
Journal of Software Engineering and Applications, 2017, 10, 564-589
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2017.106031 June 23, 2017

A Comparative Study of Milestones for
Featuring GUI Prototyping Tools

Thiago Rocha Silva1, Jean-Luc Hak1,2, Marco Winckler1, Olivier Nicolas2

1ICS-IRIT, Université Paul Sabatier, Toulouse, France
2SOFTEAM/CADEXAN, Toulouse, France

Abstract
Prototyping is one of the core activities of User-Centered Design (UCD)
processes and an integral component of Human-Computer Interaction (HCI)
research. For many years, prototyping was synonym of paper-based mockups
and only more recently we can say that dedicated tools for supporting proto-
typing activities really reach the market. In this paper, we propose to analyze
the evolution of prototyping tools for supporting the development process of
interactive systems. For that, this paper presents a review of the literature. We
analyze the tools proposed by academic community as a proof of concepts
and/or support to research activities. Moreover, we also analyze prototyping
tools that are available in the market. We report our observation in terms of
features that appear over time and constitute milestones for understating the
evolution of concerns related to the development and use of prototyping tools.
This survey covers publications published since 1988 in some of the main HCI
conferences and 118 commercial tools available on the web. The results enable
a brief comparison of characteristics present in both academic and commer-
cial tools, how they have evolved, and what are the gaps that can provide in-
sights for future research and development.

Keywords
Prototyping Tools, Survey, Milestones, Graphical User Interface (GUI)

1. Introduction

Every project is unique in terms of the business and technical problems that
arise, the priorities assigned to it, the resources required, the environment in
which it operates, the culture of the stakeholders, and the project manager’s at-
titude used to guide and control project activities. Nonetheless, a closer look on
actual developer’s activities will reveal that many iterations are often necessary to

How to cite this paper: Silva, T.R., Hak,
J.-L., Winckler, M. and Nicolas, O. (2017)
A Comparative Study of Milestones for
Featuring GUI Prototyping Tools. Journal
of Software Engineering and Applications,
10, 564-589.
https://doi.org/10.4236/jsea.2017.106031

Received: March 6, 2017
Accepted: June 20, 2017
Published: June 23, 2017

Copyright © 2017 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2017.106031
http://www.scirp.org
https://doi.org/10.4236/jsea.2017.106031
http://creativecommons.org/licenses/by/4.0/

T. R. Silva et al.

565

mature design ideas, to explore design alternatives, and to convince customers
(both client and end-users); such observation contradicts a linear view of soft-
ware development based on straightforward sequence of steps (such as waterfall
approach). Development processes imply planning of activities that ultimately
will transform client/customers requirement into products that fulfill user’s ex-
pectations. Therefore, it is sensible to ask how to take into account users’ needs
along the development process.

The ISO 13407 standard for human-centered design processes for interactive
systems [1] (also known as user-centered design–UCD process) tackle this issue
by placing users at the center of the development process. Prototyping Graphical
User Interfaces (GUIs) is considered as one of the most important activities in a
User-Centered Design (UCD) process as a mean to investigate alternative design
solutions. In early phases of the development process, paper and pencil mockups
are a suitable alternative for prototyping user interfaces [2]. They are inexpen-
sive and yet suitable presentation models that can be used to communicate basic
ideas with users about the design. Although paper-based prototypes remain
useful, the passage from paper to software is error-prone as paper-based proto-
types are informal descriptions that can be subject to interpretations (i.e. ambi-
guity in the recognition of the graphical elements) and they might provide insuf-
ficient information to describe some design constraints (ex. precise size and po-
sition of objects).

It is worthy of recalling that prototypes are an important way to communicate
and discuss requirements as well as usability and ergonomic aspects, in particu-
lar in early phases of the development process [3]. Low-fidelity techniques of
prototyping help designers to sketch and to present new ideas and concepts
about the user interface. In early phases of the development process, prototypes
are useful to involve users in participatory design activities, where users can di-
rectly influence what is being designed. As the development process progresses,
medium and high fidelity prototypes are useful to refine features. Advanced
prototypes provide more accurate information of the design alternatives thus
helping to make decisions. The need for support activities such as planning,
sketching, designing and evaluating prototypes of user interfaces, has led to the
development of specialized tools.

Since 1988, with Mirage [4], the most important conferences in the field of
Human-Computer Interaction (HCI) have given space for tools developed in
order to solve several scientific challenges related with this theme. However,
dedicated tools for supporting prototyping activities only started to have an im-
pact in the market by 2003. Thus, we can observe a temporal gap between the
research interest and market adoption [5].

The aim of this work is to investigate the state of the art in GUI prototyping
tools. We present a review of academic and commercial tools. Our main contri-
bution lies on analyzing both academic and commercial tools in terms of new
ideas and features, regarding the main milestones they introduced over time.
With such analyses, we have identified their coverage levels for these milestones

T. R. Silva et al.

566

and provided a detailed classification for them looking for new research gaps in
this area. The next section of this paper presents the research protocol used to
investigate tools in both academic and commercial contexts.

2. Methodological Approach

The present study encompasses both academic and commercial tools. Most of
academic tools we analyze have been developed as a proof of concepts to support
claims raised by scientific research. Despite the fact that some academic tools
might be considered very advanced prototypes, they rarely make a breakthrough
towards the market. Conversely, we consider commercial tools those that have
been developed for making money either by selling rights of use or by allowing
others to make money using them (for free) to accomplish work in an industrial
scale. We consider the analysis of commercial tools important because they are
decisive to understand the adoption of features originally available in academic
tools.

The analysis of tools followed four main steps: selection of tools, classification
of tools, revision and identification of target milestones, and finally discussion of
the findings. It was analyzed prototyping tools for drawing (intended to support
generic interface drawings), sketching (intended to get a basic concept—sketch
of how the user interface will look like), and wireframing (intended to refine the
concept of how the user interface will work, normally using pre-defined interac-
tion elements) based on their capability to provide useful prototypes. The analy-
sis of academic tools was mainly based on the review of the literature. For com-
mercial tools, we have only analyzed those that are readily available for down-
load on the web. Hereafter, we present a comparative analysis in Table 1 and
further details in the next subsections about how academic and commercial tools
were selected for the study and how they have been classified. The following
keywords were used in the search of both academic and commercial tools: pro-
totype, prototyping tool, prototyping interface, wireframe, wireframing, sketch,
sketching, draws and drawing.

2.1. Selection of Academic Tools

We sought top ranked HCI conferences and selected those that were sponsored

Table 1. Contrastive analysis of research methods for academic and commercial tools.

Criteria Academic tools Commercial tools

Selection source HCI conferences Web

Search keywords prototype, prototyping tool, prototyping interface, wireframe, wireframing, sketch, sketching, draws and drawing

Number of initial entries 8.682 118

Exclusion factors

Domain-oriented conferences, tools not published as full papers,
tools for specific environments, model-based prototyping tools for
multimodal user interfaces, and tools available in other languages

than English.

No free version available, tools that are
not standalone software, tools no longer

updated and documented, and
domain-specific tools.

Number of tools retained 17 104

T. R. Silva et al.

567

or co-sponsored by ACM, IEEE and/or IFIP. We discard domain-oriented con-
ferences (such as mobile, embedded, robot, pervasive and ubiquitous interfaces)
and conferences whose proceedings are available in other language than English.
The final list of conferences includes: ACM CHI (1982-2016), ACM UIST (1988-
2016), ACM DIS (1995-2016), ACM EICS (2009-2016), and IFIP INTERACT
(1984-2015).

At first, we have selected papers that contain in the title and/or abstract any of
the keywords presented in Table 1. With these keywords, we have found 8.682
publications. Subsequently, we have screened the papers and excluded those re-
porting tools developed for specific prototyping in specific environments (e.g.
sketches of buildings for architects, drawings for designers, circuits and physical
devices for engineers and so on). We did not take into account papers reporting
model-based prototyping of multimodal user interfaces because our main inter-
est lies in tools that can support the concrete development of user interfaces, not
only to model it. Finally, we only considered publications of full papers. We have
also included Active Story Enhanced [6] in the list because, despite the fact that
it was not published in the target conferences but in the XP International Con-
ference, it describes features that we consider relevant for the discussion.

In total we have retained 17 tools as follows: SILK [7], DENIM [8], DEMAIS
[9] and Cog Tool [10] (from ACM CHI), Gambit [11] (from ACM DIS), GRIP-it
[12] (from ACM EICS), Mirage [4], Ensemble [13], Lapidary [14], Druid [15]
and Monet [16] (from ACM UIST), SIRIUS [17], MODE [18], SCENARIOO
[19], Freeform [20] and Sketch XML [21] (from IFIP INTERACT), and Active
Story Enhanced [6].

2.2. Selection of Commercial Tools

We have used Google search engine to find commercial tools that match the
keywords shown in Table 1. Using the links provided by Google, we visited the
corresponding web sites to check the availability of tools for download. Only
tools that were free or have a free period of evaluation were retained for further
analysis. We have also included in the analysis some tools such as PowerPoint
and Photoshop. Despite the fact that these tools cannot be properly called pro-
totyping tools, they are often reported as suitable alternatives for building
low-fidelity prototypes.

In total, we retained 118 tools for a second round of inspection. We have ana-
lyzed the tools’ main features and paid particular attention to the way they han-
dle the creation of the user interface and the precision that can be achieved when
describing the behavior of the prototype. The subsequent analysis sought to find
answers for the following questions: “Is the tool a standalone software or an ex-
tension/library/framework?”, “Is prototyping generic interfaces possible?”, “Is
there a free trial of the tool?”, “Is the tool still updated and documented?”, and
“Does the prototype produced with the tool support any interaction?” We have
also inspected the mechanisms available for specifying the presentation (i.e. the
graphical elements) and the dialogue (i.e. the behavior) of the prototype.

T. R. Silva et al.

568

We decided to exclude tools that only provide libraries and/or stencil themes
for help with the drawing of paper-based prototyping. The same decision was
applied to tools that were no longer updated or documented. Domain specific
tools, such as for automotive, were also excluded. In total, we have retained 104
commercial tools as shown in Table 2 (annex). The analysis of these tools al-
lowed us to classify them in three categories depending on what can be proto-
typed: the behavior, the presentation (visual aspect) or both. The first one gath-
ers 10 tools that are more suited for representing the behavior of a prototype. In
the second one, we have regrouped 9 drawing tools like Inkscape or Photoshop,
where it is possible to create a visual prototype without caring about the beha-
vior or the possible interactions. Finally, the last category corresponds to tools
that can manage both graphical and behavior aspects and it features the remain-
ing 85 tools. Therefore, we have decided to focus on this last category since they
are mainly tools that are dedicated to the construction of fully functional proto-
types.

2.3. Classification of Tools

Both academic and commercial tools were inspected and classified according to
the following group of criteria: description of the tools, features for edition, ex-
ecution, management and evaluation. For “description of the tools”, we have ca-
talogued information about version, offers available, dependencies, backup poli-
cies (including cloud), platforms for editing and running, integration with other
tools, export of code and file formats, and finally generation of documentation
and code. For “features for edition”, we have investigated features related to the
presentation and dialog edition such as notations, degrees of fidelity supported,
how to build the internal and the external dialog, how to handle conditions, pa-
rameters and actions, support for annotations, reuse and management of design
options, interaction techniques supported and visualization. Execution features
have been evaluated for the dialog execution, including notations available to
describe navigation between windows, simulation engine, etc., possibility of an-
notating the prototype in runtime and/or if alternative design views are pro-
vided. In addition, we have also evaluated if the tools supported embeddable
wireframes. On the management side, we have looked for features to control and
customize favorite libraries, as well as mechanisms to control versioning of pro-
totypes. Lastly, we have investigated features for supporting evaluation during
the design process such as means of collecting feedback from users and/or other
designers and specific features for running usability and user testing.

2.4. Identification of Milestones

Lastly, we have inspected the tools enlisted in Table 2 (annex) looking for
common characteristics and/or functionalities that tools implement over time.
Such analysis brought the identification of milestones concerning interaction
techniques used to build prototypes (ex. pen-based interaction, widgets) requir-
ing or not programming skills. This analysis also revealed aspects of the user in-

T. R. Silva et al.

569

terface that could be prototyped (the presentation and/or the behavior), the
support for collaborative work, code generation, usability testing and design
through the whole lifecycle, as well as reuse mechanisms (ex. libraries, templates,
modules, patterns), aspects of scenario management, including version control
and annotations, and mechanisms for running prototypes. We have identified 13
milestones that we consider worthy of further discussion, including:
Non-Programming Skills, Pen-Based Interaction, Widgets, Behavior Specifica-
tion, Collaborative Work, Reuse Mechanism, Scenario Management, Preview
Mode, Support for Usability Testing, Support for Code Generation, Version
Control, Annotations, and Support for the Entire Design Lifecycle. These miles-
tones are presented in detail in Section 3.

3. Presentation of the Milestones

This section presents the milestones in detail and it illustrates tools that present
the features mentioned as milestones. Section 4 presents a broader discussion
about the evolution of the tools and the coverage of milestones.

3.1. Non-Programming Skills

Non-Programming Skills refers to the possibility of building prototypes without
any prior programming skills. The first prototyping tools appeared with the ad-
vent of User Interface Management Systems (UIMS) [22], which aimed at sepa-
rating the process (or business logic) from Graphical User Interface (GUI) code
in a computer program [23]. UIMS were aimed allowing designers and develop-
ers to build software without any programming skills. The ultimate goal of
UIMS tools was to allow users to concentrate on what is to be done rather than
how to do it [4]. One way to accomplish this objective was to give users the abil-
ity to directly manipulate the representations of concepts from the task domain
(e.g. design objects). Examples of tools pursuing this goal include MIRAGE, La-
pidary, Ensemble, DENIM and Druid.

Non-programming skills is a driving feature that motivate the research on
End-User Programming tools [24] which are aimed at empowering users to
create what they need (or at least define more precisely part of what they need).
Non-programming skills is considered a milestone because most of tools that
came after the first appearance of this feature does not require (much) pro-
gramming abilities from users. For instance, DENIM [8] is a pioneer example
that illustrates how tools can be used for involving users into the design of the
web sites to be developed. Some exceptions exist such as Lapidary, for instance,
demanding some Lisp programming ability to express more refined behaviors.

Nowadays, it is a common sense between developers of Graphical User Inter-
face (GUI) tools that they should simplify the activity of designers and interface
engineers, and requiring some level of programming skills is a throwback. Be-
cause of that, among all the tools analyzed, only those that are more focused on
the modeling, instead of GUI prototyping, still require some kind of program-
ming. All the others work with abstract elements and behavior models to pro-
vide prototyping resources for users, without requiring an ability to program the

T. R. Silva et al.

570

software. This is a well-established feature today.

3.2. Pen-Based Interaction

Pen-based interaction allows hand-written drawings, which some authors claim
that this is an intuitive passage from paper-based prototypes to interactive
(software-based) prototypes [7]. Prototyping tools that implement pen-based
interaction allows designers to keep the habit of drawing the user interface by
replacing paper and pencil by digital sketching. In order to remove the ambigui-
ties of drawing, some prototyping tools such as SILK (see Figure 1) also imple-
ment sketch recognition, which allows interpreting drawings and transforming
them into graphical elements (widgets in a higher level of fidelity) that can be
reused for building incremental prototypes. At Figure 1, we can see at the right
side the results of sketch recognition applied to a hand-written drawing (shown
at the left side) using SILK.

Figure 1. SILK. Left side: sketching widgets. Right side: transformed interface.

It is interesting to notice that few commercial tools implement pen-based in-

teraction. Tools like Blueprint, Cacoo, Mockup Plus, NinjaMock and Pidoco, for
instance, allow both pallet and sketching methods of interaction, but not
sketching recognition.

3.3. Widgets

Widgets are pre-defined GUI elements (such as buttons, text fields, etc.) that us-
ers can interact with to perform their tasks with the user interface. Libraries of
widgets are commonly available in prototyping tools and they were already in
use in Lapidary. Their use guides the major part of tools that works with a pa-
lette as interaction technique nowadays. Widgets have the advantage of making
the selection of graphical elements easier, offering a fast manner to set various
components as menu bars, buttons, input form fields, and containers such as
windows. It is interesting to notice that even tools that work with a sketching
mechanism like SILK and DENIM have a library of widgets for common ele-
ments (drawn before) and treat them as a widget for future uses.

All dedicated prototyping tools we have analyzed present a library of widgets.

T. R. Silva et al.

571

The inner inconvenient of these libraries is that the palette is limited to a prede-
fined set of components featuring widgets. Indeed, prototyping tools provide
different level of look and feel and some provide full support of a clean layout of
the components. For instance, Balsamiq (Figure 2) provide only rough design
by claiming that they only focus on low-fidelity prototyping, whereas Scene-
Builder for JavaFX provide components with a polished aesthetic and layout
since it is designed for finished software. Other tools like SILK do not support
directly the use of widgets to build prototypes, but they allow transforming the
sketch made using pen-based interaction to real widgets, through sketch recog-
nition techniques.

Many tools focus on the presentation by promoting the import of images to
create high-fidelity prototypes like Origami or Atomic.io (Figure 3). Although
those prototyping tools provide features to create basic shapes (i.e. rectangle,
circle) and edit their properties (i.e. color, opacity, background image), those
tools mainly emphasize their compatibility with drawing tools like Sketch or
Photoshop. Prototyping tools provide also many options to animate widgets or
create transitions between the different screens of the prototype. Tools like Invi-
sion or Atomic.io integrate a timeline to define the duration of the animation for
each object in the prototype.

Figure 2. Example of tool that uses a palette of widgets (Balsamiq).

Figure 3. Animation timeline from Atomic.io.

Thus, those prototyping tools are used as a tool to organize assets between

several pages to link those pages together and to share the prototype with oth-
ers.

T. R. Silva et al.

572

3.4. Behavior Specification

Behavior Specification refers to the ability to add dynamic behaviors to proto-
types. Behavior is often described as a set of states that prototypes can reach by
the means of transitions between states. Not all prototyping tools deal with be-
havior specification, many of them only allow to create static images of the
presentation. As we shall see, there are many ways for specifying the behavior
including setting hotspots on images, events handling on widgets and/or script-
ing in models.

Tools that employ hotspots allow the creation of areas on top of images (see
Figure 4) that capture events triggered by the user. Designers need to create one
hotspot for each part of the interface they want to make interactive. States are
defined as static images of the prototype whilst transitions are associated to the
hotspots on top of it. The problem with this method is that hotspots are asso-
ciated to graphical areas without a particular semantics with the graphical ele-
ment that is represented by the image.

Figure 4. Example of hotspot using Marvel.

Wireframe tools uses widgets to build the interface unlike the tools using im-

ages for the presentation. Therefore, wireframe tools generally do not require the
use of hotspots since it is possible to create event handlers directly on the wid-
gets (Figure 5). Each widget has a property “Event” that can be customized with
the action required to trigger the event and the action that has to be made. By
doing so, the dialogue is more dependent on the presentation.

In tools that describe prototypes as models, state machines and prototypes can
be used to specify fine-grained behaviors. The behavior specification using mod-
els is often called dialog. One of the advantages of formally modeling the dialog

T. R. Silva et al.

573

is that it provides a computational mean to simulate the prototype behavior.
Figure 6 shows the dialog for a “Login” application using the tool Screen Archi-
tect employing a state machine model for specifying the behavior. Notice the
window “Login” on display in the foreground and the state machine specifica-
tion in the background. That state machine indicates what will happens after the
user has entered the login and password. This co-execution between the state
machine and the presentation aspect of the prototype works in both ways: the
state machine controls what is on display to the user who can trigger events that
change the current state in the state machine. The prototype can be modified
independently from the state machine to make it match with new requirements
or feedbacks. One problem that arises when modifying the prototype and the
state chart is that they are no longer consistent. Co-evolution is more expensive
(in terms of workload) than just having a prototype to modify, but this allows

Figure 5. Events being handled in Pidoco.

Figure 6. The state machine and the prototype associated with the state “Login” in Screen
Architect.

T. R. Silva et al.

574

having a formal description of the prototype behavior.
As far as methods for specifying behaviors are at a concern, almost all of aca-

demic tools provide some kind of behavior specification. Lapidary was the first
one we noticed. Interesting resources were provided after it, leading to the dialog
construction. Unlike other dedicated tools, Active Story Enhanced, Balsamic,
SILK, DENIM and Pencil, for instance, support only basic wireframe interac-
tions, with links between screens and state changing. Tools like App Sketcher,
Axure, Cog Tool and Just InMind are already able to specify conditions, editing
properties or using variables, while Appery.io, JBart and Screen Architect sup-
port programming code as well.

3.5. Collaborative Work

Collaborative work refers to the support that allows people to work together
(synchronously or asynchronously) on the same prototype. This is one to the
most recent features in prototyping tools. Sangiorgi et al. [11] highlight that ex-
isting software for UI design by sketching shares the same shortcomings: only
one person at a time can sketch a UI on one device or computing platform at a
time with little or no capability for sharing sketches. Gambit is one of the few
prototyping tools that support collaborative work. Gambit implements many
collaborative features such as collaborative creation and visualization of sketches
on different devices, management of private and/or public mode with broad
views of the drawings (like papers arranged on a wall) and a fine view of them
(Figure 7).

The collaboration features presented by Gambit are seldom present in other
prototyping tools, whether in commercial or academic context. There are some
other applications in GUI outside domains that provide similar features, but
none of them is applicable in the prototyping domain. Tools like JBart, Axure,
Visio, PowerPoint and Just In Mind support more simplified mechanisms of
collaboration using chat or common repositories, but rarely supporting multiple
devices.

It is interesting to notice that many web-based prototyping tools such as Bal-
samiq, Vectr, Atomic.io, and Proto.io present collaborative features. In addition
to functions for editing the prototypes directly in the web browser, they offer

Figure 7. Physical setup of GAMBIT.

T. R. Silva et al.

575

services such as a repository to store the prototypes and mechanisms for sharing
executable versions of the prototypes with other users. This architecture is well
suited for collaborative work since any collaborator can work remotely on the
same synchronized repository while maintaining the availability of the prototype
for any user who wants to test the prototype.

Some tools like Invision provide mechanisms to manage collaborations
among people involved in the process including features for inviting collabora-
tors, supporting discussions, and even assigning tasks. These mechanisms have
evolved in the more recent version of Invision released in October 2016 making
the team management compatible with the projects tracking tool JIRA. With this
new approach, Invision brings the prototyping process closer to the develop-
ment of the final application itself.

3.6. Reuse Mechanism

Reuse is the process of creating software systems from predefined software com-
ponents. Reusing components previously built is an important feature to promote
productivity in software development as they might reduce the workload of de-
signers and users by offering standard UI design. Simple mechanisms to promote
reuse might include libraries of widgets, templates and pre-defined behaviors.

Nonetheless, other mechanisms of reuse might be available in specialized
tools. For example, sketching tools that support shapes recognition like SILK
and SketchiXML offer mechanisms for reusing user-defined drawings, and that
have been previously “trained” by users.

Commercial tools like Appery.io, HotGloo, iRise, Protoshare and UXPin fea-
ture the usage of breakpoints and screen version, thus promoting reuse of design
for multiple devices. This method consists in creating one version for a screen
for each size desired and defines breakpoint where the prototype has to switch
from one version to another. The advantage of this method is that the prototype
can dynamically change completely its layout when resizing the prototype in a
preview mode, for instance [25] [26]. This feature is particularly useful when de-
signing a prototype (typically for a website site) that should run on diverse de-
vices (ex. tablet, smartphone or desktop). Some prototyping tools help the user
by managing the different versions of a screen, instead of letting the user do it
manually. Layouts are therefore completely independent from one breakpoint to
another. RWD Wireframe is one of those specialized tools that is dedicated to
the management of prototype versions for different screen sizes allowing users to
sketch different layout of the prototype for each resolution.

Some tools like ForeUI or Mockup Screens allow the reuse of themes. By
doing so, it is possible to switch from a wireframe prototype that looks like a
sketch to a prototype with the appearance of real software (e.g. Windows Theme,
Mac Theme, etc.) without having to recreate the prototype.

3.7. Scenario Management

Scenario-based design is a family of techniques that uses narratives ad scenarios

T. R. Silva et al.

576

for describing expected outcomes for the system. Narratives are written in very
early phases of the development process, and then used to guide both prototyp-
ing and the subsequent development of the system [27].

Scenario Management refers to the ability of tools to work with different sce-
narios and manage them in an integrated way with prototypes and behavior de-
scriptions. It is not an easy feature to implement because it is strongly dependent
of the whole development process and their models, so their implementation
becomes normally too restrictive. Despite the fact that this feature has appeared
first in Freeform in 2003 as a Visual Basic 6 plugin, there has not been much
evolution since then. Most of prototyping tools in our survey support scenarios
management through simple annotations. However, we have not found any tool
that implements truly scenario management, which might include requirements
specifications and tracking decisions along the process.

3.8. Preview Mode

Preview Mode is an important feature to allow visualization of an executable
version of the prototype. In that mode, we can execute and simulate all interac-
tions specified during the construction of the prototype. Users can test the ap-
plication as a rough final product. It is important, in this case, to visualize how
the prototype will appear in a real environment, perhaps promoting usability
testing and collecting adequate feedback from special stakeholders.

MIRAGE, Lapidary and SILK are examples of tools that embed a Preview
Mode. DENIM and SketchiXML provide a preview mode with the help of a kind
of plugin and/or external tool. All commercial tools provide also some kind of
feature to allow execution during development.

An emerging feature called “prototype mirroring” can be understood as a
kind of previous mode. Prototype mirroring is implemented by some tools, such
as Atomic.io or Origami, that host prototypes on the cloud. This technique al-
lows people to visualize the edition of prototypes in real time using a smart-
phone (using a proprietary viewer application) and/or a web browser.

Interactive prototyping, on the other hand, is provided by model-based tools
to support co-execution between models and interfaces. Within PetShop [28],
for instance, prototyping from specification is performed in an interactive way.
At any time during the design process, it is possible to introduce modifications
in the models. The advantage of model-based prototyping is that designers can
change the model and immediately test the impact on the behavior of the proto-
type. At run time, the user can both look at the specification and the actual ap-
plication. Both of them are in two different windows overlapping in Figure 8.
The window Plane Manager corresponds to the execution of the window with
the Object Petri net underneath.

3.9. Annotations

Annotations of prototypes offer the possibility to add informative notes for spe-
cific sections of a given artifact. The annotation system is an interesting feature

T. R. Silva et al.

577

Figure 8. Execution of ICO specification in PetShop.

since it may be a way to collect user feedbacks when presenting a prototype to
end-users. Users can annotate the prototype to report problems, to indicate pre-
ferences about design options, to request clarifications about the design, and to
specify parts of the prototype that are not supported by the tool (for example the
expected behavior for an animation). Annotations are often meant to be read by
other members of the development team for that they should written in a way
that it is understandable by others. Naghsh [29] has suggested that annotations
can help to create a dialogue and encourage users to participate in the design
process.

We have identified three different stages where annotation system is available:
Prototype Building, Annotation Mode and Usability Testing. The first and more
common stage where the annotation system is available is at the construction of
the prototype. At this stage, we have identified two kinds of annotations: anno-
tations as a widget and annotations as a property.

Some tools like inPreso (Figure 9) provide widgets dedicated to create anno-
tations. The behavior widgets for annotation is the same of other widgets used to
build the prototype (they have properties; they can be resized or moved on the
prototype). The most frequent widgets for annotations include callouts, post-its,
scratch-outs and arrows. Using widgets, prototypes can be visualized as an an-
notated document. Annotations as a property are less visible and less pervasive.
While widgets or pages of a prototype have their own properties, some tools add
a “Note” property where the user can add some text.

The second stage refers to the annotation mode of the prototype. Indeed,
some tools provide a dedicated mode to the annotation system. While it is not

T. R. Silva et al.

578

Figure 9. Example of a textual annotation using inPreso.

possible to modify directly the prototype in this mode, it is possible making an-
notations or drawing directly on top of the prototype when activating the anno-
tation mode using tools. These tools can be a freehand sketching, a token that
can be placed on the prototype with an associated note, or an area that is selected
using the mouse.

Annotation mode can also be used during a preview of the prototype. Indeed,
once a version of the prototype is finished, it is possible to share it using a link.
Any person having the link can test the prototype and make annotations on it.
Once the annotation is made, a notification is sent to the person in charge of the
prototype.

The last stage refers to the test of the prototype. It is also possible to collect
data from users who test the prototype and use it as annotations. Indeed, any
information that can be measured while using the prototype (time spent on each
screen, the area clicked, etc.) can be saved for a further analysis. This usage is
more specific for usability tests, where tools like Solidify provide functionalities
that can be useful for that. For instance, it is possible adding instructions or
questions to the test of the prototype and creating tasks that have to be accom-
plished.

SILK and DEMAIS support textual annotations as an input design vocabulary.
Some other tools like Alouka, Balsamiq, inPreso, Lumzy and WireFrame
Sketcher support annotations through widgets (the simplest method), and others
like Axure, MockupScreens and JustInMind support this feature as a property.
There are also those that have a dedicated annotation mode like Concept.Ly,
ForeUI and NinjaMock. However, no tool ensures the annotation system on the
three stages at the same time.

3.10. Support for Usability Testing

During a typical user testing of a prototype, participants will complete a set of
tasks while observers watch, listen and take notes. Any information that can be
measured while using the prototype (time spent on each screen, the area clicked,
etc.) is worth of collecting for further analysis. For that, some prototyping tools
include functionalities for recording metrics of use.

T. R. Silva et al.

579

In addition to annotations, some tools like Solidify and Cog Tool allow adding
instructions to guide users during the use of the prototype. These instructions
are presented as questions and/or tasks that are displayed to the participant of
the usability test. Users have the possibility to use the prototype to complete
tasks, answer the questions or skip them altogether if they are not able to figure
out what to do. The tool records the user test and makes the results available
through the means of automated annotations of the prototype. These functio-
nalities allow automating the test and making it available as remote surveys.

Using the date collected by tools that support usability testing of prototypes,
designers can analyze the click flow, checking statistics for each page as well as
demographic filters when displaying the results (Figure 10). These results are
useful to support decisions between several designs choices. Some tools like
PickFu or IntuitionHQ also provide an interface to plan tests and manage the
results.

While some tools embed mechanisms for usability testing, other tools such as
Invision (Figure 11), Marvel, Flinto, Axure, Justinmind and Proto.io provide
mechanisms to link the prototype with third-party tools that are specialized in
automating the usability test such as User Testing, Validately or Lookback. For
example, User Testing is a service that provides users feedback on an applica-
tion, a website or a prototype. They also provide support for running tests, re-

Figure 10. Example of data from usability testing collected by Solidify.

Figure 11. Example of a user testing recording with Invision.

T. R. Silva et al.

580

gistering recordings (i.e. video, interactions) and analyzing the results. The in-
terest in usability testing is quite recent. Indeed, we can notice for instance that
Invision has announced their compatibility with User Testing on September
2016 or Just In Mind announced its partnership with Validately on February
2016.

3.11. Support for Code Generation

Code Generation refers to the capacity of the prototyping tool to produce the
code of the final application from a model specification. Code generation can
only produce full-fledge applications if the prototyping tools support modeling
of both presentation and behavior aspects. The generated code might serve as
the basis to develop a final and concrete user interface as well as an exportable
output exploitable by other tools. Such is the case of SILK, which generates code
for an old Open Look Operating System, and Freeform, which generates code
for Visual Basic 6. SketchiXML and Gambit produces interface specifications
and generates code in UsiXML, an open source format based on XML.

Among all commercial tools is our survey, 25 of them can generate web pages
based on the prototype. Tools such as AppSketcher, Axure, ForeUI and JustIn-
Mind generate web pages that include in the code annotations of the dialogue
specification, so that it is possible to reuse these web pages to reengineering the
prototype and make it to evolve to the final user interface.

3.12. Version Control

Version control is the mechanism that allows development teams to track the
evolution of artifacts over time. It allows to answer questions such as how many
different/alternative versions exist, what is the current state of the development,
and in some cases, the rationale of modifications. Version control is important
because prototypes are constantly evolving along the development process to ac-
commodate users’ feedback and/or to include new requirements that emerge along
the way. Moreover, many prototypes might be produced to explore alternative de-
sign options. When alternative options are at stake, it might be necessary to com-
pare two (or more) alternative versions in order to identify the differences.

Alouka (Figure 12), Codiqa, FluidUI, HotGloo and JustInMind support ver-
sion control. Concept.Ly is able to compare two different screens using a slider.

Figure 12. Versioning using Alouka.

T. R. Silva et al.

581

However, it is not possible to compare two versions of one screen, but only two
different screens from the same version. SILK supports version control with de-
sign history.

3.13. Support for the Entire Design Lifecycle

According to the ISO 13407 standard [1], a User-Centered Design (UCD)
process features an iterative lifecycle that is meant to guide the development
team from phases of requirements engineering, passing by cyclic phases of pro-
duction and evaluation of design solutions until prototypes evolve into imple-
mentations that reach the maturity level required for delivery to the end-users.
Since prototyping is one of the core activities in a UCD process, we might expect
that prototyping tool should help the development team along all phases.

Seffah and Metzker [30] stressed the need for “computer-assisted usability en-
gineering” tools and frameworks to share best practices between software engi-
neering and user-centered design. UIMS tools might be considered a timid at-
tempt to provide an integrated design solution with emphasis on automation of
the GUI building. However, there is an important gap since most of current
tools support only “produce design solutions”, not giving support for all UCD
phases.

GRIP-it is a tool that focuses on the transition of prototypes into the software
development by providing integrated and interoperable tools that help to prop-
agate information about the design among all people involved in the process.

SILK supports the transformation process of the sketches to real widgets and
graphical objects, but other steps in the process are not covered. Other sketching
platforms such as SketchiXML and Gambit require the integration with
third-party UsiXML tools to support several levels of prototyping.

DENIM and DEMAIS do not support different refinement levels, so they do
not cover the whole lifecycle (they do not produce finished HTML pages, for
example). DENIM just allows navigating among different representations in a
web-design prototype, such as site maps, storyboards and mock-ups. Some tools
like Screen Architect support model description that it is good to provide links
between prototypes and models like state machines, leading then to a more inte-
grated environment in UCD development processes.

4. Discussion of the Findings

In this section, we present a broader analysis of the tools with respect to the mi-
lestones.

Figure 13 presents a historical view of tools and milestones. We start by clas-
sifying tools per year of (first) release. In the case of academic tools, we consi-
dered the year of publication. For commercial tools, we sought the year of first
appearance in the market. The graph presented at Figure 13 shows the total
number of tools released per year and the first occurrence of milestones ob-
served in tools. We have classified tools and milestones in three main periods
that roughly cover first attempts for building prototyping tools, for supporting

T. R. Silva et al.

582

Figure 13. Number of both academic and commercial tools per year.

the development process, and the emergence of tools supporting collaborative
work.

The first period (<1995) is characterized by the emergence of UIMS tools.
Authors claimed that the main advantage of UIMS tools is in the fact that after
development and testing, interface prototypes could be attached directly to the
application, thus the prototype becomes the industrial interface [4]. UIMS tools
focus on high-fidelity prototypes, using mostly design elements from the final
interface, and being strongly dependent on the platform. UIMS tools lack the
flexibility needed in the early phases of the development process when designers
should focus on problems to be solved in terms of business and users’ require-
ments rather than terms of user interface design. In this period, we have also
found many reports of using tools such as PowerPoint and Visio to create pro-
totypes. Although PowerPoint and Visio are not intended to build prototypes,
they provide functions for drawing presentations and creating transitions, which
might have been helpful to build low-fidelity prototypes when no other UIMS
tool was available.

The second period (1995-2005) encompasses tools with functionalities to
support the development team when managing prototyping activities (ex. anno-
tations, code generation, version control, etc.). There was an increasing interest
in the period on alternative ways of prototyping user interfaces as well as in be-
havior modeling. For example, we observed the emergence of sketching tools
such as SILK and DENIM.

The third and last period is characterized by a substantial increase of com-
mercial tools and support for collaborative work. This period goes from 2007 to
now.

Along these periods, features like Non-Programming Skills, the use of Wid-
gets and Behavior Specification were the three most implemented by tools (over
70%). This fact can signalize the focus in providing a friendly environment for
non-technical people since the first years. McDonald et al. [4] in 1988 had al-
ready pointed the need to consider different skills from the various stakeholders
involved and to allow they use tools to design their own interfaces without tech-
nical skills. The way tools started providing that—and still remain until

T. R. Silva et al.

583

now—was through Widgets. Widgets have introduced a simple mechanism to
encapsulate an idea (and sometimes behaviors) for each component normally
used to build GUIs.

Features like Scenario Management, Support for Usability Testing and Sup-
port for the Entire Design Lifecycle are supported by a few tools (less 10%). This
number suggests a slow progress towards the support of the whole lifecycle of
prototyping.

Concerning Pen-Based Interaction, only 9.92% of tools implement this fea-
ture. Pen-Based Interaction feature was presented in SILK in 1995, and after
some years, well-known tools like Adobe Illustrator and Photoshop imple-
mented it. Nevertheless, it never seems to become a successful feature with
commercial prototyping tools. This might be explained by the fact that sketches
are hard to maintain (ex. ambiguity of sketches) and hard to make them evolve
throughout the development process.

Table 2 (annex) summarizes the findings showing a list of all tools retained
for analyses in the three periods, ordered by year of launch (the sign of “?”
means that was not possible to determine the year of launch), and the set of mi-
lestones that each one covers. It also shows the percentage of tools that covers
each milestone individually.

Figure 14 presents a graph with the percentage of milestones covered by tools.
We can notice that the five more covered milestones (Non-Programming Skills,
the use of Widgets, Behavior Specification, Preview Mode and Reuse Mechan-
ism)—all of them covered by more than half of tools—are also the oldest fea-
tures presented by prototyping tools (since 1988). However, the availability of
features like Behavior Specification, Preview Mode and Reuse Mechanism

Figure 14. Percentage of milestones cover by the analyzed tools.

T. R. Silva et al.

584

evolved along the time. Behavior Specification has benefited from more hu-
man-centered approaches such as Scenario-based specifications, while Preview
Mode has incorporated co-execution between models and prototypes like in
PetShop [28] and Screen Architect. Since 2001, Reuse Mechanisms started to in-
clude technics like Plastic Interfaces [25] and Responsive Design [26].

5. Conclusions

This paper presents a survey of academic and commercial tools. The analysis of
these tools allowed us to identify some milestones that help to characterize the
progress and the evolution of prototyping tools over time.

The analysis of commercial tools is important because their adoption of fea-
tures has an impact of the practice in the industry. Quite often, academic tools
are pioneer in proposing new features that only appear later on commercial
tools. In our study however, we did not collect information for analyzing the
occurrence of a technological transfer. Many of the innovative features come
first from academic tools. However, if the temporal appearance of tools might
suggest a possible transfer from academic work to the industry, the present work
cannot clearly determine whether (or not) that transfer really occurred. Howev-
er, we can say that some features like Pen-based Interaction, which were already
present in early academic works (SILK, 1995) twenty years ago, did not make so
far a breakthrough to commercial tools.

Another aspect we can highlight in this study is the number of commercial
tools released after 2008. These tools have incorporated the most aspects we re-
port in this paper, providing, in different levels, implementations of these con-
cepts, and many times, being strongly repetitive in their qualities. Nevertheless,
it shows a continued interest both from academic and industrial communities in
this theme, suggesting an open space of research in several points. The number
of commercial tools also suggests the existence of a market and an increase in-
terest in this type of tool.

Future directions for research point to the development of tools for prototyp-
ing as support activity for the development lifecycle. Regarding this gap, we have
identified little support of tools for annotation activities in a requirements engi-
neering process. Tools that treat annotations as a property and not as a single
remark support a better specification process for gathering requirements. Even
though, the way they capture the information coming from those annotations is
not profitable to be used for supporting business rules, specification of needs or
more formal functional descriptions.

Another important gap identified is related to integrated support for devel-
opment models. Task and system models, for example, are only considered by
few tools. Developing incremental prototypes requires an integrated environ-
ment supporting specification of scenarios, models and constraints. Potential
tools should consider providing such environment where prototypes could be
fully specified, modeled, run and tested.

The analysis presented in this work provides us insights about the drawbacks

T. R. Silva et al.

585

of existing prototyping tools. In particular, this analysis pinpointed the lack of
support for a rationale design and for tracking the decisions made along the de-
velopment process. Currently, we are working on a tool support called PANDA
(Prototyping using Annotation and Decision Analysis) [31].

References
[1] ISO 13407 (ISO 9241-11) (1998) Ergonomic Requirements for Office Work with

Visual Display Terminals (VDTs) Part 11: Guidance on Usability. Revised by ISO
9241-171 (2008).

[2] Snyder, C. (2003) Paper Prototyping: The Fast and Easy Way to Design and Refine
user Interfaces. Morgan Kaufmann Publishers, Burlington.

[3] Schvaneveldt, R.W., McDonald, J.E. and Cooke, N. (1985) Towards a Modular User
Interface. (CRL Technical Report No. MCCS-85-10). Computing Research Labora-
tory, New Mexico State University, Las Cruces.

[4] McDonald, J.E., Vandenberg, P.D. and Smartt, M.J. (1988) The Mirage Rapid Inter-
face Prototyping System. Proceedings the 1st Annual ACM SIGGRAPH Symposium
on User Interface Software, Alberta, 17-19 October, 77-84.
https://doi.org/10.1145/62402.62414

[5] Fenn, J. and Raskino, M. (2008) Mastering the Hype Cycle: How to Choose the
Right Innovation at the Right Time. Harvard Business Press, Cambridge.

[6] Hosseini-Khayat, A., Ghanam, Y., Park, S. and Maurer, F. (2009) Active Story En-
hanced: Low-Fidelity Prototyping and Wizard of Oz Usability Testing Tool. Inter-
national Conference on Agile Processes and Extreme Programming in Software En-
gineering, Springer, Berlin, 257-258. https://doi.org/10.1007/978-3-642-01853-4_57

[7] Landay, J.A. and Myers, B.A. (1995) Interactive Sketching for the Early Stages of
User Interface Design. Proceedings of the SIGCHI CHI, ACM Press/Addi-
son-Wesley, New York, 43-50. https://doi.org/10.1145/223904.223910

[8] Lin, J., Newman, M.W., Hong, J.I. and Landay, J.A. (2000) DENIM: Finding a
Tighter Fit between Tools and Practice for Web Site Design. Proceedings of the
SIGCHI CHI, ACM, New York, 510-517. https://doi.org/10.1145/332040.332486

[9] Bailey, B.P. and Konstan, J.A. (2003) Are Informal Tools Better? Comparing
DEMAIS, Pencil and Paper, and Authorware for Early Multimedia Design. Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
ACM, New York, 313-320.

[10] John, B.E., Prevas, K., Salvucci, D.D. and Koedinger, K. (2004) Predictive Human
Performance Modeling Made Easy. Proceedings of the SIGCHI CHI, ACM, New
York, 455-462. https://doi.org/10.1145/985692.985750

[11] Sangiorgi, U.B., Beuvens, F. and Vanderdonckt, J. (2012) User Interface Design by
Collaborative Sketching. Proceedings of the Designing Interactive Systems Confe-
rence, ACM, New York, 378-387. https://doi.org/10.1145/2317956.2318013

[12] Van den Bergh, J., Sahni, D., Haesen, M., Luyten, K. and Coninx, K. (2011) GRIP:
Get Better Results from Interactive Prototypes. Proceedings of the 3rd ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, ACM, New
York, 143-148. https://doi.org/10.1145/1996461.1996508

[13] Powers, M.K. (1989) Ensemble: A Graphical User Interface Development System
for the Design and Use of Interactive Toolkits. Proceedings of the ACM
SIGGRAPH 1989, ACM, New York, 168-178. https://doi.org/10.1145/73660.73681

[14] Myers, B.A., Zanden, B.V. and Dannenberg, R.B. (1989) Creating Graphical Inter-
active Application Objects by Demonstration. Proceedings of the 2nd Annual ACM

https://doi.org/10.1145/62402.62414
https://doi.org/10.1007/978-3-642-01853-4_57
https://doi.org/10.1145/223904.223910
https://doi.org/10.1145/332040.332486
https://doi.org/10.1145/985692.985750
https://doi.org/10.1145/2317956.2318013
https://doi.org/10.1145/1996461.1996508
https://doi.org/10.1145/73660.73681

T. R. Silva et al.

586

SIGGRAPH Symposium on User Interface Software and Technology, ACM, New
York, 95-104. https://doi.org/10.1145/73660.73672

[15] Singh, G., Kok, C.H. and Ngan, T.Y. (1990) Druid: A System for Demonstrational
Rapid User Interface Development. Proceedings of the ACM SIGGRAPH 1990,
ACM, New York, 167-177. https://doi.org/10.1145/97924.97943

[16] Li, Y. and Landay, J.A. (2005) Informal Prototyping of Continuous Graphical Inte-
ractions by Demonstration. Proceedings of the 18th Annual ACM Symposium on
User Interface Software and Technology, ACM, New York, 221-230.

[17] Windsor, P. (1990) An Object-Oriented Framework for Prototyping User Interfac-
es. Proceedings of the IFIP TC13 Third International Conference on Human-Com-
puter Interaction, North-Holland Publishing Co., Amsterdam, 309-314.

[18] Shan, Y.-P. (1990) An Object-Oriented UIMS for Rapid Prototyping. Proceedings of
the IFIP TC13 Third International Conference on Human-Computer Interaction,
North-Holland Publishing Co., Amsterdam, 633-638.

[19] Roudaud, B., Lavigne, V., Lagneau, O. and Minor, E. (1990) SCENARIOO: A New
Generation UIMS. Proceedings of the IFIP TC13 Third International Conference on
Human-Computer Interaction, North-Holland Publishing Co., Amsterdam, 607-612.

[20] Plimmer, B. and Apperley, M. (2003) Software to Sketch Interface Designs. Ninth
International Conference on Human-Computer Interaction-INTERACT’03, IFIP,
73-80.

[21] Coyette, A. and Vanderdonckt, J. (2005) A Sketching Tool for Designing Any User,
Any Platform, Anywhere User Interfaces. IFIP Conference on Human-Computer
Interaction, Springer, Berlin, 550-564.

[22] Kasik, D.J. (1982) A User Interface Management System. ACM SIGGRAPH Com-
puter Graphics, ACM, New York, 16, 99-106.
https://doi.org/10.1145/965145.801268

[23] Olsen, D. (1992) User Interface Management Systems: Models and Algorithms.
Morgan Kaufmann Publishers Inc., Burlington.

[24] Lieberman, H., Paterno, F., and Wulf, V. (2005) End-User Development. Kluw-
er/Springer, Berlin.

[25] Calvary, G., Coutaz, J. and Thevenin, D. (2001) Supporting Context Changes for
Plastic User Interfaces: A Process and A Mechanism. People and Computers XV—
Interaction without Frontiers, Springer, London, 349-363.
https://doi.org/10.1007/978-1-4471-0353-0_21

[26] Marcotte, E. (2014) Responsive Web Design. 2nd Edition, A Book Apart, LLC., New
York, 153.

[27] Rosson, M.B. and Carroll, J.M. (2002) Usability Engineering: Scenario-Based De-
velopment of Human-Computer Interaction. Morgan Kaufmann Publishers, Bur-
lington.

[28] Navarre, D., Palanque, P. and Bastide, R. (2002) Model-Based Interactive Prototyp-
ing of Highly Interactive Applications. Computer-Aided Design of User Interfaces
III, 205-216. https://doi.org/10.1007/978-94-010-0421-3_18

[29] Naghsh, A.M., Dearden, A. and Özcan, M.B. (2005) Investigating Annotation in
Electronic Paper-Prototypes. International Workshop on Design, Specification, and
Verification of Interactive Systems, Springer, Berlin, 90-101.

[30] Seffah, A. and Metzker, E. (2004) The Obstacles and Myths of Usability and Soft-
ware Engineering. Communications of the ACM, ACM, New York, 47, 71-76.

[31] Hak, J.L., Winckler, M. and Navarre, D. (2016) PANDA: Prototyping Using Anno-
tation and Decision Analysis. Proceedings of ACM SIGCHI EICS 2016, Brussels,
21-24 June 2016, 171-176. https://doi.org/10.1145/2933242.2935873

https://doi.org/10.1145/73660.73672
https://doi.org/10.1145/97924.97943
https://doi.org/10.1145/965145.801268
https://doi.org/10.1007/978-1-4471-0353-0_21
https://doi.org/10.1007/978-94-010-0421-3_18
https://doi.org/10.1145/2933242.2935873

T. R. Silva et al.

587

Annex

Table 2. Set of milestones observed per tool.

Tool Year [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

iPhoneMockup ?

iRise ?

JBart ?

Mockup Designer ?

Omnigraffle ?

ProcessOn ?

Protostrap ?

Serena Prot. Composer ?

SoftAndGUI ?

UXPin ?

Adobe XD ?

Adobe Illustrator 1987

Microsoft PowerPoint 1987

Adobe Photoshop 1988

Mirage 1988

Ensemble 1989

Lapidary 1989

Druid 1990

SCENARIOO 1990

MoDE 1990

SIRIUS 1990

Microsoft Visio 1992

SmartDraw 1994

SILK 1995

Adobe Fireworks 1997

Micr. Visual Studio 1997

Adobe InDesign 1999

AutoIt 1999

ScreenArchitect 2000

DENIM 2000

Axure 2003

Inkscape 2003

KeyNote 2003

DEMAIS 2003

Freeform 2003

CogTool 2004

SketchiXML 2005

Monet 2005

GUI Design Studio 2006

JotForm 2006

T. R. Silva et al.

588

Continued

MockupScreens 2006

JustInMind 2007

Micr. Expression Blend 2007

Balsamiq 2008

ConceptDraw 2008

DesignerVista 2008

inPreso Screens 2008

Matisse (Swing GUI B) 2008

MockingBird 2008

Pencil project 2008

Pidoco 2008

ProtoShare 2008

PickFu 2008

WireFrameSketcher 2008

ActiveStory Enhanced 2009

Cacoo 2009

Crank Storyboard Des. 2009

Creately 2009

DevRocket 2009

FlairBuilder 2009

ForeUI 2009

Gliffy 2009

GUI Machine 2009

LovelyCharts 2009

Microsoft Sketchflow 2009

Napkee 2009

IntuitionHQ 2009

iPlotz 2009

Simulify 2009

Adobe Flash Catalyst 2010

Appery.io 2010

BluePrint 2010

FrameBox 2010

HotGloo 2010

LucidChart 2010

MockaBilly 2010

Mockflow 2010

Naview 2010

Sketch 2010

10Screens 2011

Antetype 2011

T. R. Silva et al.

589

Continued

AppCooker 2011

Draw.io 2011

FieldTest 2011

InsitUI 2011

Lumzy 2011

MockupBuilder 2011

Mockups.me 2011

Mockup Tiger 2011

PowerMockup 2011

Proto.io 2011

GRIP-it 2011

AppMockupTools 2012

AppSketcher 2012

Codiqa 2012

FluidUI 2012

Indigo Studio 2012

Moqups 2012

Prototyping On Paper 2012

SceneBuilder 2012

Solidify 2012

FrameJS 2012

Gambit 2012

Alouka 2013

Concept.ly 2013

Flinto 2013

InVision 2013

Marvel 2013

NinjaMock 2013

Notism 2013

RWD Wireframes 2013

Webflow 2013

AppGyver Prototyper 2014

Avocado 2014

Mockup Plus 2014

SnapUp 2014

Atomic 2015

Easee 2015

Principle 2016

Vectr 2016

Origami 2016

Total: 121 105 12 93 85 34 71 12 81 51 10 33 29 13

Percentage: 86 9.9 76 70 28 58 9.9 66 42 8.2 27 23 10

[1] Non-Programming Skills, [2] Pen-Based Interaction, [3] Widgets, [4] Behavior Specification, [5] Collaborative Work, [6] Reuse Mechanism, [7] Scenario
Management, [8] Preview Mode, [9] Support for Usability Testing, [10] Support for Code Generation, [11] Version Control, [12] Annotations, [13] Support
for the Entire Design Lifecycle.

Submit or recommend next manuscript to SCIRP and we will provide best
service for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/
Or contact jsea@scirp.org

http://papersubmission.scirp.org/
mailto:jsea@scirp.org

	A Comparative Study of Milestones for Featuring GUI Prototyping Tools
	Abstract
	Keywords
	1. Introduction
	2. Methodological Approach
	2.1. Selection of Academic Tools
	2.2. Selection of Commercial Tools
	2.3. Classification of Tools
	2.4. Identification of Milestones

	3. Presentation of the Milestones
	3.1. Non-Programming Skills
	3.2. Pen-Based Interaction
	3.3. Widgets
	3.4. Behavior Specification
	3.5. Collaborative Work
	3.6. Reuse Mechanism
	3.7. Scenario Management
	3.8. Preview Mode
	3.9. Annotations
	3.10. Support for Usability Testing
	3.11. Support for Code Generation
	3.12. Version Control
	3.13. Support for the Entire Design Lifecycle

	4. Discussion of the Findings
	5. Conclusions
	References
	Annex

