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Abstract 
IoT technologies are being rapidly adopted for manufacturing automation, remote 
machine diagnostics, prognostic health management of industrial machines and 
supply chain management. A recent on-demand model of manufacturing that is le-
veraging IoT technologies is called Cloud-Based Manufacturing. We propose a Soft-
ware-Defined Industrial Internet of Things (SD-IIoT) platform for as a key enabler 
for cloud-manufacturing, allowing flexible integration of legacy shop floor equip-
ment into the platform. SD-IIoT enables access to manufacturing resources and al-
lows exchange of data between industrial machines and cloud-based manufacturing 
applications. 
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1. Introduction 

Internet of Things (IoT) comprises things that have unique identities and are connected 
to the Internet. The “Things” in IoT refers to IoT devices which have remote sensing 
and/or actuating capabilities. IoT devices can exchange data with other connected de-
vices and applications (directly or indirectly), or collect data and process the data either 
locally or send the data to centralized servers or cloud-based application back-ends for 
processing [1]. IoT technologies are promising for industrial and manufacturing systems 
and the experts have forecast a trillion dollar impact on these sectors by IoT. IoT tech-
nologies are being adopted for manufacturing automation, remote machine diagnostics, 
prognostic health management of industrial machines and supply chain management.  

A recent on-demand model of manufacturing that is leveraging IoT technologies is 
called Cloud-Based Manufacturing (CBM) [2]. CBM enables ubiquitous, convenient, 
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on-demand network access to a shared pool of configurable manufacturing resources 
that can be rapidly provisioned and released with minimal management effort or ser-
vice provider interaction [3]. 

In this paper, we propose a Software-Defined Industrial Internet of Things (SD-IIoT) 
platform as a key-enabler for cloud-based manufacturing, especially towards integrat-
ing legacy shop floor equipment into the cloud environment. SD-IIoT platform enables 
access to manufacturing resources and allows exchange of data between industrial ma-
chines and cloud-based manufacturing applications. The contributions of this work are 
1) a Software-Defined Industrial Internet of Things (SD-IIoT) platform is proposed; 2) 
a cloud-based big data analytics stack for IIoT is proposed; 3) an IIoT device manage-
ment approach based on NETCONF and YANG is proposed; 4) an implementation 
case study based on the LoRa wireless communication technology is presented.  

2. Related Work 

CBM is a service-oriented manufacturing model in which service consumers are able to 
configure, select, and utilize configurable manufacturing resources. CBM leverages the 
four key cloud computing service models: Infrastructure-as-a-Service (IaaS), Platform- 
as-a-Service (PaaS), Hardware-as-a-Service (HaaS), and Software-as-a-Service (SaaS) 
[4]. Software defined systems enable abstracting the control and management functio-
nality from the underlying devices and providing these functionalities in a software 
layer. A software defined framework for Internet of Things (SDIoT) was proposed in 
[5]. The core of the SDIoT framework includes a control layer comprising an IoT con-
troller, a software-defined network (SDN) controller, a software-defined storage 
(SDStore) controller and a software-defined security (SDSec) controller. In [6], a soft-
ware-defined IoT architecture for decoupling smart urban sensing applications from 
underlying physical infrastructures is proposed. A software-defined Industrial Internet 
of Things architecture for managing physical devices and providing an interface for in-
formation exchange, is proposed in [7]. 

3. Software Defined Industrial Internet of  
Things (SD-IIoT) Platform 

Figure 1 shows the architecture of the proposed SD-IIoT platform. The platform com-
prises a network of Software Defined Things (SDT) as IoT devices (end-nodes, routers 
and gateways) and a cloud-backend system. The IoT devices run an SD-IIoT controller 
which enables the attached industrial machines to communicate with the cloud and al-
so allows cloud-based manufacturing applications to access the machines. The IoT de-
vices in SD-IIoT offer a “plug and play” solution that allows machines to exchange data 
on their operations to the cloud and receive commands from cloud-based manufactur-
ing applications. The SD-IIoT controller includes the following interfaces: 

3.1. Northbound Interface 

The northbound interface (cloud bridge) allows an IoT device (gateway) to publish the 
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Figure 1. Proposed software defined industrial internet of things (SD-IIoT) platform. 

 
data to the cloud. For communication with the cloud, protocols as MQTT and REST 
(over HTTPS) are used. The northbound APIs in the SD-IIoT controller include the 
cloud connectivity libraries (such as REST and MQTT libraries).  

The cloud-backend system comprises a big data analytics stack, billing and metering 
services and manufacturing applications. The big data analytics stack allows analysis of 
data collected from the industrial machines. Figure 2 shows the components of the 
proposed analytics stack. The components are described as follows: 

3.1.1. Data Access Connectors 
The Data Access Connectors includes tools and frameworks for collecting and ingesting 
data from various sources into the big data storage and analytics frameworks. The 
choice of the data connector is driven by the type of the data source. The types of con-
nectors are described as follows: 
• Publish-Subscribe Messaging: Publish-Subscribe is a communication model that 

involves publishers, brokers and consumers. Publishers are the source of data. Pub-
lishers send the data to the topics which are managed by the broker. We use pub-
lish-subscribe messaging frameworks such as Apache Kafka and Amazon Kinesis 
for the proposed analytics stack.  
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• Messaging Queues: Messaging queues are useful for push-pull messaging where the 
producers push data to the queues and the consumers pull the data from the queues. 
The producers and consumers do not need to be aware of each other. We use mes-
saging queues such as RabbitMQ, ZeroMQ, RestMQ and Amazon SQS for the pro-
posed stack.  

• Custom Connectors: Custom connectors can be built based on the source of the 
data and the data collection requirements. These include REST and MQTT connec-
tors.  

3.1.2. Data Storage 
The data storage block in the big data stack includes distributed filesystems and 
non-relational (NoSQL) databases, which store the data collected from the raw data 
sources using the data access connectors. We use the Hadoop Distributed File System 
(HDFS) for the proposed analytics stack. HDFS is a distributed file system that runs on 
large clusters and provides high-throughput access to data. With the data stored in 
HDFS, it can be analyzed with various big data analytics frameworks built on top of 
HDFS. For certain analytics applications, it is preferable to store data in a NoSQL data-
base such as HBase. HBase is a scalable, non-relational, distributed, column-oriented 
database that provides structured data storage for large tables. 

 

 
Figure 2. Proposed cloud-based big data analytics stack for IIoT. 
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3.1.3. Batch Analytics 
The batch analytics block in the big data stack includes various frameworks which allow 
analysis of data in batches. These include the following: 
• Hadoop-MapReduce: Hadoop is a framework for distributed batch processing of 

big data. The MapReduce programming model is used to develop batch analysis 
jobs which are executed in Hadoop clusters.  

• Pig: Pig is a high-level data processing language which makes it easy for developers 
to write data analysis scripts which are translated into MapReduce programs by the 
Pig compiler.  

• Oozie: Oozie is a workflow scheduler system that allows managing Hadoop jobs. 
With Oozie, you can create workflows which are a collection of actions (such as 
MapReduce jobs) arranged as Direct Acyclic Graphs (DAG).  

• Spark: Apache Spark is an open source cluster computing framework for data ana-
lytics. Spark includes various high-level tools for data analysis such as Spark 
Streaming for streaming jobs, Spark SQL for analysis of structured data, MLlib ma-
chine learning library for Spark, and GraphX for graph processing.  

• Solr: Apache Solr is a scalable and open-source framework for searching data.  
• Machine Learning: Spark MLlib is the Spark’s machine learning library which pro-

vides implementations of various machine learning algorithms. H2O is an open 
source predictive analytics framework which provides implementations of various 
machine learning algorithms.  

3.1.4. Real-Time Analytics 
The real-time analytics block includes the Apache Storm and Spark Streaming frame-
works. Apache Storm is a framework for distributed and fault-tolerant real-time com-
putation. Storm can be used for real-time processing of streams of data. Storm can 
consume data from a variety of sources such as publish-subscribe messaging frame-
works (such as Kafka or Kinesis), messaging queues (such as RabbitMQ or ZeroMQ) 
and other custom connectors. Spark Streaming is a component of Spark which allows 
analysis of streaming data such as sensor data, click stream data, web server logs, for 
instance. The streaming data is ingested and analyzed in micro-batches. Spark Stream-
ing enables scalable, high throughput and fault-tolerant stream processing. 

3.1.5. Interactive Querying 
Interactive querying systems allow users to query data by writing statements in 
SQL-like languages. We use the following interactive querying frameworks for the 
proposed analytics stack: 
• Spark SQL: Spark SQL is a component of Spark which enables interactive querying. 

Spark SQL is useful for querying structured and semi-structured data using 
SQL-like queries. 

• Hive: Apache Hive is a data warehousing framework built on top of Hadoop. Hive 
provides an SQL-like query language called Hive Query Language, for querying data 
residing in HDFS.  
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• Amazon Redshift: Amazon Redshift is a fast, massive-scale managed data ware-
house service. Redshift specializes in handling queries on datasets of sizes up to a 
petabyte or more parallelizing the SQL queries across all resources in the Redshift 
cluster.  

• Google BigQuery: Google BigQuery is a service for querying massive datasets. 
BigQuery allows querying datasets using SQL-like queries. 

3.1.6. Serving Databases, Web & Visualization Frameworks 
While the various analytics blocks process and analyze the data, the results are stored in 
serving databases for subsequent tasks of presentation and visualization. Web frame-
works and serving databases can be used to build IoT applications. The applications 
provide an interface that the users can use to control and monitor various aspects of the 
IoT system. Applications also allow users to view the system status and view the 
processed data. 

3.2. Southbound Interface 

The southbound interface (sensor bridge) between the interface board and the SBC 
enables the SBC to capture sensor data from the interface board and also send control 
signals to the actuators. The Southbound APIs include sensor and actuator connectivity 
libraries which are installed on the SBC. Figure 3 shows a reference architecture of the 
interface board. The interface board provides easy and configurable connections to a 
variety of machines. The interface board makes use of digital, analog, serial and USB 
interfaces to capture data from a variety of sensors and systems. The interface board has 
a serial interface to the single-board computer (SBC). While modern industrial ma-
chines can directly communicate with the interface board (over digital, analog, serial or 
USB interfaces), many legacy machines make use of controllers that are impractical to 
access or digital communication is nonexistent. Therefore, the interface board makes 
use of sensors which are external to the legacy machines’ control box. 

 

 
Figure 3. Reference design for interface board. 
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3.3. Eastbound Interface 

The eastbound interface (device bridge) enables connectivity to external systems over 
digital, analog, serial and USB connections. For wireless connectivity to other IoT de-
vices various wireless communication protocols such as 802.15.4, ZigBee, LoRa or Blu-
etooth Low Energy (BLE), are used. The wireless communication modules for these 
protocols interface with the SBC over digital, analog, serial or USB interfaces. 

3.4. Westbound Interface 

The westbound interface (admin bridge) allows managing and configuring the IoT de-
vice using a router-like web interface and also viewing the device status and statistics. 
For device management, we use the Network Configuration Protocol (NETCONF). 
Network Configuration Protocol (NETCONF) is a session-based network management 
protocol. NETCONF allows retrieving state or configuration data and manipulating 
configuration data on network devices [8]. Figure 4 shows a generic IoT system man-
agement architecture based on NETCONF.  

NETCONF works on SSH transport protocol and ensures reliable delivery of mes-
sages. For framing request and response messages NETCONF uses XML-encoded Re-
mote Procedure Calls (RPCs). For retrieving and editing configuration data from net- 

 

 
Figure 4. IoT device management with NETCONF-YANG. 
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work devices, various operations are provided by NETCONF. Configuration and state 
data in NETCONF is encoded in XML. NETCONF uses a data modeling language 
called YANG [9] for defining the schema of the configuration and state data. YANG 
modules define the configuration data, state data and RPC calls. NETCONF provides a 
clear separation of the configuration and state data. The configuration data is stored on 
a NETCONF configuration datastore on the NETCONF server (which runs on the IoT 
device). The management application (which acts as a NETCONF client), establishes a 
NETCONF session with the server. NETCONF clients send requests to the server for 
editing the configuration data or retrieving the current configuration. A Management 
System is used to send NETCONF messages for configuring the IoT device. The man-
agement applications use a management API to start NETCONF sessions, read state 
data, read/write configuration data, and invoke RPCs. Transaction Manager is respon-
sible for executing all the NETCONF transactions. The Rollback manager is used to 
rollback a current configuration to its original state. The Configuration validator en-
sures the validity of the resulting configurations after applying different transactions. 
For reading configuration data from the configuration datastore, a configuration API is 
used. The configuration API also allows writing operational data to the operational da-
tastore. The Data Provider API is used for reporting device statistics and operational 
data [1].  

The device management approach (based on NETCONF and YANG) used by the 
proposed SD-IIoT platform provides a predictable and easy to use management capa-
bility and the ability to automate system configuration. For Industrial IoT systems that 
consist of multiple devices, ensuring system-wide configuration can be critical for the 
correct functioning of the system. System-wide configuration (in which all devices are 
configured in a single atomic transaction) ensures that all the devices in an IIoT system 
run the same configuration. This “all or nothing” approach adopted in the SD-IIoT 
platform ensures that the system works as expected. 

4. SD-IIoT Deployment Topologies 

Figure 5 shows the deployment topologies for the SD-IIoT platform. The topologies are 
described as follows: 
• Point-to-Point Topology: A point-to-point topology is the simplest topology that 

includes an end-node and a gateway. There is a direct wireless connection between 
the end-node and gateway. The range of the network in a point-to-point topology is 
limited to a single hop and depends on the wireless communication technology/ 
protocol being used.  

• Star Topology: In a star topology there is a single gateway node to which all the 
end-nodes are directly connected over a wireless link. Star topology provides a con-
sistent and predictable performance as the data packets from an end-node travel 
one-hop to directly reach the gateway.  

• Mesh Topology: A mesh topology consists of end-nodes, router nodes and a gate-
way. The end-nodes send data to the routers which route the data to the gateway. 
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Data packets from an end-node travel multiple hops to reach the gateway node. 
Mesh topology is useful to extend the network range as the network range is not li-
mited to a single hop as in the case of a star topology.  

4.1. IoT Device Types 

Within the proposed SD-IIoT platform, the following types of IoT devices are possible: 
• End Node: The end-nodes interface directly with the machines. The end-nodes do 

not have Internet connectivity, therefore, to publish data to the cloud, the end- 
nodes send the data to a gateway node. For communication between the end-nodes 

 

 
Figure 5. Deployment topologies for SD-IIoT: (a) point-to-point; (b) star topology; (c) mesh to-
pology. 
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and the gateway various wireless communication technologies such as LoRa, 
802.15.4, ZigBee or Bluetooth Low Energy (BLE), are used. The end nodes imple-
ment the Southbound, Eastbound and Westbound interfaces.  

• Router: The router nodes route the data sent by the end devices to the gateway. The 
router nodes implement the Eastbound and Westbound interfaces. 

• Gateway: The gateway receives data from the end-nodes and sends it to a cloud 
backend over the Internet. The gateway implements the Northbound, Eastbound 
and Westbound interfaces.  

• Full Node: A full node directly interfaces with the machines and publishes the data 
directly to the cloud. The full nodes implements the Northbound, Southbound, 
Eastbound and Westbound interfaces.  

4.2. Forward & Reverse Path Communication 
4.2.1. Forward Path 
The forward path communication from the end-nodes to the gateway and finally to the 
cloud provides the ability to gather sensor data from the machines, machine mainten-
ance and performance monitoring data. Each message transmitted by an end-node is 
acknowledged by the gateway. If an end-node doesn’t receive an acknowledgement 
within a timeout period, the message is re-transmitted. The timeout period and number 
of retransmissions can be configured in the end-node.  

4.2.2. Reverse Path 
The reverse path communication from the cloud to the gateway and finally to the 
end-nodes provides the ability to update the “things” or the devices in the SD-IIoT 
platform over-the-air (OTA) and also send control commands to the machines. OTA 
updates allow adding new functionality or software updates for performance improve-
ment. Whenever a new update is available the administrator pushes the new SD-IIoT 
controller image from the cloud to the gateway. The gateway advertises the image me-
ta-data to all the end-nodes. Upon receiving the meta-data of the new image, the 
end-nodes compare the same with the meta-data of the currently installed image. The 
end-nodes then send an acknowledgement message to the gateway with a decision 
whether to trigger the update process or ignore the update. When an update trigger 
message is received, the gateway splits the new image into small fixed size chunks (typ-
ically chunk sizes vary from 5 kB to 50 kB) and transmits the chunks. The end-nodes 
acknowledge the receipt of each chunk and if the transmission of any chunk fails the 
gateway re-transmits the same. Upon receiving all the chunks, the end-nodes 
re-assemble the chunks to extract the new controller image. After successfully extract-
ing the controller image, each end-node notifies the gateway about the image receipt. 
Upon receiving the image receipt messages from all the nodes in the network, the ga-
teway broadcasts an activate message to all the end-nodes. Upon receiving the activate 
message, the end-nodes apply the new image. This activation process ensures that the 
updates are either applied to all the nodes or to none. The SD-IIoT platform also pro-
vides the flexibility to define “groups” of nodes that can be configured, controlled or 
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setup together.  

5. Implementation Case Study 

In this section we present an implementation case study of the proposed SD-IIoT plat-
form based on the Beaglebone Black SBC, Arduino UNO microcontroller board and 
the LoRa wireless communication modules.  

Industrial and manufacturing systems use various sensing technologies to obtain da-
ta on the performance and operations of machines. Collection and analysis of data can 
be challenging due to complex data communication systems and proprietary networks. 
One of the major challenges faced by Industrial Internet of Things (IIoT) systems is to 
enable communications over long ranges using very low power levels. Existing solu-
tions which are based on WiFi or ZigBee communication protocols have limited range 
and high power requirements. We present a LoRa-based wireless communication sys-
tem for the proposed SD-IIoT platform that allows collection of data from machines 
deployed in indoor environments. The data collected is published to cloud-based 
backend systems for further processing and analysis.  

LoRa is optimized for long range communication with low-power consumption and 
supports large networks with millions of devices and low data rates (ranging from few 
bytes to few kilobytes per second) [10]. LoRa uses unlicensed frequencies that are 
available worldwide, for example, 868 MHz for Europe, 915 MHz for North America 
and 433 MHz band for Asia. These frequency bands are lower than the popular 2.4 GHz 
band and have much less interference. The use of lower frequencies enables much bet-
ter coverage and great penetration in built environments. LoRa has ten predefined 
modes, including the largest distance mode (Mode-1), the fastest mode (Mode-10), and 
eight other intermediate modes. Data rates range from 0.3 to 38.4 kbps based on the 
LoRa mode. Typical ranges for LoRa communication are upto 13 miles (line of sight) 
and 1.2 miles (non line of sight, built environments). The LoRa physical layer uses a 
spread spectrum modulation technique. LoRa uses adaptive power levels which depend 
on the data rate needed and the link conditions.  

Figure 6 shows the components of the IoT end-node and IoT gateway used for the 
implementation case study. For the end-node and gateway we used the BeagleBone 
Black SBC, Arduino UNO microcontroller board and LoRa SX1272 communication 
shield. The SBC captures data from the connected sensors and sends it to the micro-
controller board over serial port. The microcontroller board receives data from the SBC 
and sends it to the gateway over the LoRa frequencies. The gateway receives data from 
the end-nodes and sends it to a Cloud backend over the Internet.  

Figure 7 shows the results of the outdoor and indoor tests with the SD-IIoT devices 
(end-nodes and gateway). We measured the SNR (Signal to Noise Ratio), RSSI (Re-
ceived Signal Strength Indicator) of the channel and RSSI of the received packets at the 
gateway. In the outdoor test we placed the end-nodes at different locations in an urban 
built-up environment, so that the communication between the nodes and the gateway is 
non-line-of-sight. For each point the number of buildings through which the signal had  
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Figure 6. A realization of the proposed SD-IIoT platform based on Beaglebone Black, Arduino UNO and LoRa SX1272 communication 
modules. 
 

 
Figure 7. Test results for the SD-IIoT devices: (a) outdoor tests; (b) indoor tests. 

 
to pass is shown in the table in Figure 7(a). For the indoor tests we placed the gateway 
on the first floor of an eight storied building and the end nodes on each of the eight 
floors. The SNR provides information on the link quality. LoRa communication mod-
ules can typically demodulate received signals with SNR values as low as −20 dB [11]. 
The channel RSSI provides information on the noise level of the channel by reporting 
the signal level detected (even in the absence of any signal being transmitted). The 
packet RSSI provides information on the received signal strength of the last received 
packet. If this value is greater than the sensitivity the packet is successfully detected. For 
these tests we used the LoRa Mode-1 with bandwidth of 125 kHz, coding rate of 4/5, 
spreading factor of 12, sensitivity value of −134 dB and a transmit power level of 7 
dBm. The outdoor and indoor tests demonstrate that the SD-IIoT end-nodes and gate-
way are able to communicate over long ranges using low power levels.  

Figure 8 shows the screenshot of the SD-IIoT controller dashboard that allows con-
figuring the Northbound, Southbound, Eastbound and Westbound interfaces. Figure 9 
shows a prototype of the SD-IIoT node developed for the implementation case study. 

6. Conclusion & Future Work 

We presented a Software Defined Industrial Internet of Things (SD-IIoT) platform as a 
key-enabler for cloud manufacturing allowing rapid integration of existing legacy shop 
floor equipment into a flexible framework. The SD-IIoT platform makes use of diffe- 
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Figure 8. Screenshot of SD-IIoT controller dashboard. 

 

 
Figure 9. SD-IIoT node prototype based on BeagleBone Black SBC, Arduino UNO microcon-
troller board and LoRa SX1272 communication shield. 
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rent types of IoT devices (end-nodes, routers, gateways and full nodes). Each IoT device 
runs an SD-IIoT controller image which implements Northbound, Southbound, East-
bound or Westbound interfaces depending on the type of device. A full node imple-
ments all interfaces. A cloud-based big data analytics stack for IIoT was proposed that 
allows batch, real-time or interactive analysis of IIoT data. A device management ap-
proach based on NETCONF and YANG was proposed. We described an implementa-
tion case study of the proposed platform based on Beaglebone Black single-board 
computer, Arduino Uno microcontroller and LoRa communication modules. Future 
work will focus on integration of the SD-IIoT platform with real industrial machines 
and comparison of different wireless communication technologies for forward and re-
verse path communication. 
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