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Abstract 
The International Software Benchmarking and Standards Group (ISBSG) da-
tabase was used to build estimation models for estimating software functional 
test effort. The analysis of the data revealed three test productivity patterns 
representing economies or diseconomies of scale and these patterns served as 
a basis for investigating the characteristics of the corresponding projects. 
Three groups of projects related to the three different productivity patterns, 
characterized by domain, team size, elapsed time and rigor of verification and 
validation carried out during development, were found to be statistically sig-
nificant. Within each project group, the variations in test effort can be ex-
plained, in addition to functional size, by 1) the processes executed during 
development, and 2) the processes adopted for testing. Portfolios of estima-
tion models were built using combinations of the three independent variables. 
Performance of the estimation models built using the function point method 
innovated by the Common Software Measurement International Consortium 
(COSMIC) known as COSMIC Function Points, and the one advocated by the 
International Function Point Users Group (IFPUG) known as IFPUG Func-
tion Points, were compared to evaluate the impact of these respective sizing 
methods on test effort estimation. 
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1. Introduction 

This paper reports on a set of estimation models designed with data chosen from 
the ISBSG repository consisting of functional sizes reported both in IFPUG 
function points [1] and COSMIC function points. These estimation models were 
evaluated using criteria for measuring outputs from estimation models. The 
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models were compared to understand their performance based on the measure 
of their predictability.  

The motivation for this research work arises from the fact that existing tech-
niques for estimating test effort (such as judgment-based, work breakdown, fac-
tors & weights, and functional size based techniques) suffer from several limita-
tions [2] [3], while other innovative approaches for estimating testing effort 
(such as fuzzy inference, artificial neural networks, and case-based reasoning as 
proposed in the literature) are yet to be adopted in the industry. There is a 
growing body of work on the use of the COSMIC function points [4] [5] for es-
timation and performance measurement of software development projects 
which can be adapted for estimating software test effort too.  

The remainder of this paper is structured as follows. Section 2 presents the 
data preparation; Section 3 is data analysis; Section 4 is the estimation models 
and Section 5 is the conclusions. 

2. Data Preparation 
2.1. ISBSG Data 

Release 12 of ISBSG data published in 2013 [6] consists of data related to para-
meters of software projects re-ported over the last two and half decades, provid-
ing industry and researchers with standardized data for benchmarking and esti-
mation. The ISBSG dataset has been extensively reviewed for its applicability to 
building effort estimation models, including effects of outliers and missing val-
ues [7] [8]. 

The attributes of interest for test effort estimation models are: 
a. Functional size data based on international measurement standards such as 

IFPUG and COSMIC function points. 
b. Schedule, team size, work effort information, project elapsed time and 

breakdown of work effort by project phase (planning, specifications, design, 
build, test and install). 

c. Project process related data based on software life cycle activities (e.g. plan-
ning, specifications, design, build, test) and adoption of practices from standards 
or models such as ISO 9001, CMMI, SPICE, PSP etc. used in developing the 
software. 

d. Grouping attributes: industry sector, application group (e.g., business, real 
time etc.), and development type (new development, enhancement or re-deve- 
lopment). 

e. Development platform: PC, mid-range, main frame or multi-platform. 
f. Architecture: whether the application is standalone, multi-tier, client/server 

or Web-based. 
g. Language type: 3GL, 4GL, or application generators used in development. 
h. Overall data quality rating assigned by the ISBSG: A, B, C or D indicating 

very good to unreliable. 
i. Function points data quality rating assigned by the ISBSG: A, B, C or D 

ranging from very good to unreliable. 
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2.2. Data Preprocessing 

A set of criteria was defined to ensure data quality, relevance to current industry 
needs, suitability to the testing context and adequacy for statistical analysis, as 
follows: 

1) Data Quality 
a. ISBSG quality rating:  
Data quality ratings of A and B were selected to reduce risk and improve con-

fidence in the results.  
b. Function point size quality: 
When IFPUG function points were used for the measurement of size, only the 

un-adjusted function point value was considered. Function point data quality 
ratings of C and D were excluded from the data. 

2) Data Relevance 
ISBSG data consist of projects reported since the early 90s. Data prior to 2000 

and projects with an architecture type of “standalone” were removed while 
client/server or Web-based projects were considered for modelling. 

3) Data Suitability 
To exclude trivial projects, the following filters were applied: 
a. Total normalized work effort (full life cycle effort for project) equal to or 

greater than 80 hours. 
b. Efforts reported for testing greater than or equal to 16 hours. 
c. Types of testing other than functional testing were excluded. 
4) Data Adequacy 
a. Application group chosen: business.  
b. Development type chosen: new development and re-development. 

2.3. Generation of Datasets 

Applying the filters related to the criteria for data selection and removal of out-
liers resulted in 142 data points, which were then grouped to form four datasets: 

Dataset A: This dataset consists of all 142 data points including project func-
tional size measures reported in IFPUG 4.1 or COSMIC FP. For this study, they 
were not differentiated within dataset A as they correlate well even though the 
relationship is not the same across all size ranges [9].  

Dataset B: In the case of dataset A, projects with an architecture field value of 
“standalone” were eliminated from the original ISBSG data set, while “blanks” 
were retained. To be very specific about the architecture type, “blanks” were also 
eliminated from dataset A to arrive at dataset B, with 72 data points. 

Dataset C: Data set C is made up of projects where functional size was re-
ported in COSMIC function points. It is a subset of data set A and has 82 data 
points. 

Dataset D: Dataset D includes only projects where functional size was re-
ported in IFPUG function points. It is another subset of dataset A and contains 
60 data points. 
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3. Data Analysis 
3.1. Strategy 

The following strategy was adopted for data analysis: 
a) Identify data point subsets exhibiting different levels of testing productiv-

ity.  
b) Analyze these subsets to identify the possible causes for the differences in 

productivity.  

3.2. Identification of Test Productivity Levels 

The scatter diagram in Figure 1 depicts a large dispersion between functional 
size and test effort, the independent and dependent variables, respectively. The 
pattern is closer to wedge-shaped and is typical of data from large repositories 
[10]. 

Within the dataset of Figure 1, there are candidate groups exhibiting both 
large economies of scale and large diseconomies of scale. The rate of increase of 
test effort is not the same for all similar functional sizes. Analyzing various slices 
of data brought out different testing productivity levels (Figure 2). 

As economies and diseconomies of scale correspond to different productivity 
levels, a new term “test delivery rate” (TDR) was defined to describe project 
testing productivity. TDR is the rate at which software functionality is tested as a 
factor of the effort required, and is expressed as hours per functional size unit  
 

 
Figure 1. Scatter diagram: size versus test effort. 
 

 
Figure 2. Multiple data groups representing different economies of scale. 
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(hr./FSU). Functional size unit (FSU) refers to either IFPUG or COSMIC func-
tion points, depending upon the sizing method used for measurement. The four 
varying levels of productivity are referred as “TDR levels”. TDR being the effect, 
the characteristics of the projects falling into each level were then investigated to 
identify the underlying causes. Due to the highly dispersed nature of TDR level 
4, only TDR levels 1 to 3 were taken up for further analysis and development of 
the estimation models. 

3.3. Identification of Candidate Characteristics of Projects  

Previous research work [11] [12] based on data from hundreds of software 
projects has indicated that team size and schedule (duration of the project) 
within a particular domain affect the productivity of development projects. As 
software testing is one of the phases of development, project attributes such as 
domain, team size and elapsed time are likely causes for test productivity, too. 
Testability of the software components, i.e., quality of the software delivered for 
testing, is critical for reducing the testing cost [13] and hence the effort for test-
ing. The quality of the software delivered for testing can be determined by the 
extent of verification and validation activities carried out during the develop-
ment process. 

From these previous studies, therefore, in choosing candidates of interest for 
our investigations we selected the following project characteristics: 

Team size: We classified team size into three categories typically present in the 
industry: (a) 1 - 4 persons, (b) 5 - 8 persons and (c) more than 8 persons resent-
ing small, medium and large team sizes, respectively.  

Elapsed Time: Elapsed time in calendar months was derived from the “project 
elapsed time”. Based on this attribute, projects were classified into three groups: 
(a) 1 - 3 months, (b) 4 - 6 months and (c) greater than 6 months, referred to as 
small, medium, and large, respectively. 

V & V rigor: This attribute was derived from the data fields related to the 
“Documents & Techniques” category in ISBSG, which indicates the degree of 
rigor applied during verification and validation. Two ratings are proposed for 
V&V rigor (Table 1). 

Application domain: This attribute was derived from the ISBSG data field 
“Industry Sector”. Considering the number of data points available for different 
industry sectors, the application domain was classified into three categories, 
namely: (a) banking, financial services and insurance (BFSI) (b) education and 
(c) government (govt). 
 
Table 1. V&V rigor rating scheme. 

V&V Rigor Rating Description 

Low Little or no evidence of reviews/inspection 

High 
Reviews/inspection reported for at least one  
of the specification, design and build phases 
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The group of projects contributing to each TDR level was termed the project 
group. Accordingly, project group 1 (PG1), project group 2 (PG2) and project 
group 3 (PG 3) refer to TDR levels 1, 2 and 3 discussed in Section 3.2. Based on 
the percentage of projects falling into each of the project groups for the four 
attributes of interest (Table 2), we were able to characterize the project groups. 

Close to half of the BFSI projects (46%) fell into PG3 followed by a third in 
PG2. All education projects fell into PG1 while slightly more than half of the 
government projects fell in PG2. Close to two thirds of projects with a small 
team size fell into PG1, while 82% (46% + 36%) those with a medium team size 
were distributed between PG1 and PG2. Slightly less than 50% of the large team 
size projects fell into PG3. Close to two thirds of projects with a small elapsed 
time went into PG1, while 71% (38% + 33%) of those with a medium elapsed 
time were spread between PG2 and PG3. Similarly, PG2 and PG3 shared 72% 
(40% + 32%) of the projects with a large elapsed time. Projects with higher V&V 
rigor had a two thirds presence in PG1 while 77% (38% + 39%) of the lower 
V&V rigor projects were divided more or less evenly between PG2 and PG3. 

The above analysis reveals that the three project groups have certain distinc-
tions with respect to the domain, team size, elapsed time and V&V rigor besides 
test productivity. To establish statistical significance, a test of hypothesis was 
performed and the p value computed. The significance test conducted on the 
three project groups with respect to these attributes resulted in a p value of less 
than 0.001 for V&V rigor and domain and less than 0.1 for team size and elapsed 
time. This further establishes that the variations across the three project groups 
are reasonably significant and the attributes identified are potential contributors 
to test productivity. 
 
Table 2. Analysis of project characteristics—Dataset A. 

Domain No. % PG1 PG2 PG3 Team Size No. % PG1 PG2 PG3 

BFSI 
No. 14 23 32 

Small 
No. 10 4 2 

% 20 33 46 % 63 25 13 

Education 
No. 11 0 0 

Medium 
No. 18 14 7 

% 100 0 0 % 46 36 18 

Govt. 
No. 6 10 2 

Large 
No. 5 4 8 

% 33 56 11 % 29 24 47 

Elapsed 
Time 

No. 
% 

PG1 PG2 PG3 
V & V 
Rigor 

No. 
% 

PG1 PG2 PG3 

Small 
No. 18 7 5 

Low 
No. 25 42 43 

% 60 23 17 % 23 38 39 

Medium 
No. 6 8 7 

High 
No. 21 7 4 

% 29 38 33 % 66 22 13 

Large 
No. 14 20 16      

% 28 40 32    
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The results of the analysis of the project characteristics in the three datasets A 
to C, excluding dataset D, demonstrate similar behavior. Characteristics of 
project groups PG1 to PG3 based on these attributes are summarized in Table 3. 

3.4. Identification of the Independent Variables 

1) Size 
It has been observed that functional size is the most accepted approach for 

measuring size, as sensitivity to changes in functional size has a greater impact 
on project effort [14] [15]. Here, correlation coefficients computed using dataset 
A, between size and test effort values of 0.9035 for PG1, 0.8572 for PG2 and 
0.8572 for PG3, indicate good correlation of functional size with effort. Size was 
therefore chosen as the primary independent variable. 

2) Non-Size Variables 
Size being the main independent variable, other independent variables were 

next examined for significance of incorporating them into estimation models. It 
has been observed [13] that “testability of software components”, meaning the 
quality of the software delivered for testing and testing processes followed while 
testing, are critical factors for reducing testing effort and improving software 
quality. To accommodate these process factors two new variables representing 
development process quality and testing process quality were defined and inves-
tigated as follows. 

a) Development Process Quality Rating (DevQ) 
The process followed during development was rated by considering the nature 

of the development life cycle followed and the artefacts produced, based on the 
following project attributes: 
 Standards followed.  
 Distinct development life cycle phases followed. 
 Verification activities carried out during development.  

The ISBSG data field “software process” has one of the values—CMMI, ISO, 
SPICE, PSP or any such standard followed during development. A set of fields 
representing “Documents and Techniques” exists in the ISBSG data providing 
information on the life cycle phases adopted and verification activities carried 
out during development. Based on these, a rating for DevQ was developed, as 
shown in Table 4. 

b) Test Process Quality Rating (TestQ) 
While reviewing, the data related to the testing process followed, it was found  

 
Table 3. Characteristics of project groups. 

Attribute PG1 PG2 PG3 

Domain Educational Government BFSI 

Team Size Small/Medium Small/ Medium Large 

Elapsed Time Small Medium/Large Medium/Large 

V&V Rigour High Low Low 
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Table 4. Rating for development process (DevQ). 

Software Process Documents & Techniques DevQ Rating 

Not reported Very little reporting to infer 0 

Reported Very little reporting to infer 1 

Not reported One or more phases has values 1 

Reported One or more phases has values 2 

 
that there were not enough fields in the ISBSG data to capture the details of the 
testing process, such as testing techniques adopted, levels of testing executed, 
test artefacts produced, reviews of test cases etc., to gauge the extent of testing. 
This notwithstanding, it was possible to classify the test process rating broadly 
into two categories (Table 5). 

3.5. Analysis of DevQ and TestQ 

Projects in data set A were analyzed in terms of DevQ and TestQ:  
 36%, 49%, and 15% of the projects were found to be in DevQ with ratings 0, 1 

and 2, respectively. 
 80% and 20% of the projects had TestQ ratings 0 and 1 respectively. 

To further justify the inclusion of these variables, two statistical tests were car-
ried out to quantify their significance (Table 6):  
 the Kruskal-Wallis Test for DevQ as it involved three categories, and  
 the Mann Whitney Test was applied for TestQ. 

The p value indicated that size, DevQ and TestQ were statistically significant.  

4. Estimation Models 
4.1. Portfolio of Models 

The linear form of relationship between input and output variables was chosen 
to build models for effort estimation. Linear regression analysis, a well-known 
and well understood algorithm in statistics and machine learning, does not re-
quire much training data, and is easily interpreted by project managers. Parame-
tric models are objective, repeatable, fast and easy to use, and can be used early 
in the life cycle if they are properly calibrated and validated [16]. A set of 24 
models under four portfolios were generated (Table 7) using datasets A to D. 

Portfolio A models based on dataset A: 
Models 1, 2 and 3 are for each project group using size as the independent va-

riable.  
Models 4, 5 and 6 use both size and DevQ as independent variables and relate 

to project groups 1, 2 and 3 respectively.  
Models 7, 8 and 9 use size, DevQ and TestQ as independent variables and 

represent project groups 1, 2 and 3 respectively.  
Portfolio B models based on dataset B:  
Models 10, 11 and 12 relate to project groups 1, 2 and 3 respectively using size 

as independent variable.  
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Table 5. Rating for test process (TestQ). 

Test Process Criteria Test Process Rating (TestQ) 

No evidence of Test Artefacts 0 

Evidence of Test Artefacts 1 

 
Table 6. Test of significance for independent variables. 

Statistical Test Variable p Value 

Chi Square Size < 0.001 

Kruskal-Wallis Test DevQ 0.005 

Mann-Whitney Test TestQ 0.003 

 
Table 7. Portfolio of estimation models. 

Portfolio ID PG 

Model Coefficients 

A B 
1D 2D 1T 2T 

DevQ = 0 DevQ = 1 DevQ = 0 DevQ = 1 TestQ = 0 TestQ = 0 

A 

1 1 1.617 0.604       

2 2 20.69 1.705       

3 3 98.13 4.801       

4 1 16.12 0.485 19.347 −39.375 −0.23 0.214   

5 2 20.57 1.56 −94.1 34.077 0.562 −0.009   

6 3 38.85 3.734 −55.913 92.609 2.14 0.852   

7 1 −9.62 0.65 6.967 −41.78 0.003 0.193 38.124 −0.191 

8 2 30.74 1.541 −19.755 62.481 −0.039 −0.338 −84.511 0.62 

 9 3 38.85 3.734 −55.913 92.609 2.14 0.852 0 0 

B 

10 1 −8.3448 0.61       

11 2 −30.569 1.929       

12 3 −157.62 6.126       

13 1 16.124 0.485 46.572 −52.672 −0.201 0.222   

14 2 20.57 1.56 −180.84 −60.58 0.973 0.313   

15 3 38.847 3.734 −375.38 5.027 3.881 1.449   

16 1 −12.583 0.68 58.608 −43.272 −0.208 0.171 16.67 −0.188 

17 2 56.462 1.492 2.443 129.634 −0.354 −1.025 −219.18 1.395 

18 3 38.847 3.734 −375.38 5.027 3.881 1.449 0 0 

C 

19 1 −20.142 0.693       

20 2 47.999 1.59       

21 3 136.267 4.481       

D 

22 1 37.588 0.455       

23 2 −29.939 1.917       

24 3 77.585 6.087       
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Models 13, 14 and 15 belong to project groups 1, 2 and 3 respectively using 
size and DevQ as independent variables.  

Models 16, 17 and 18 refer to project groups 1, 2 and 3 using size, DevQ and 
TestQ as independent variables.  

Portfolio C models based on dataset C (COSMIC FP Projects): 
Model 19, 20 and 21 relate to project groups 1, 2 and 3 respectively using size 

as independent variable. 
Portfolio D models based on dataset D (IFPUG FP Projects): 
Model 22, 23 and 24 relate to project groups 1, 2 and 3 respectively using size 

as independent variable. Depending upon the number of independent variables, 
model equations have coefficients A, B, D1, D2, T1 and T2 (Table 7), which 
were used to estimate the value for test effort for specific values of size, DevQ 
and TestQ as explained next. 

Using estimation models based on size: 
Test effort for a particular functional size can be estimated from models using 

the following equation representing size based estimation models: 

( )( )Test Effort A B Size= + ×                   (1) 

Test effort for a particular functional size can be computed by using the values 
of A and B from Table 7 and substituting functional size for “size” in Equation 
(1). 

Using estimation models based on size and DevQ: 
Test effort for a particular value of functional size and DevQ can be estimated 

from models using the following equation: 

( ) ( )Test Effort A B Size D1 D2 Size= + × + + ×            (2) 

Test effort for a particular functional size where rating for DevQ is available 
can be computed using Equation (2). D1 and D2 have different values based on 
the value of DevQ. Appropriate values from Table 7 are to be chosen depending 
on whether DevQ = 0 or Dev Q = 1. For DevQ = 2, the value is 0, the base value 
considered while modelling. 

Using estimation models based on size, DevQ and TestQ: 
The equation for estimating Test Effort for particular values of size, DevQ and 

TestQ from the model has the form: 

( ) ( ) ( )Test Effort A B Size D1 D2 Size T1 T2 Size= + × + + × + + ×    (3) 

Equation (3) can be used for computing test effort estimate for a particular 
functional size when ratings for both DevQ and TestQ are available. Values for 
D1 and D2 are to be chosen from Table 7 depending upon the input value of 
DevQ, is either 0 or 1. Values for T1 and T2 are provided for TestQ = 0. Values 
for DevQ = 2 and Test Q = 1 are zero, as they were the baseline for the model-
ling. 

An estimator chooses the project group by mapping the characteristics of the 
project to be estimated to the attributes of project group and selects the related 
data set in order to choose the closest model for estimation. 
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4.2. Evaluation of Estimation Models 

The quality of estimation models was evaluated using criteria such as coefficient 
of determination (R2), Adj R2, magnitude of relative error (MRE), median mag-
nitude of relative error (MedMRE) [10] (Table 8).  

The value of R2 for portfolio A ranged between 0.74 and 0.86, and that of Adj 
R2 ranged between 0.73 and 0.83 indicating a strong relationship between the 
independent variables-size, DevQ and TestQ with the dependent variable test 
effort in all models.  

The value of MedMRE ranging between 0.22 and 0.28 shows that the error 
levels between the estimate and actual are within the range of 22% to 28% for 
50% or less of the samples, which is practical considering the multi-organiza- 
tional data used for building the models.  

Similar observations can be made for rest of the models.  
 
Table 8. Quality of estimation models. 

Portfolio Model id No. of projects R2 Adj R2 MedMRE 

A 
(N = 142) 

1 46 0.82 0.81 0.24 

2 49 0.74 0.73 0.27 

3 47 0.77 0.79 0.25 

4 46 0.85 0.83 0.24 

5 49 0.75 0.73 0.28 

6 47 0.79 0.77 0.22 

7 46 0.86 0.83 0.23 

8 49 0.78 0.74 0.24 

9 47 0.79 0.77 0.22 

B 
(N = 72) 

10 32 0.80 0.8 0.24 

11 24 0.67 0.66 0.26 

12 16 0.83 0.82 0.25 

13 32 0.84 0.81 0.22 

14 24 0.70 0.62 0.25 

15 16 0.91 0.86 0.10 

16 32 0.87 0.83 0.20 

17 24 0.70 0.57 0.25 

18 16 0.91 0.86 0.10 

C 
(N = 82) 

19 27 0.87 0.86 0.19 

20 26 0.73 0.71 0.30 

21 29 0.82 0.82 0.23 

D 
(N = 60) 

22 19 0.78 0.77 0.25 

23 23 0.76 0.75 0.26 

24 18 0.70 0.68 0.33 
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4.3. Comparison of Model Performance 
4.3.1. Predictive Performance of Models 
The criterion used to evaluate the predictive quality of an estimation model was 
PRED (l) = k/n, where k is the number of projects in a specific sample of size n 
for which MRE <= l. In the software engineering literature, an estimation model 
is considered good when PRED (0.25) = 0.75 [17] or PRED (0.30) = 0.70 and 
PRED (0.20) = 0.80 [10]. PRED (0.25) = 0.75 means 75% of the samples should 
have MRE values less than or equal to 0.25. While an MRE error level in 75% of 
the population less than 0.25 is the expectation of this criterion, multi-organiza- 
tional data such as in ISBSG data exhibit large MRE for 75% of the population.  

To compare the performance of models, MRE values for 50% and 25% of the 
population in addition to 75% were taken into consideration. Each vertical bar 
in the charts (Figures 3-7) depicts the MRE value for 50% in the middle with 
either extremes showing MRE values for 25% and 75% of the population for 
each of the identified model. The middle points of each bar (MRE for 50% of 
population) are connected by a line to visualize the difference between succes-
sive models. This point is referred simply as MRE in the following discussions 
and was used to compare the performance of the models. 
 

 
Figure 3. Performance of data set A models. 

 

 
Figure 4. Performance of size based models. 
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Figure 5. Size & DevQ models in data set A and B. 

 

 
Figure 6. Size, DevQ & TestQ models in data set A and B. 

 

 
Figure 7. Performance of COSMIC vs. IFPUG models. 

4.3.2. Dataset A Models in Portfolio A 
There are 9 models in portfolio A. A comparison of these nine models reveals 
how predictability varies between project groups and while using different inde-
pendent variables. Figure 3 depicts the MRE levels of models corresponding to 
PG1 (the leftmost three bars), PG2 (the next three bars) and PG3 (the rightmost 
three bars). 

Within PG1, the model with size, DevQ and TestQ as independent variables 
(model 7) demonstrate lower MRE for 50% of the population compared to the 
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model with size, Dev Q (model 4) which is lower than the model with size alone 
(model 1).  

A similar pattern is observed in PG3 for models 3, 6 and 9. In the case of 
PG2, the model using size, DevQ and TestQ (model 5) exhibits higher MRE 
compared to other models in PG2 (models 2 & 8) as well as for all the models in 
dataset A. 

4.3.3. Size-Based Models 
A comparison of all models using only size as an independent variable across all 
portfolios shows under which context size-based models provide better predic-
tability. Figure 4 illustrates size-based models from each portfolio, the first three 
bars corresponding to each project group in portfolio A, the next three corres-
ponding to each project group in portfolio B and so on. 

In summary: 
 Size-based models for project groups PG1 and PG3 are better than PG2 with 

the exception of portfolio D. 
 PG3 size models, in general perform better than PG1 and PG2 except for the 

last model (Model ID 24). 

4.3.4. Models in Portfolios A and B 
Portfolio B models were developed using a subset of data used for portfolio A. 
Portfolio B models were more specific to web or client/server architecture, un-
like portfolio A models where there was an approximation due to differences in 
architecture. A comparison between the models across portfolios A and B using 
the independent variables DevQ and TestQ along with size helped to make cer-
tain observations. Figure 5 depicts size & DevQ models for PG1, PG2 and PG3 
for dataset A and B, while Figure 6 illustrates size, DevQ and TestQ models for 
PG1, PG2 and PG3 for data set A and B. 

Examination of Figure 5 reveals that models in portfolio B (models 13, 
14,15,16 & 18) performed much better than models in portfolio A (models 4 to 
9) with model 17 being an exception. 

4.3.5. COSMIC and IFPUG Models 
The performance of COSMIC (dataset C) and IFPUG (dataset D) models was 
compared next using size-based models from portfolio A as the reference. Both 
COSMIC and IFPUG data are subsets of dataset A consisting of projects meas-
ured using the corresponding sizing method. This comparison can help to eva-
luate prediction accuracy of COSMIC-based models versus IFPUG-based mod-
els. Figure 7 depicts PG1 models for dataset A (model 1), COSMIC (model 19), 
IFPUG (model 22), PG2 models for data set A (model 2), COSMIC (model 20), 
IFPUG (model 23) and PG3 (model 3), COSMIC (model 21) and IFPUG (model 
24). 

COSMIC-based estimation models using dataset C had better performance 
than IFPUG-based estimation models using data set D, with the exception of 
PG2 (model 20). COSMIC-based PG3 model demonstrated the best predictabil-
ity. Furthermore, the R2 values for COSMIC-based models ranged from 0.73 to 
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0.87 while that of IFPUG-based models ranged from 0.70 to 0.78 (Table 8). The 
MedMRE value for COSMIC-based models ranged between 0.19 and 0.30 com-
pared to IFPUG based models ranging between 0.25 and 0.33 (Table 8) demon-
strating better accuracy of COSMIC based models. 

5. Conclusions 

This research work explored software testing from the perspective of estimation 
of efforts for functional testing. The ISBSG database, with its wealth of project 
data from around the globe, was used for the first time in building effort models 
for functional testing. The analysis of the data revealed three test productivity 
patterns representing economies and diseconomies of scale, based on which 
characteristics of the corresponding projects were investigated. Three project 
groups, characterized by domain, team size, elapsed time and rigor of verifica-
tion and validation, and related to three productivity patterns were found to be 
statistically significant. Within each project group, the variations in test effort 
could be explained, apart from the functional size, by 1) the processes executed 
during the development, and 2) the processes adopted for testing.  

Two new independent variables, DevQ and TestQ were identified as influential 
in the estimation of effort. A total of 24 models were built, using combinations 
of the three independent variables. The quality of each model was evaluated using 
established criteria such as R2, Adj R2, MRE and MedMRE. As these models were 
built from ISBSG data, they could serve as an industry benchmark for functional 
test efforts. Test estimation models using projects measured in COSMIC func-
tion point exhibited better quality and resulted in more accurate estimates com-
pared to projects measured in IFPUG function points.  

The models are applicable only for the ranges of size in the data set and for 
testing of business applications. The models generated are not applicable for en-
hancement projects. These limitations can be overcome by generating specific 
models for enhancements or real-time projects, using an approach like the one 
followed in this work. This may require identification of additional project cha-
racteristics, as well as other variables influencing testing effort. PG4—the fourth 
group of project data points remains to be analyzed.  

The process factors used for rating DevQ and TestQ can be further refined 
within organizational context. There could be other variables that influence test 
efforts in specific contexts, which would require further study and analysis. The 
estimation models designed can be further refined by considering testing tech-
niques adopted as a parameter to evaluate their impact and then used to build 
estimation models. 
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