and complex function what SCSs
are supposed to do. Two model driven approaches: Unified Modeling Lan-
guage (UML) and Formal Methods are combined in proposed framework
which enables the analysis, designing and testing safety properties of SCSs
more rigorously in order to reduce the ambiguities and enhance the correct-
ness and completeness of SCSs. A real time case study has been discussed in
order to validate the proposed framework.

Keywords
Unified Modeling Language, Formal Methods, Z Notation, Safety Critical
System

1. Introduction

Embedded softwares are found in almost every field of human life such as in
medical equipment, air traffic control systems, car airbag, braking systems, nuc-
lear reactor control and cooling systems, aerospace on-board systems, etc. From
last decades, these systems are supposed to do and control more complex func-
tions. A minor fault in such systems may cause severe consequences such as loss
of human lives, environmental damage or high economic losses. Such systems
whose focus is kept on safety are known as Safety Critical Systems [1]. The deed
of complex function of safety critical system spiked the growth of model based
techniques for development of such system. These techniques are preferred to
apply at early stage of software development process [2]. The idea behind these
techniques is to develop and analyze a model of the system instead of the as-
sessment of the final system implementation. The model-driven techniques

How to cite this paper: Singh, M. and Jain,
V.K. (2017) An Augmented Framework for
Formal Analysis of Safety Critical Systems.
Journal of Software Engineering and Ap-
plications, 10, 721-733.
https://doi.org/10.4236/jsea.2017.108039

Received: May 15, 2017
Accepted: July 8, 2017
Published: July 11, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

DOI: 10.4236/jsea.2017.108039 July 11, 2017

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.108039
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.108039
http://creativecommons.org/licenses/by/4.0/

M. Singh, V. K. Jain

(MDT) [3] vary in the degree of mathematics used. For example, there is MDT
which emphasizes on the graphical representation instead of defining semantics
formally such as Unified Modeling Language [4]. On the other hand, there are
techniques such as Formal Methods [5] that use rigorous mathematics for de-
fining the semantics. The formal methods are used to develop the system with a
high degree of confidence to prevent the failures and enhance the correctness of
system behaviour. Generally, the model-driven development (MDD) techniques
are used to capture the main features of the system. Moreover, in order to
achieve the safety of system, we need to make sure that, even the occurrence of
fault in some system components or some unfavorable conditions in the envi-
ronment, the system will not be put into an unsafe state. This will increase the
complexity of system by using the fault tolerance and failure detection mechan-
isms. Therefore, we require an integrated approach to develop system rigorously
which will consider the system integrity along with handling the abstraction,
complexity and provide verification by proof. In this thesis, we rely on Z Nota-
tion [6] formalism. Since Z notation is an orphan of model-oriented formal me-
thods empire that will start from abstract model and consecutive refinements
towards the final model via revised or updated schema for correctness. Revise or
updated schema allows us to assure the system safety requirements by stepwise
enhancing their representation in the system model along with providing the
proof for system properties at various level of abstraction. Figure 1 presents the
augmented framework which is wrapping safety properties along with safety
analysis is required which includes safety properties, incorporating as the results
of safety analysis, transformed into formal models for verification, facilitates
formal development and verification of safety-critical systems via pre-defined
patterns.

Rest of the paper is organized as follow: Section 2 presents the methodology and

Figure 1. Formal model for developing safety critical systems.

722

M. Singh, V. K. Jain

components of augmented framework. Section 3 presents the Formal Model of
SCSs. Section 4 represents the simulation and section 5 presents the conclusion.

2. Methodology and Components

The components of this holistic approach are: Unified Modeling Language and Z
Notation [5]; a Formal Method and described briefly as follow.

2.1. Unified Modeling Language (UML)

UML [6] is a modeling technique that combines object oriented methods and
concepts. It enhances the analysis and design of software system by allowing
more cohesive relationships b/w objects. It has been observed that graphical re-
presentation of model is easily accessible and understandable to the user. The
primary gap between the developer and the user has been easily fulfilled by the
graphical description.UML composed of nine diagrams: Use case diagram, class
diagram, sequence diagram, state diagram, activity diagram, interaction dia-
gram, component diagram, deployment diagram and package diagram. Graphi-
cal representation always gives a better understanding of proposed system.

2.2. Z Notation

Z notation [5] is the oldest formal specification language introduced in late
1970’s and developed through the 1080’s with the collaboration of two leading
brand names; Oxford University with industrial partner IBM and Inmos. The
next milestone in the journey of z notation came as a Reference manual in 1989
given by Mile specy. Z uses the standard such as American National Standards
Institute (ANSI), British Standard Institute (BSI) and International Organization
for standardization (ISO) for writing any draft in Z notation for formal seman-
tics. The Z notation is a model oriented approach based on first order predicate
logic and Zermelo-Fraenkel (ZF) set theory used for specifying behavior of ab-
stract data types and sequential programs.

The proposed framework is presented in Figure 1 which helps in:
1) Capturing and improving the readability of requirements of Safety Critical

Systems.
2) Model and verify the correctness of Safety Critical Systems.
3) Construct and test the Safety Critical Cases.

2.3. Methodology

The requirements are captured by using graphical modeling language i.e. Uni-
fied Modeling language (UML). Once the requirements are captured, Stereo-
types are used in order to improve their readability. Formal model had been de-
veloped for Use case, Class and Sequence diagram of UNL in order to depict
various systems’ level properties. For example, Formal Model of use case dia-
gram ensures that the functional requirements are complete, consistent and
unambiguous. The Formalization of Class Diagram provide us the correct design
specification and formal transformation of testing criteria’s helps us to assure

723

M. Singh, V. K. Jain

that the test specifications are complete and consistent.
Figure 1 presents an overview of the proposed approach. The following steps

are associated with this approach: 1) capturing and improving readability of in-
formally defined requirements of safety critical systems, 2) formalization of var-
ious aspects of critical systems and formal verification of correctness—by con-
struction as well as 3) validate the required safety properties are met.

3. Formal Analysis of Safety Critical Systems (SCSs)

This section is divided into three segments.

3.1. Capturing and Improving the Readability of Requirements of
Safety Critical Systems

The requirements are usually written in natural language. To get a better under-
standing of system functionality, graphical languages such a Unified Modeling
Language (UML) are used. Graphical representation always gives a better under-
standing of proposed system. The UML—use case diagram defines the beha-
viour of a system i.e. the functionality of the system. Therefore one can get better
understanding of system behaviour by making use case diagram of the system
which further forms the root of Software Requirement Specification (SRS). Al-
though UML has numerous good attributes yet not accepted for designing the
safety critical system alone. One of the reasons is lack of preciousness in seman-
tic used in graphical model. To improve the readability of requirements, Exten-
sion Mechanism [7] such as Stereotype, Tagged values and Constraints are used.
The UML Extension Mechanisms are used to extend UML by:

1) Adding new model elements, 2) Creating new properties and 3) specifying
new semantics.

Extensive Mechanism:
 Stereotype
 Tagged Value
 Constraint

In the context of this paper, Stereotype is used to sever the purpose. A stereo-
type is a model element that denotes additional values, additional constraint and
optionally a new graphical representation. Moreover, a stereotype allows us to
attach a new semantic meaning to a model element. The two type of sterotypes
are used in this paper:
• “Include”—Include is used to extract use case fragments that are duplicated

in multiple use cases. The included use case cannot stand alone and the orig-
inal use case is not complete without the included one.

• “Extend”—Extend is used when a use case adds steps to another first class
use case.

3.2. Model and Verify the Correctness of Safety Critical Systems

The second phase of software Development process is the design phase. In this
thesis, formal transformation of model is done by refinement in the design

724

M. Singh, V. K. Jain

phase. The class diagram forms the root for system structure and sequence dia-
gram forms the basis for system behaviour respectively. According to propose
approach, the system development begins with an abstract system model that is
further elaborated gradually by providing implementation details in a number of
model transformation steps. This approach provides us support to handle the
system complexity and to develop the system correct-by-construction. In addi-
tion, refinement processes are iterative in nature and feedback is provided by ve-
rification. Thus, contradicting, inconsistent and incomplete requirements speci-
fications, design specification can be discovered.

Since class diagram is the basis for system structure and helps in designing
modules of a system, but due to component of UML family, lack preciousness in
semantic. To address this problem, we construct formal model for class diagram
and sequence diagram in order to capture static and dynamic aspect of the sys-
tem respectively. It guides the developer starting from the informal representa-
tion of class and sequence diagram (with UML) to building the corresponding
parts of system module via formal modeling and verification in Z Notation and
accompany toolsets. In the scope of this approach, we propose the automated
Theorem Prover for demonstrating that formal system models are themselves
are well defined. Moreover, in order to assure that there is no logical inconsis-
tency and no model element contains any infeasible mathematical definition,
simulation of Z specification has been done with Z/EVES [8] tool.

3.3. Construct and Test the Safety Critical Cases

Testing [9] plays an important role for checking the correctness of system im-
plementations. To test system, test cases are formed and system behavior has
been observed during execution. Based on test execution, the decision is made
for the correctly functioning of the system. However, the criterion for the cor-
rectness of test cases has been specified in the system specification. A specifica-
tion prescribes “What” part of the system i.e. the function that a system supposes
to do and accordingly forms the foundation for testing criteria. As system speci-
fications are documented in natural language (informal), which is generally in-
complete and ambiguous in nature, due to this many problems may occur in
testing processes such as incompleteness, ambiguous and inconsistency in test
specifications. With an unclear specification, it is next to impossible to predict
how the implemented system will behave; consequently testing will be difficult
as it is not clear what to test. This become more severs specifically in case of
Safety Critical System. We propose an approach to rigorous construction of
structured test cases by formalization of test-specification. In other words, for-
mal transformation of testing criteria [10] such as white box and black box is
done by refinement pattern. Formal model of each testing criteria such as state-
ment coverage (SC), path coverage (PC), decision coverage (DC), boundary val-
ue analysis (BV), equivalence partition class (EPC) and cause & effect is formed.
This approach helps the tester to completeness and correctness of test specifica-
tion in automated environment by Theorem Prover toolset. Z/EVES serve the

725

M. Singh, V. K. Jain

purpose of simulation in automated environment. Moreover, formal methods
are rich in mathematics axioms, supporting the argument that all the model
elements definitions are consistent and feasible.

4. Simulation Results

This section is divided into two parts: section 4.1 presents the formal model for
safety Critical systems and section 4.2 represents the verification of results with
automated Theorem Prover.

4.1. Formal Model

Figure 2 shows the formal model for requirements and design of SCSs by formal
transforming the use case, class diagram, and sequence diagram into Z notation
element; Schema—a notion for structuring the formal specification written in Z
notation. Moreover the formal model for testing specification is depicted in
Figure 3.

The testing strategies are broadly divided into two categories: White box test-
ing and Black box testing. White box testing focuses on internal structure of

Figure 2. Formal model for system design.

726

M. Singh, V. K. Jain

Figure 3. Formal aspect of testing criteria’s.

727

M. Singh, V. K. Jain

software artifact. One of the ways to test internal structure is to use either of fol-
lowing scenarios: Statement coverage (SC), decision coverage (DC) or path cov-
erage (PC). Black box testing focuses on the input and output irrespective of in-
ternal structure. The famous black box testing criteria’s are: Equivalence parti-
tions class (EPC), Boundary Value Analysis (BV), Cause & Effect (C&E). The
formal model for all these testing criteria’s are formed with Z notation.

To validate the proposed framework, case study of Road Traffic Management
System has been discussed and formal model is shown in Figure 4. RTMS make
use of real-time data acquired from the road network in order to reduce traffic
congestion and accidents, and to save energy and preserve the environment. The
Road Traffic management System (RTMS) has three active actors i.e. Admin,
Vehicle Owner, Traffic police. Traffic police maintains the information which is
provided by the users (Admin, vehicle owners).

The UML model of RTMS consists of Use Case diagram, Class Diagram and
Sequence Diagram in Figure 5.

Figure 4. Formal model for RTMS elements.

728

M. Singh, V. K. Jain

729

M. Singh, V. K. Jain

Figure 5. UML model for RTMS.

4.2. Simulation

To ensure the correctness and completeness of specification, design draft and
test specification; the formal model is further verified on automated Theorem
Prover i.e. Z/EVES in Figure 6.

The testing criteria’s for construction of safety test case is formally verified in
Figure 7 and Figure 8.

The RTMS elements are further verified on Z/EVES in order to enrich the va-
lidation of proposed framework which is shown in Figure 9.

The Table 1 presents the overall model analysis results on automated Theo-
rem Prover and the parameters are: Syntax & Type checking, Domain checking
and Proof by Reduction.

5. Conclusions

The proposed framework is a complete, formal, framework which can be used to
develop the safety-critical system, with a combination of graphical modeling
language. This framework poses the following characteristics:
• Complete—The proposed method covers all the phases of the software de-

velopment process i.e. starting from specification to design followed by veri-
fication and validation.

• Formal—This method uses rigorous mathematics for specification, verifica-
tion and validation. Consequently, provides high level of confidence as com-
pared to conventional manual and informal methods.

730

M. Singh, V. K. Jain

Figure 6. Verification of Z specification on Z/EVES.

Figure 7. Z/EVES result for Statement Coverage (SC).

Figure 8. Z/EVES result for Equivalence Partition Class (EPC).

Figure 9. Z/EVES model analysis for RTMS elements.

731

M. Singh, V. K. Jain

Table 1. Overall model analysis results on automated theorem prover.

SCSs Elements
Verified

Via
Syntax &

Type Checking
Domain

Checking
Proof by

Reduction

Requirements Capturing Use case Diagram Y Y Y

Design Specification Class Diagram Y Y Y

Construct and Test safety cases Sequence Diagram Y Y Y

• Framework—Framework presents a 2-step verification and validation ap-

proach, helps in detecting errors in early phases of development process.
• User-friendly—Using graphical modeling languages initially to formal

transformation, this methodology assists various level of abstraction, which
helps different users to understand the system behaviour with ease.

• Scalable—The approach is proficient in verifying the system (safety proper-
ties) of industrial size by allowing inductive reasoning and model checking
together.

• Facilitate the safety assurance process of formally developed safety-critical
systems, by an established link between formal specification and safety cas-
es.

• Enhance the processes of Requirements Elicitation, Formal modeling and
Verification.

• Facilitate the system certification by showing how to incorporate safety re-
quirements into Formal model.

• Allows using the verification results of formal models as the evidence for
construction of safety cases.

References
[1] Gowen, L.D. (1994) Specifying and Verifying Safety-Critical Software Systems. IEEE

Seventh Symposium on Computer-Based Medical Systems, 235-240.
https://doi.org/10.1109/cbms.1994.316018

[2] Dunn, W.R. (2002) Practical Design of Safety-Critical Computer Systems. Reliabili-
ty Press, Solvang, USA.

[3] Hebig, R. (2014) On the Need to Study the Impact of Model Driven Engineering on
Software Processes. In Proceedings of 2014 International Conference on Software
and System Process, Nanjing, 26-28 May 2014, 164-168.
https://doi.org/10.1145/2600821.2600846

[4] Booch, G., Rumbaugh, J. and Jacobson, I. (1999) The Unified Modeling Language
User Guide. Addison-Wesley, Boston.

[5] Monin, J.-F. (2003) Understanding Formal Methods, Springer, Berlin.
https://doi.org/10.1007/978-1-4471-0043-0

[6] Spivey, J.M. (2001) The Z Notation: A Reference Manual. 2nd Edition, Prentice
Hall, Upper Saddle River.

[7] Rosenblum, D.S. (2005) Lightweight Extension Mechanisms for UML. Lecture
Notes Advanced Analysis and Design (GS02/4022), London.
http://www0.cs.ucl.ac.uk/teaching/syllabi/2006-07/ug/4022.htm

[8] Saaltink, M. (1999) The Z/EVES 2.0 User’s Guide, Technical Report TR-99-
5493-06a. ORA Canada, One Nicholas Street, Suite 1208. Ottawa, Ontario K1N 7B7

732

https://doi.org/10.1109/cbms.1994.316018
https://doi.org/10.1145/2600821.2600846
https://doi.org/10.1007/978-1-4471-0043-0
http://www0.cs.ucl.ac.uk/teaching/syllabi/2006-07/ug/4022.htm

M. Singh, V. K. Jain

CANADA.

[9] Myers, G.J. (2004) The Art of Software Testing. 2nd Edition, John Wiley & Sons,
New York.

[10] Jorgensen, P.C. (2013) Software Testing: A Craftsman’s Approach. 4th Edition,
Auerbach Publications, Boca Raton.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

733

http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	An Augmented Framework for Formal Analysis of Safety Critical Systems
	Abstract
	Keywords
	1. Introduction
	2. Methodology and Components
	2.1. Unified Modeling Language (UML)
	2.2. Z Notation
	2.3. Methodology

	3. Formal Analysis of Safety Critical Systems (SCSs)
	3.1. Capturing and Improving the Readability of Requirements of Safety Critical Systems
	3.2. Model and Verify the Correctness of Safety Critical Systems
	3.3. Construct and Test the Safety Critical Cases

	4. Simulation Results
	4.1. Formal Model
	4.2. Simulation

	5. Conclusions
	References

