
Journal of Software Engineering and Applications, 2016, 9, 425-438
http://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2016.99028 September 7, 2016

Software Defined Things in Manufacturing
Networks

Arshdeep Bahga, Vijay K. Madisetti, Raj K. Madisetti, Andrew Dugenske

Georgia Institute of Technology, Atlanta, GA, USA

Abstract
IoT technologies are being rapidly adopted for manufacturing automation, remote
machine diagnostics, prognostic health management of industrial machines and
supply chain management. A recent on-demand model of manufacturing that is le-
veraging IoT technologies is called Cloud-Based Manufacturing. We propose a Soft-
ware-Defined Industrial Internet of Things (SD-IIoT) platform for as a key enabler
for cloud-manufacturing, allowing flexible integration of legacy shop floor equip-
ment into the platform. SD-IIoT enables access to manufacturing resources and al-
lows exchange of data between industrial machines and cloud-based manufacturing
applications.

Keywords
Software-Defined Things, Cloud-Based Manufacturing, NETCONF, LoRa

1. Introduction

Internet of Things (IoT) comprises things that have unique identities and are connected
to the Internet. The “Things” in IoT refers to IoT devices which have remote sensing
and/or actuating capabilities. IoT devices can exchange data with other connected de-
vices and applications (directly or indirectly), or collect data and process the data either
locally or send the data to centralized servers or cloud-based application back-ends for
processing [1]. IoT technologies are promising for industrial and manufacturing systems
and the experts have forecast a trillion dollar impact on these sectors by IoT. IoT tech-
nologies are being adopted for manufacturing automation, remote machine diagnostics,
prognostic health management of industrial machines and supply chain management.

A recent on-demand model of manufacturing that is leveraging IoT technologies is
called Cloud-Based Manufacturing (CBM) [2]. CBM enables ubiquitous, convenient,

How to cite this paper: Bahga, A., Madi-
setti, V.K., Madisetti, R.K. and Dugenske, A.
(2016) Software Defined Things in Manu-
facturing Networks. Journal of Software En-
gineering and Applications, 9, 425-438.
http://dx.doi.org/10.4236/jsea.2016.99028

Received: July 15, 2016
Accepted: September 3, 2016
Published: September 7, 2016

Copyright © 2016 by authors and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2016.99028
http://www.scirp.org
http://dx.doi.org/10.4236/jsea.2016.99028
http://creativecommons.org/licenses/by/4.0/

A. Bahga et al.

426

on-demand network access to a shared pool of configurable manufacturing resources
that can be rapidly provisioned and released with minimal management effort or ser-
vice provider interaction [3].

In this paper, we propose a Software-Defined Industrial Internet of Things (SD-IIoT)
platform as a key-enabler for cloud-based manufacturing, especially towards integrat-
ing legacy shop floor equipment into the cloud environment. SD-IIoT platform enables
access to manufacturing resources and allows exchange of data between industrial ma-
chines and cloud-based manufacturing applications. The contributions of this work are
1) a Software-Defined Industrial Internet of Things (SD-IIoT) platform is proposed; 2)
a cloud-based big data analytics stack for IIoT is proposed; 3) an IIoT device manage-
ment approach based on NETCONF and YANG is proposed; 4) an implementation
case study based on the LoRa wireless communication technology is presented.

2. Related Work

CBM is a service-oriented manufacturing model in which service consumers are able to
configure, select, and utilize configurable manufacturing resources. CBM leverages the
four key cloud computing service models: Infrastructure-as-a-Service (IaaS), Platform-
as-a-Service (PaaS), Hardware-as-a-Service (HaaS), and Software-as-a-Service (SaaS)
[4]. Software defined systems enable abstracting the control and management functio-
nality from the underlying devices and providing these functionalities in a software
layer. A software defined framework for Internet of Things (SDIoT) was proposed in
[5]. The core of the SDIoT framework includes a control layer comprising an IoT con-
troller, a software-defined network (SDN) controller, a software-defined storage
(SDStore) controller and a software-defined security (SDSec) controller. In [6], a soft-
ware-defined IoT architecture for decoupling smart urban sensing applications from
underlying physical infrastructures is proposed. A software-defined Industrial Internet
of Things architecture for managing physical devices and providing an interface for in-
formation exchange, is proposed in [7].

3. Software Defined Industrial Internet of
Things (SD-IIoT) Platform

Figure 1 shows the architecture of the proposed SD-IIoT platform. The platform com-
prises a network of Software Defined Things (SDT) as IoT devices (end-nodes, routers
and gateways) and a cloud-backend system. The IoT devices run an SD-IIoT controller
which enables the attached industrial machines to communicate with the cloud and al-
so allows cloud-based manufacturing applications to access the machines. The IoT de-
vices in SD-IIoT offer a “plug and play” solution that allows machines to exchange data
on their operations to the cloud and receive commands from cloud-based manufactur-
ing applications. The SD-IIoT controller includes the following interfaces:

3.1. Northbound Interface

The northbound interface (cloud bridge) allows an IoT device (gateway) to publish the

A. Bahga et al.

427

Figure 1. Proposed software defined industrial internet of things (SD-IIoT) platform.

data to the cloud. For communication with the cloud, protocols as MQTT and REST
(over HTTPS) are used. The northbound APIs in the SD-IIoT controller include the
cloud connectivity libraries (such as REST and MQTT libraries).

The cloud-backend system comprises a big data analytics stack, billing and metering
services and manufacturing applications. The big data analytics stack allows analysis of
data collected from the industrial machines. Figure 2 shows the components of the
proposed analytics stack. The components are described as follows:

3.1.1. Data Access Connectors
The Data Access Connectors includes tools and frameworks for collecting and ingesting
data from various sources into the big data storage and analytics frameworks. The
choice of the data connector is driven by the type of the data source. The types of con-
nectors are described as follows:
• Publish-Subscribe Messaging: Publish-Subscribe is a communication model that

involves publishers, brokers and consumers. Publishers are the source of data. Pub-
lishers send the data to the topics which are managed by the broker. We use pub-
lish-subscribe messaging frameworks such as Apache Kafka and Amazon Kinesis
for the proposed analytics stack.

A. Bahga et al.

428

• Messaging Queues: Messaging queues are useful for push-pull messaging where the
producers push data to the queues and the consumers pull the data from the queues.
The producers and consumers do not need to be aware of each other. We use mes-
saging queues such as RabbitMQ, ZeroMQ, RestMQ and Amazon SQS for the pro-
posed stack.

• Custom Connectors: Custom connectors can be built based on the source of the
data and the data collection requirements. These include REST and MQTT connec-
tors.

3.1.2. Data Storage
The data storage block in the big data stack includes distributed filesystems and
non-relational (NoSQL) databases, which store the data collected from the raw data
sources using the data access connectors. We use the Hadoop Distributed File System
(HDFS) for the proposed analytics stack. HDFS is a distributed file system that runs on
large clusters and provides high-throughput access to data. With the data stored in
HDFS, it can be analyzed with various big data analytics frameworks built on top of
HDFS. For certain analytics applications, it is preferable to store data in a NoSQL data-
base such as HBase. HBase is a scalable, non-relational, distributed, column-oriented
database that provides structured data storage for large tables.

Figure 2. Proposed cloud-based big data analytics stack for IIoT.

A. Bahga et al.

429

3.1.3. Batch Analytics
The batch analytics block in the big data stack includes various frameworks which allow
analysis of data in batches. These include the following:
• Hadoop-MapReduce: Hadoop is a framework for distributed batch processing of

big data. The MapReduce programming model is used to develop batch analysis
jobs which are executed in Hadoop clusters.

• Pig: Pig is a high-level data processing language which makes it easy for developers
to write data analysis scripts which are translated into MapReduce programs by the
Pig compiler.

• Oozie: Oozie is a workflow scheduler system that allows managing Hadoop jobs.
With Oozie, you can create workflows which are a collection of actions (such as
MapReduce jobs) arranged as Direct Acyclic Graphs (DAG).

• Spark: Apache Spark is an open source cluster computing framework for data ana-
lytics. Spark includes various high-level tools for data analysis such as Spark
Streaming for streaming jobs, Spark SQL for analysis of structured data, MLlib ma-
chine learning library for Spark, and GraphX for graph processing.

• Solr: Apache Solr is a scalable and open-source framework for searching data.
• Machine Learning: Spark MLlib is the Spark’s machine learning library which pro-

vides implementations of various machine learning algorithms. H2O is an open
source predictive analytics framework which provides implementations of various
machine learning algorithms.

3.1.4. Real-Time Analytics
The real-time analytics block includes the Apache Storm and Spark Streaming frame-
works. Apache Storm is a framework for distributed and fault-tolerant real-time com-
putation. Storm can be used for real-time processing of streams of data. Storm can
consume data from a variety of sources such as publish-subscribe messaging frame-
works (such as Kafka or Kinesis), messaging queues (such as RabbitMQ or ZeroMQ)
and other custom connectors. Spark Streaming is a component of Spark which allows
analysis of streaming data such as sensor data, click stream data, web server logs, for
instance. The streaming data is ingested and analyzed in micro-batches. Spark Stream-
ing enables scalable, high throughput and fault-tolerant stream processing.

3.1.5. Interactive Querying
Interactive querying systems allow users to query data by writing statements in
SQL-like languages. We use the following interactive querying frameworks for the
proposed analytics stack:
• Spark SQL: Spark SQL is a component of Spark which enables interactive querying.

Spark SQL is useful for querying structured and semi-structured data using
SQL-like queries.

• Hive: Apache Hive is a data warehousing framework built on top of Hadoop. Hive
provides an SQL-like query language called Hive Query Language, for querying data
residing in HDFS.

A. Bahga et al.

430

• Amazon Redshift: Amazon Redshift is a fast, massive-scale managed data ware-
house service. Redshift specializes in handling queries on datasets of sizes up to a
petabyte or more parallelizing the SQL queries across all resources in the Redshift
cluster.

• Google BigQuery: Google BigQuery is a service for querying massive datasets.
BigQuery allows querying datasets using SQL-like queries.

3.1.6. Serving Databases, Web & Visualization Frameworks
While the various analytics blocks process and analyze the data, the results are stored in
serving databases for subsequent tasks of presentation and visualization. Web frame-
works and serving databases can be used to build IoT applications. The applications
provide an interface that the users can use to control and monitor various aspects of the
IoT system. Applications also allow users to view the system status and view the
processed data.

3.2. Southbound Interface

The southbound interface (sensor bridge) between the interface board and the SBC
enables the SBC to capture sensor data from the interface board and also send control
signals to the actuators. The Southbound APIs include sensor and actuator connectivity
libraries which are installed on the SBC. Figure 3 shows a reference architecture of the
interface board. The interface board provides easy and configurable connections to a
variety of machines. The interface board makes use of digital, analog, serial and USB
interfaces to capture data from a variety of sensors and systems. The interface board has
a serial interface to the single-board computer (SBC). While modern industrial ma-
chines can directly communicate with the interface board (over digital, analog, serial or
USB interfaces), many legacy machines make use of controllers that are impractical to
access or digital communication is nonexistent. Therefore, the interface board makes
use of sensors which are external to the legacy machines’ control box.

Figure 3. Reference design for interface board.

A. Bahga et al.

431

3.3. Eastbound Interface

The eastbound interface (device bridge) enables connectivity to external systems over
digital, analog, serial and USB connections. For wireless connectivity to other IoT de-
vices various wireless communication protocols such as 802.15.4, ZigBee, LoRa or Blu-
etooth Low Energy (BLE), are used. The wireless communication modules for these
protocols interface with the SBC over digital, analog, serial or USB interfaces.

3.4. Westbound Interface

The westbound interface (admin bridge) allows managing and configuring the IoT de-
vice using a router-like web interface and also viewing the device status and statistics.
For device management, we use the Network Configuration Protocol (NETCONF).
Network Configuration Protocol (NETCONF) is a session-based network management
protocol. NETCONF allows retrieving state or configuration data and manipulating
configuration data on network devices [8]. Figure 4 shows a generic IoT system man-
agement architecture based on NETCONF.

NETCONF works on SSH transport protocol and ensures reliable delivery of mes-
sages. For framing request and response messages NETCONF uses XML-encoded Re-
mote Procedure Calls (RPCs). For retrieving and editing configuration data from net-

Figure 4. IoT device management with NETCONF-YANG.

A. Bahga et al.

432

work devices, various operations are provided by NETCONF. Configuration and state
data in NETCONF is encoded in XML. NETCONF uses a data modeling language
called YANG [9] for defining the schema of the configuration and state data. YANG
modules define the configuration data, state data and RPC calls. NETCONF provides a
clear separation of the configuration and state data. The configuration data is stored on
a NETCONF configuration datastore on the NETCONF server (which runs on the IoT
device). The management application (which acts as a NETCONF client), establishes a
NETCONF session with the server. NETCONF clients send requests to the server for
editing the configuration data or retrieving the current configuration. A Management
System is used to send NETCONF messages for configuring the IoT device. The man-
agement applications use a management API to start NETCONF sessions, read state
data, read/write configuration data, and invoke RPCs. Transaction Manager is respon-
sible for executing all the NETCONF transactions. The Rollback manager is used to
rollback a current configuration to its original state. The Configuration validator en-
sures the validity of the resulting configurations after applying different transactions.
For reading configuration data from the configuration datastore, a configuration API is
used. The configuration API also allows writing operational data to the operational da-
tastore. The Data Provider API is used for reporting device statistics and operational
data [1].

The device management approach (based on NETCONF and YANG) used by the
proposed SD-IIoT platform provides a predictable and easy to use management capa-
bility and the ability to automate system configuration. For Industrial IoT systems that
consist of multiple devices, ensuring system-wide configuration can be critical for the
correct functioning of the system. System-wide configuration (in which all devices are
configured in a single atomic transaction) ensures that all the devices in an IIoT system
run the same configuration. This “all or nothing” approach adopted in the SD-IIoT
platform ensures that the system works as expected.

4. SD-IIoT Deployment Topologies

Figure 5 shows the deployment topologies for the SD-IIoT platform. The topologies are
described as follows:
• Point-to-Point Topology: A point-to-point topology is the simplest topology that

includes an end-node and a gateway. There is a direct wireless connection between
the end-node and gateway. The range of the network in a point-to-point topology is
limited to a single hop and depends on the wireless communication technology/
protocol being used.

• Star Topology: In a star topology there is a single gateway node to which all the
end-nodes are directly connected over a wireless link. Star topology provides a con-
sistent and predictable performance as the data packets from an end-node travel
one-hop to directly reach the gateway.

• Mesh Topology: A mesh topology consists of end-nodes, router nodes and a gate-
way. The end-nodes send data to the routers which route the data to the gateway.

A. Bahga et al.

433

Data packets from an end-node travel multiple hops to reach the gateway node.
Mesh topology is useful to extend the network range as the network range is not li-
mited to a single hop as in the case of a star topology.

4.1. IoT Device Types

Within the proposed SD-IIoT platform, the following types of IoT devices are possible:
• End Node: The end-nodes interface directly with the machines. The end-nodes do

not have Internet connectivity, therefore, to publish data to the cloud, the end-
nodes send the data to a gateway node. For communication between the end-nodes

Figure 5. Deployment topologies for SD-IIoT: (a) point-to-point; (b) star topology; (c) mesh to-
pology.

A. Bahga et al.

434

and the gateway various wireless communication technologies such as LoRa,
802.15.4, ZigBee or Bluetooth Low Energy (BLE), are used. The end nodes imple-
ment the Southbound, Eastbound and Westbound interfaces.

• Router: The router nodes route the data sent by the end devices to the gateway. The
router nodes implement the Eastbound and Westbound interfaces.

• Gateway: The gateway receives data from the end-nodes and sends it to a cloud
backend over the Internet. The gateway implements the Northbound, Eastbound
and Westbound interfaces.

• Full Node: A full node directly interfaces with the machines and publishes the data
directly to the cloud. The full nodes implements the Northbound, Southbound,
Eastbound and Westbound interfaces.

4.2. Forward & Reverse Path Communication
4.2.1. Forward Path
The forward path communication from the end-nodes to the gateway and finally to the
cloud provides the ability to gather sensor data from the machines, machine mainten-
ance and performance monitoring data. Each message transmitted by an end-node is
acknowledged by the gateway. If an end-node doesn’t receive an acknowledgement
within a timeout period, the message is re-transmitted. The timeout period and number
of retransmissions can be configured in the end-node.

4.2.2. Reverse Path
The reverse path communication from the cloud to the gateway and finally to the
end-nodes provides the ability to update the “things” or the devices in the SD-IIoT
platform over-the-air (OTA) and also send control commands to the machines. OTA
updates allow adding new functionality or software updates for performance improve-
ment. Whenever a new update is available the administrator pushes the new SD-IIoT
controller image from the cloud to the gateway. The gateway advertises the image me-
ta-data to all the end-nodes. Upon receiving the meta-data of the new image, the
end-nodes compare the same with the meta-data of the currently installed image. The
end-nodes then send an acknowledgement message to the gateway with a decision
whether to trigger the update process or ignore the update. When an update trigger
message is received, the gateway splits the new image into small fixed size chunks (typ-
ically chunk sizes vary from 5 kB to 50 kB) and transmits the chunks. The end-nodes
acknowledge the receipt of each chunk and if the transmission of any chunk fails the
gateway re-transmits the same. Upon receiving all the chunks, the end-nodes
re-assemble the chunks to extract the new controller image. After successfully extract-
ing the controller image, each end-node notifies the gateway about the image receipt.
Upon receiving the image receipt messages from all the nodes in the network, the ga-
teway broadcasts an activate message to all the end-nodes. Upon receiving the activate
message, the end-nodes apply the new image. This activation process ensures that the
updates are either applied to all the nodes or to none. The SD-IIoT platform also pro-
vides the flexibility to define “groups” of nodes that can be configured, controlled or

A. Bahga et al.

435

setup together.

5. Implementation Case Study

In this section we present an implementation case study of the proposed SD-IIoT plat-
form based on the Beaglebone Black SBC, Arduino UNO microcontroller board and
the LoRa wireless communication modules.

Industrial and manufacturing systems use various sensing technologies to obtain da-
ta on the performance and operations of machines. Collection and analysis of data can
be challenging due to complex data communication systems and proprietary networks.
One of the major challenges faced by Industrial Internet of Things (IIoT) systems is to
enable communications over long ranges using very low power levels. Existing solu-
tions which are based on WiFi or ZigBee communication protocols have limited range
and high power requirements. We present a LoRa-based wireless communication sys-
tem for the proposed SD-IIoT platform that allows collection of data from machines
deployed in indoor environments. The data collected is published to cloud-based
backend systems for further processing and analysis.

LoRa is optimized for long range communication with low-power consumption and
supports large networks with millions of devices and low data rates (ranging from few
bytes to few kilobytes per second) [10]. LoRa uses unlicensed frequencies that are
available worldwide, for example, 868 MHz for Europe, 915 MHz for North America
and 433 MHz band for Asia. These frequency bands are lower than the popular 2.4 GHz
band and have much less interference. The use of lower frequencies enables much bet-
ter coverage and great penetration in built environments. LoRa has ten predefined
modes, including the largest distance mode (Mode-1), the fastest mode (Mode-10), and
eight other intermediate modes. Data rates range from 0.3 to 38.4 kbps based on the
LoRa mode. Typical ranges for LoRa communication are upto 13 miles (line of sight)
and 1.2 miles (non line of sight, built environments). The LoRa physical layer uses a
spread spectrum modulation technique. LoRa uses adaptive power levels which depend
on the data rate needed and the link conditions.

Figure 6 shows the components of the IoT end-node and IoT gateway used for the
implementation case study. For the end-node and gateway we used the BeagleBone
Black SBC, Arduino UNO microcontroller board and LoRa SX1272 communication
shield. The SBC captures data from the connected sensors and sends it to the micro-
controller board over serial port. The microcontroller board receives data from the SBC
and sends it to the gateway over the LoRa frequencies. The gateway receives data from
the end-nodes and sends it to a Cloud backend over the Internet.

Figure 7 shows the results of the outdoor and indoor tests with the SD-IIoT devices
(end-nodes and gateway). We measured the SNR (Signal to Noise Ratio), RSSI (Re-
ceived Signal Strength Indicator) of the channel and RSSI of the received packets at the
gateway. In the outdoor test we placed the end-nodes at different locations in an urban
built-up environment, so that the communication between the nodes and the gateway is
non-line-of-sight. For each point the number of buildings through which the signal had

A. Bahga et al.

436

Figure 6. A realization of the proposed SD-IIoT platform based on Beaglebone Black, Arduino UNO and LoRa SX1272 communication
modules.

Figure 7. Test results for the SD-IIoT devices: (a) outdoor tests; (b) indoor tests.

to pass is shown in the table in Figure 7(a). For the indoor tests we placed the gateway
on the first floor of an eight storied building and the end nodes on each of the eight
floors. The SNR provides information on the link quality. LoRa communication mod-
ules can typically demodulate received signals with SNR values as low as −20 dB [11].
The channel RSSI provides information on the noise level of the channel by reporting
the signal level detected (even in the absence of any signal being transmitted). The
packet RSSI provides information on the received signal strength of the last received
packet. If this value is greater than the sensitivity the packet is successfully detected. For
these tests we used the LoRa Mode-1 with bandwidth of 125 kHz, coding rate of 4/5,
spreading factor of 12, sensitivity value of −134 dB and a transmit power level of 7
dBm. The outdoor and indoor tests demonstrate that the SD-IIoT end-nodes and gate-
way are able to communicate over long ranges using low power levels.

Figure 8 shows the screenshot of the SD-IIoT controller dashboard that allows con-
figuring the Northbound, Southbound, Eastbound and Westbound interfaces. Figure 9
shows a prototype of the SD-IIoT node developed for the implementation case study.

6. Conclusion & Future Work

We presented a Software Defined Industrial Internet of Things (SD-IIoT) platform as a
key-enabler for cloud manufacturing allowing rapid integration of existing legacy shop
floor equipment into a flexible framework. The SD-IIoT platform makes use of diffe-

A. Bahga et al.

437

Figure 8. Screenshot of SD-IIoT controller dashboard.

Figure 9. SD-IIoT node prototype based on BeagleBone Black SBC, Arduino UNO microcon-
troller board and LoRa SX1272 communication shield.

A. Bahga et al.

438

rent types of IoT devices (end-nodes, routers, gateways and full nodes). Each IoT device
runs an SD-IIoT controller image which implements Northbound, Southbound, East-
bound or Westbound interfaces depending on the type of device. A full node imple-
ments all interfaces. A cloud-based big data analytics stack for IIoT was proposed that
allows batch, real-time or interactive analysis of IIoT data. A device management ap-
proach based on NETCONF and YANG was proposed. We described an implementa-
tion case study of the proposed platform based on Beaglebone Black single-board
computer, Arduino Uno microcontroller and LoRa communication modules. Future
work will focus on integration of the SD-IIoT platform with real industrial machines
and comparison of different wireless communication technologies for forward and re-
verse path communication.

References
[1] Bahga, A. and Madisetti, V. (2014) Internet of Things: A Hands-On Approach. VPT/Create-

Space Inc., Atlanta.

[2] Wu, D., Rosen, D.W., Wang, L. and Schaefer, D. (2015) Cloud-Based Design and Manu-
facturing: A New Paradigm in Digital Manufacturing and Design Innovation Comput-
er-Aided Design. Computer-Aided Design, 59, 1-14.

[3] Xu, X. (2012) From Cloud Computing to Cloud Manufacturing. Robotics and Comput-
er-Integrated Manufacturing, 28, 75-86. http://dx.doi.org/10.1016/j.rcim.2011.07.002

[4] Wu, D., Thames, J.L., Rosen, D.W. and Schaefer, D. (2013) Enhancing the Product Realiza-
tion Process with Cloud-Based Design and Manufacturing Systems. Journal of Computing
and Information Science in Engineering, 13, 1-14.

[5] Jararweh, Y., Al-Ayyoub, M., Darabseh, A., Benkhelifa, E., Vouk, M. and Rindos, A. (2015)
SDIoT: A Software Defined Based Internet of Things Framework. Journal of Ambient Intel-
ligence and Humanized Computing, 6, 453-461.
http://dx.doi.org/10.1007/s12652-015-0290-y

[6] Liu, J., Li, Y., Chen, M., Dong, W. and Jin, D. (2015) Software-Defined Internet of Things
for Smart Urban Sensing. IEEE Communications Magazine, 53, 55-63.

[7] Wan, J., Tang, S., Shu, Z., Li, D., Wang, S., Imran, M. and Vasilakos, A. (2016) Soft-
ware-Defined Industrial Internet of Things in the Context of Industry 4.0. IEEE Sensors
Journal, PP, 1. http://dx.doi.org/10.1109/JSEN.2016.2565621

[8] NETCONF Configuration Protocol. http://tools.ietf.org/html/rfc4741

[9] YANG—A Data Modeling Language for the Network Configuration Protocol (NETCONF).
http://tools.ietf.org/html/rfc6020

[10] LoRa Technology. LoRa Alliance. https://www.lora-alliance.org/What-Is-LoRa/Technology

[11] LoRa Radio Shield for Arduino. Libelium.
https://www.cooking-hacks.com/lora-radio-shield-for-arduino-900-mhz

http://dx.doi.org/10.1016/j.rcim.2011.07.002
http://dx.doi.org/10.1007/s12652-015-0290-y
http://dx.doi.org/10.1109/JSEN.2016.2565621
http://tools.ietf.org/html/rfc4741
http://tools.ietf.org/html/rfc6020
https://www.lora-alliance.org/What-Is-LoRa/Technology
https://www.cooking-hacks.com/lora-radio-shield-for-arduino-900-mhz

Submit or recommend next manuscript to SCIRP and we will provide best service
for you:

Accepting pre-submission inquiries through Email, Facebook, LinkedIn, Twitter, etc.
A wide selection of journals (inclusive of 9 subjects, more than 200 journals)
Providing 24-hour high-quality service
User-friendly online submission system
Fair and swift peer-review system
Efficient typesetting and proofreading procedure
Display of the result of downloads and visits, as well as the number of cited articles
Maximum dissemination of your research work

Submit your manuscript at: http://papersubmission.scirp.org/

http://papersubmission.scirp.org/

	Software Defined Things in Manufacturing Networks
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	3. Software Defined Industrial Internet of Things (SD-IIoT) Platform
	3.1. Northbound Interface
	3.1.1. Data Access Connectors
	3.1.2. Data Storage
	3.1.3. Batch Analytics
	3.1.4. Real-Time Analytics
	3.1.5. Interactive Querying
	3.1.6. Serving Databases, Web & Visualization Frameworks

	3.2. Southbound Interface
	3.3. Eastbound Interface
	3.4. Westbound Interface

	4. SD-IIoT Deployment Topologies
	4.1. IoT Device Types
	4.2. Forward & Reverse Path Communication
	4.2.1. Forward Path
	4.2.2. Reverse Path

	5. Implementation Case Study
	6. Conclusion & Future Work
	References

