
Journal of Software Engineering and Applications, 2015, 8, 617-634 
Published Online December 2015 in SciRes. http://www.scirp.org/journal/jsea 
http://dx.doi.org/10.4236/jsea.2015.812058   

How to cite this paper: Ribeiro, A., Silva, A. and da Silva, A.R. (2015) Data Modeling and Data Analytics: A Survey from a Big 
Data Perspective. Journal of Software Engineering and Applications, 8, 617-634.  
http://dx.doi.org/10.4236/jsea.2015.812058  

 
 

Data Modeling and Data Analytics: A Survey 
from a Big Data Perspective 
André Ribeiro, Afonso Silva, Alberto Rodrigues da Silva 
INESC-ID/Instituto Superior Técnico, Lisbon, Portugal 

 
 
Received 20 October 2015; accepted 27 December 2015; published 30 December 2015 

 
Copyright © 2015 by authors and Scientific Research Publishing Inc. 
This work is licensed under the Creative Commons Attribution International License (CC BY). 
http://creativecommons.org/licenses/by/4.0/ 

    
 

 
 

Abstract 
These last years we have been witnessing a tremendous growth in the volume and availability of 
data. This fact results primarily from the emergence of a multitude of sources (e.g. computers, 
mobile devices, sensors or social networks) that are continuously producing either structured, 
semi-structured or unstructured data. Database Management Systems and Data Warehouses are 
no longer the only technologies used to store and analyze datasets, namely due to the volume and 
complex structure of nowadays data that degrade their performance and scalability. Big Data is 
one of the recent challenges, since it implies new requirements in terms of data storage, process- 
ing and visualization. Despite that, analyzing properly Big Data can constitute great advantages 
because it allows discovering patterns and correlations in datasets. Users can use this processed 
information to gain deeper insights and to get business advantages. Thus, data modeling and data 
analytics are evolved in a way that we are able to process huge amounts of data without compro-
mising performance and availability, but instead by “relaxing” the usual ACID properties. This pa-
per provides a broad view and discussion of the current state of this subject with a particular focus 
on data modeling and data analytics, describing and clarifying the main differences between the 
three main approaches in what concerns these aspects, namely: operational databases, decision 
support databases and Big Data technologies. 

 
Keywords 
Data Modeling, Data Analytics, Modeling Language, Big Data 

 
 

1. Introduction 
We have been witnessing to an exponential growth of the volume of data produced and stored. This can be ex-
plained by the evolution of the technology that results in the proliferation of data with different formats from the 

http://www.scirp.org/journal/jsea
http://dx.doi.org/10.4236/jsea.2015.812058
http://dx.doi.org/10.4236/jsea.2015.812058
http://www.scirp.org
http://creativecommons.org/licenses/by/4.0/


A. Ribeiro et al. 
 

 
618 

most various domains (e.g. health care, banking, government or logistics) and sources (e.g. sensors, social net-
works or mobile devices). We have assisted a paradigm shift from simple books to sophisticated databases that 
keep being populated every second at an immensely fast rate. Internet and social media also highly contribute to 
the worsening of this situation [1]. Facebook, for example, has an average of 4.75 billion pieces of content 
shared among friends every day [2]. Traditional Relational Database Management Systems (RDBMSs) and Data 
Warehouses (DWs) are designed to handle a certain amount of data, typically structured, which is completely 
different from the reality that we are facing nowadays. Business is generating enormous quantities of data that 
are too big to be processed and analyzed by the traditional RDBMSs and DWs technologies, which are strug-
gling to meet the performance and scalability requirements. 

Therefore, in the recent years, a new approach that aims to mitigate these limitations has emerged. Companies 
like Facebook, Google, Yahoo and Amazon are the pioneers in creating solutions to deal with these “Big Data” 
scenarios, namely recurring to technologies like Hadoop [3] [4] and MapReduce [5]. Big Data is a generic term 
used to refer to massive and complex datasets, which are made of a variety of data structures (structured, semi- 
structured and unstructured data) from a multitude of sources [6]. Big Data can be characterized by three Vs: 
volume (amount of data), velocity (speed of data in and out) and variety (kinds of data types and sources) [7]. 
Still, there are added some other Vs for variability, veracity and value [8]. 

Adopting Big Data-based technologies not only mitigates the problems presented above, but also opens new 
perspectives that allow extracting value from Big Data. Big Data-based technologies are being applied with 
success in multiple scenarios [1] [9] [10] like in: (1) e-commerce and marketing, where count the clicks that the 
crowds do on the web allow identifying trends that improve campaigns, evaluate personal profiles of a user, so 
that the content shown is the one he will most likely enjoy; (2) government and public health, allowing the de-
tection and tracking of disease outbreaks via social media or detect frauds; (3) transportation, industry and sur-
veillance, with real-time improved estimated times of arrival and smart use of resources. 

This paper provides a broad view of the current state of this area based on two dimensions or perspectives: 
Data Modeling and Data Analytics. Table 1 summarizes the focus of this paper, namely by identifying three 
representative approaches considered to explain the evolution of Data Modeling and Data Analytics. These ap-
proaches are: Operational databases, Decision Support databases and Big Data technologies. 

This research work has been conducted in the scope of the DataStorm project [11], led by our research group, 
which focuses on addressing the design, implementation and operation of the current problems with Big Data- 
based applications. More specifically, the goal of our team in this project is to identify the main concepts and 
patterns that characterize such applications, in order to define and apply suitable domain-specific languages 
(DSLs). Then these DSLs will be used in a Model-Driven Engineering (MDE) [12]-[14] approach aiming to 
ease the design, implementation and operation of such data-intensive applications. 

To ease the explanation and better support the discussion throughout the paper, we use a very simple case 
study based on a fictions academic management system described below: 
 
Case Study—Academic Management System (AMS): 
 
The Academic Management System (AMS) should support two types of end-users: students and professors. Each person has a name, gend-
er, date of birth, ID card, place of origin and country. Students are enrolled in a given academic program, which is composed of many 
courses. Professors have an academic degree, are associated to a given department and lecture one or more courses. Each course has a name, 
academic term and can have one or more locations and academic programs associated. Additionally, a course is associated to a schedule 
composed of many class periods determining its duration and the day it occurs. 

 
The outline of this paper is as follows: Section 2 describes Data Modeling and some representative types of 

data models used in operational databases, decision support databases and Big Data technologies. Section 3 de-
tails the type of operations performed in terms of Data Analytics for these three approaches. Section 4 compares 
and discusses each approach in terms of the Data Modeling and Data Analytics perspectives. Section 5 discusses 
our research in comparison with the related work. Finally, Section 6 concludes the paper by summarizing its key 
points and identifying future work. 

2. Data Modeling 
This section gives an in-depth look of the most popular data models used to define and support Operational Da-
tabases, Data Warehouses and Big Data technologies. 



A. Ribeiro et al. 
 

 
619 

Table 1. Approaches and perspectives of the survey.                                                                

Approaches Operational Decision Support Big Data 

Data Modeling 
Perspective 

ER and Relational Models Star Schema and OLAP Cube Models Key-Value, Document, Wide-Column and 
Graph 

RDBMS DW Big Data-Based Systems 

Data Analytics 
Perspective OLTP OLAP 

Multiple Classes 
(Batch-oriented processing, stream-processing, 

OLTP and Interactive ad-hoc queries) 

 
Databases are widely used either for personal or enterprise use, namely due to their strong ACID guarantees 

(atomicity, consistency, isolation and durability) guarantees and the maturity level of Database Management 
Systems (DBMSs) that support them [15]. 

The data modeling process may involve the definition of three data models (or schemas) defined at different 
abstraction levels, namely Conceptual, Logical and Physical data models [15] [16]. Figure 1 shows part of the 
three data models for the AMS case study. All these models define three entities (Person, Student and Professor) 
and their main relationships (teach and supervise associations). 

Conceptual Data Model. A conceptual data model is used to define, at a very high and platform-independent 
level of abstraction, the entities or concepts, which represent the data of the problem domain, and their relation-
ships. It leaves further details about the entities (such as their attributes, types or primary keys) for the next steps. 
This model is typically used to explore domain concepts with the stakeholders and can be omitted or used in-
stead of the logical data model. 

Logical Data Model. A logical data model is a refinement of the previous conceptual model. It details the 
domain entities and their relationships, but standing also at a platform-independent level. It depicts all the 
attributes that characterize each entity (possibly also including its unique identifier, the primary key) and all the 
relationships between the entities (possibly including the keys identifying those relationships, the foreign keys). 
Despite being independent of any DBMS, this model can easily be mapped on to a physical data model thanks to 
the details it provides. 

Physical Data Model. A physical data model visually represents the structure of the data as implemented by 
a given class of DBMS. Therefore, entities are represented as tables, attributes are represented as table columns 
and have a given data type that can vary according to the chosen DBMS, and the relationships between each ta-
ble are identified through foreign keys. Unlike the previous models, this model tends to be platform-specific, 
because it reflects the database schema and, consequently, some platform-specific aspects (e.g. database-specific 
data types or query language extensions). 

Summarizing, the complexity and detail increase from a conceptual to a physical data model. First, it is im-
portant to perceive at a higher level of abstraction, the data entities and their relationships using a Conceptual 
Data Model. Then, the focus is on detailing those entities without worrying about implementation details using a 
Logical Data Model. Finally, a Physical Data Model allows to represent how data is supported by a given 
DBMS [15] [16]. 

2.1. Operational Databases 
Databases had a great boost with the popularity of the Relational Model [17] proposed by E. F. Codd in 1970. 
The Relational Model overcame the problems of predecessors data models (namely the Hierarchical Model and 
the Navigational Model [18]). The Relational Model caused the emergence of Relational Database Management 
Systems (RDBMSs), which are the most used and popular DBMSs, as well as the definition of the Structured 
Query Language (SQL) [19] as the standard language for defining and manipulating data in RDBMSs. RDBMSs 
are widely used for maintaining data of daily operations. Considering the data modeling of operational databases 
there are two main models: the Relational and the Entity-Relationship (ER) models. 

Relational Model. The Relational Model is based on the mathematical concept of relation. A relation is de-
fined as a set (in mathematics terminology) and is represented as a table, which is a matrix of columns and rows, 
holding information about the domain entities and the relationships among them. Each column of the table cor-
responds to an entity attribute and specifies the attribute’s name and its type (known as domain). Each row of  



A. Ribeiro et al. 
 

 
620 

 
 

Physical Data Model 

 
Figure 1. Example of three data models (at different abstraction levels) for the Academic Management System.               
 
the table (known as tuple) corresponds to a single element of the represented domain entity. In the Relational 
Model each row is unique and therefore a table has an attribute or set of attributes known as primary key, used 
to univocally identify those rows. Tables are related with each other by sharing one or more common attributes. 
These attributes correspond to a primary key in the referenced (parent) table and are known as foreign keys in 
the referencing (child) table. In one-to-many relationships, the referenced table corresponds to the entity of the 
“one” side of the relationship and the referencing table corresponds to the entity of the “many” side. In many- 
to-many relationships, it is used an additional association table that associates the entities involved through 
their respective primary keys. The Relational Model also features the concept of View, which is like a table 
whose rows are not explicitly stored in the database, but are computed as needed from a view definition. Instead, 
a view is defined as a query on one or more base tables or other views [17]. 

Entity-Relationship (ER) Model. The Entity Relationship (ER) Model [20], proposed by Chen in 1976, ap-
peared as an alternative to the Relational Model in order to provide more expressiveness and semantics into the 



A. Ribeiro et al. 
 

 
621 

database design from the user’s point of view. The ER model is a semantic data model, i.e. aims to represent the 
meaning of the data involved on some specific domain. This model was originally defined by three main con-
cepts: entities, relationships and attributes. An entity corresponds to an object in the real world that is distin-
guishable from all other objects and is characterized by a set of attributes. Each attribute has a range of possible 
values, known as its domain, and each entity has its own value for each attribute. Similarly to the Relational 
Model, the set of attributes that identify an entity is known as its primary key. 

Entities can be though as nouns and correspond to the tables of the Relational Model. In turn, a relationship 
is an association established among two or more entities. A relationship can be thought as a verb and includes 
the roles of each participating entities with multiplicity constraints, and their cardinality. For instance, a rela-
tionship can be of one-to-one (1:1), one-to-many (1:M) or many-to-many (M:N). In an ER diagram, entities are 
usually represented as rectangles, attributes as circles connected to entities or relationships through a line, and 
relationships as diamonds connected to the intervening entities through a line. 

The Enhanced ER Model [21] provided additional concepts to represent more complex requirements, such as 
generalization, specialization, aggregation and composition. Other popular variants of ER diagram notations are 
Crow’s foot, Bachman, Barker’s, IDEF1X and UML Profile for Data Modeling [22]. 

2.2. Decision Support Databases 
The evolution of relational databases to decision support databases, hereinafter indistinctly referred as “Data 
Warehouses” (DWs), occurred with the need of storing operational but also historical data, and the need of 
analyzing that data in complex dashboards and reports. Even though a DW seems to be a relational database, it 
is different in the sense that DWs are more suitable for supporting query and analysis operations (fast reads) in-
stead of transaction processing (fast reads and writes) operations. DWs contain historical data that come from 
transactional data, but they also might include other data sources [23]. DWs are mainly used for OLAP (online 
analytical processing) operations. OLAP is the approach to provide report data from DW through multi-dimen- 
sional queries and it is required to create a multi-dimensional database [24]. 

Usually, DWs include a framework that allows extracting data from multiple data sources and transform it 
before loading to the repository, which is known as ETL (Extract Transform Load) framework [23]. 

Data modeling in DW consists in defining fact tables with several dimension tables, suggesting star or snow-
flake schema data models [23]. A star schema has a central fact table linked with dimension tables. Usually, a 
fact table has a large number of attributes (in many cases in a denormalized way), with many foreign keys that 
are the primary keys to the dimension tables. The dimension tables represent characteristics that describe the fact 
table. When star schemas become too complex to be queried efficiently they are transformed into multi-dimen- 
sional arrays of data called OLAP cubes (for more information on how this transformation is performed the 
reader can consult the following references [24] [25]). 

A star schema is transformed to a cube by putting the fact table on the front face that we are facing and the 
dimensions on the other faces of the cube [24]. For this reason, cubes can be equivalent to star schemas in con-
tent, but they are accessed with more platform-specific languages than SQL that have more analytic capabilities 
(e.g. MDX or XMLA). A cube with three dimensions is conceptually easier to visualize and understand, but the 
OLAP cube model supports more than three dimensions, and is called a hypercube. 

Figure 2 shows two examples of star schemas regarding the case study AMS. The star schema on the left 
represents the data model for the Student’s fact, while the data model on the right represents the Professor’s fact. 
Both of them have a central fact table that contains specific attributes of the entity in analysis and also foreign 
keys to the dimension tables. For example, a Student has a place of origin (DIM_PLACEOFORIGIN) that is 
described by a city and associated to a country (DIM_COUNTRY) that has a name and an ISO code. On the 
other hand, Figure 3 shows a cube model with three dimensions for the Student. These dimensions are repre- 
sented by sides of the cube (Student, Country and Date). This cube is useful to execute queries such as: the stu-
dents by country enrolled for the first time in a given year. 

A challenge that DWs face is the growth of data, since it affects the number of dimensions and levels in either 
the star schema or the cube hierarchies. The increasing number of dimensions over time makes the management 
of such systems often impracticable; this problem becomes even more serious when dealing with Big Data sce-
narios, where data is continuously being generated [23]. 



A. Ribeiro et al. 
 

 
622 

 
Figure 2. Example of two star schema models for the Academic Management System.                                     
 

 
Figure 3. Example of a cube model for the 
Academic Management System.                 

2.3. Big Data Technologies 
The volume of data has been exponentially increasing over the last years, namely due to the simultaneous growth 



A. Ribeiro et al. 
 

 
623 

of the number of sources (e.g. users, systems or sensors) that are continuously producing data. These data 
sources produce huge amounts of data with variable representations that make their management by the tradi-
tional RDBMSs and DWs often impracticable. Therefore, there is a need to devise new data models and tech-
nologies that can handle such Big Data. 

NoSQL (Not Only SQL) [26] is one of the most popular approaches to deal with this problem. It consists in a 
group of non-relational DBMSs that consequently do not represent databases using tables and usually do not use 
SQL for data manipulation. NoSQL systems allow managing and storing large-scale denormalized datasets, and 
are designed to scale horizontally. They achieve that by compromising consistency in favor of availability and 
partition-tolerance, according to Brewer’s CAP theorem [27]. Therefore, NoSQL systems are “eventually con-
sistent”, i.e. assume that writes on the data are eventually propagated over time, but there are limited guarantees 
that different users will read the same value at the same time. NoSQL provides BASE guarantees (Basically 
Available, Soft state and Eventually consistent) instead of the traditional ACID guarantees, in order to greatly 
improve performance and scalability [28]. 

NoSQL databases can be classified in four categories [29]: Key-value stores, (2) Document-oriented databas-
es, (3) Wide-column stores, and (4) Graph databases. 

Key-value Stores. A Key-Value store represents data as a collection (known as dictionary or map) of key- 
value pairs. Every key consists in a unique alphanumeric identifier that works like an index, which is used to 
access a corresponding value. Values can be simple text strings or more complex structures like arrays. The 
Key-value model can be extended to an ordered model whose keys are stored in lexicographical order. The fact 
of being a simple data model makes Key-value stores ideally suited to retrieve information in a very fast, availa-
ble and scalable way. For instance, Amazon makes extensive use of a Key-value store system, named Dynamo, 
to manage the products in its shopping cart [30]. Amazon’s Dynamo and Voldemort, which is used by Linkedin, 
are two examples of systems that apply this data model with success. An example of a key-value store for both 
students and professors of the Academic Managements System is shown in Figure 4. 

Document-oriented Databases. Document-oriented databases (or document stores) were originally created 
to store traditional documents, like a notepad text file or Microsoft Word document. However, their concept of 
document goes beyond that, and a document can be any kind of domain object [26]. Documents contain encoded 
data in a standard format like XML, YAML, JSON or BSON (Binary JSON) and are univocally identified in the 
database by a unique key. Documents contain semi-structured data represented as name-value pairs, which can 
vary according to the row and can nest other documents. Unlike key-value stores, these systems support second-
ary indexes and allow fully searching either by keys or values. Document databases are well suited for storing 
and managing huge collections of textual documents (e.g. text files or email messages), as well as semi-struc- 
tured or denormalized data that would require an extensive use of “nulls” in an RDBMS [30]. MongoDB and 
CouchDB are two of the most popular Document-oriented database systems. Figure 5 illustrates two collections 
of documents for both students and professors of the Academic Management System. 
 

 
Figure 4. Example of a key-value store for the Academic Manage-
ment System.                                                    



A. Ribeiro et al. 
 

 
624 

 
Figure 5. Example of a documents-oriented database for the Academic 
Management System.                                              

 
Wide-column Stores. Wide-column stores (also known as column-family stores, extensible record stores or 

column-oriented databases) represent and manage data as sections of columns rather than rows (like in RDBMS). 
Each section is composed of key-value pairs, where the keys are rows and the values are sets of columns, known 
as column families. Each row is identified by a primary key and can have column families different of the other 
rows. Each column family also acts as a primary key of the set of columns it contains. In turn each column of 
column family consists in a name-value pair. Column families can even be grouped in super column families 
[29]. This data model was highly inspired by Google’s BigTable [31]. Wide-column stores are suited for scena-
rios like: (1) Distributed data storage; (2) Large-scale and batch-oriented data processing, using the famous 
MapReduce method for tasks like sorting, parsing, querying or conversion and; (3) Exploratory and predictive 
analytics. Cassandra and Hadoop HBase are two popular frameworks of such data management systems [29]. 
Figure 6 depicts an example of a wide-column store for the entity “person” of the Academic Managements 
System. 

Graph Databases. Graph databases represent data as a network of nodes (representing the domain entities) 
that are connected by edges (representing the relationships among them) and are characterized by properties ex-
pressed as key-value pairs. Graph databases are quite useful when the focus is on exploring the relationships 
between data, such as traversing social networks, detecting patterns or infer recommendations. Due to their vis-
ual representation, they are more user-friendly than the aforementioned types of NoSQL databases. Neo4j and 
Allegro Graph are two examples of such systems. 

3. Data Analytics 
This section presents and discusses the types of operations that can be performed over the data models described 
in the previous section and also establishes comparisons between them. A complementary discussion is provided 
in Section 4. 

3.1. Operational Databases 
Systems using operational databases are designed to handle a high number of transactions that usually perform 
changes to the operational data, i.e. the data an organization needs to assure its everyday normal operation. 
These systems are called Online Transaction Processing (OLTP) systems and they are the reason why 
RDBMSs are so essential nowadays. RDBMSs have increasingly been optimized to perform well in OLTP sys-
tems, namely providing reliable and efficient data processing [16]. 

The set of operations supported by RDBMSs is derived from the relational algebra and calculus underlying 
the Relational Model [15]. As mentioned before, SQL is the standard language to perform these operations. SQL 
can be divided in two parts involving different types of operations: Data Definition Language (SQL-DDL) and 
Data Manipulation Language (SQL-DML). 

SQL-DDL allows performing the creation (CREATE), update (UPDATE) and deletion (DROP) of the vari- 



A. Ribeiro et al. 
 

 
625 

 
Figure 6. Example of a wide-column store for the Academic Management System.              

 
ous database objects. First it allows managing schemas, which are named collections of all the database objects 
that are related to one another. Then inside a schema, it is possible to manage tables specifying their columns 
and types, primary keys, foreign keys and constraints. It is also possible to manage views, domains and indexes. 
An index is a structure that speeds up the process of accessing to one or more columns of a given table, possibly 
improving the performance of queries [15] [16]. 

For example, considering the Academic Management System, a system manager could create a table for stor-
ing information of a student by executing the following SQL-DDL command: 
 

CREATE TABLE Student ( 
Student ID NOT NULL IDENTITY, 
Name VARCHAR(255) NOT NULL, 
Date of Birth DATE NOT NULL, 
ID Card VARCHAR(255) NOT NULL, 
Place of Origin VARCHAR(255), 
Country VARCHAR(255), 
PRIMARY KEY (Student ID)) 

 
On the other hand, SQL-DML is the language that enables to manipulate database objects and particularly to 

extract valuable information from the database. The most commonly used and complex operation is the 
SELECT operation, which allows users to query data from the various tables of a database. It is a powerful op-
eration because it is capable of performing in a single query the equivalent of the relational algebra’s selection, 
projection and join operations. The SELECT operation returns as output a table with the results. With the 
SELECT operation is simultaneously possible to: define which tables the user wants to query (through the 
FROM clause), which rows satisfy a particular condition (through the WHERE clause), which columns should 
appear in the result (through the SELECT clause), order the result (in ascending or descending order) by one or 
more columns (through the ORDER BY clause), group rows with the same column values (through the GROUP 
BY clause) and filter those groups based on some condition (through the HAVING clause). The SELECT opera-
tion also allows using aggregation functions, which perform arithmetic computation or aggregation of data (e.g. 
counting or summing the values of one or more columns). 

Many times there is the need to combine columns of more than one table in the result. To do that, the user can 
use the JOIN operation in the query. This operation performs a subset of the Cartesian product between the in-
volved tables, i.e. returns the row pairs where the matching columns in each table have the same value. The most 
common queries that use joins involve tables that have one-to-many relationships. If the user wants to include in 
the result the rows that did not satisfied the join condition, then he can use the outer joins operations (left, right 
and full outer join). Besides specifying queries, DML allows modifying the data stored in a database. Namely, it 
allows adding new rows to a table (through the INSERT statement), modifying the content of a given table’s 
rows (through the UPDATE statement) and deleting rows from a table (through the DELETE statement) [16]. 



A. Ribeiro et al. 
 

 
626 

SQL-DML also allows combining the results of two or more queries into a single result table by applying the 
Union, Intersect and Except operations, based on the Set Theory [15]. 

For example, considering the Academic Management System, a system manager could get a list of all stu-
dents who are from G8 countries by entering the following SQL-DML query: 
 

SELECT Name, Country 
FROM Student 
WHERE Country in (“Canada”, “France”, “Germany”, “Italy”, “Japan”, “Russia”, “UK”, “USA”) 
ORDER BY Country 

3.2. Decision Support Databases 
The most common data model used in DW is the OLAP cube, which offers a set of operations to analyze the 
cube model [23]. Since data is conceptualized as a cube with hierarchical dimensions, its operations have famil-
iar names when manipulating a cube, such as slice, dice, drill and pivot. Figure 7 depicts these operations con-
sidering the Student’s facts of the AMS case study (see Figure 2). 

The slice operation begins by selecting one of the dimensions (or faces) of the cube. This dimension is the one 
we want to consult and it is followed by “slicing” the cube to a specific depth of interest. The slice operation 
leaves us with a more restricted selection of the cube, namely the dimension we wanted (front face) and the 
layer of that dimension (the sliced section). In the example of Figure 7 (top-left), the cube was sliced to consider 
only data of the year 2004. 

Dice is the operation that allows restricting the front face of the cube by reducing its size to a smaller targeted 
domain. This means that the user produces a smaller “front face” than the one he had at the start. Figure 7 (top- 
right) shows that the set of students has decreased after the dice operation. 

Drill is the operation that allows to navigate by specifying different levels of the dimensions, ranging from 
the most detailed ones (drill down) to the most summarized ones (drill up). Figure 7 (bottom-left) shows the 
drill down so the user can see the cities from where the students of the country Portugal come from. 

The pivot operation allows changing the dimension that is being faced (change the current front face) to one 
that is adjacent to it by rotating the cube. By doing this, the user obtains another perspective of the data, which 
requires the queries to have a different structure but can be more beneficial for specific queries. For instance, he 
can slice and dice the cube away to get the results he needed, but sometimes with a pivot most of those opera-
tions can be avoided by perceiving a common structure on future queries and pivoting the cube in the correct 
fashion [23] [24]. Figure 7 (bottom-right) shows a pivot operation where years are arranged vertically and 
countries horizontally. 

The usual operations issued over the OLAP cube are about just querying historical events stored in it. So, 
 

 
Figure 7. Representation of cube operations for the Academic Management System: slice (top-left), dice (top-right), drill 
up/down (bottom-left) and pivot (bottom-right).                                                                     



A. Ribeiro et al. 
 

 
627 

a common dimension is a dimension associated to time. The most popular language for manipulating OLAP 
cubes is MDX (Multidimensional Expressions) [32], which is a query language for OLAP databases that sup-
ports all the operations mentioned above. MDX is exclusively used to analyze and read data since it was not de-
signed with SQL-DML in mind. The star schema and the OLAP cube are designed a priori with a specific pur-
pose in mind and cannot accept queries that differentiate much from the ones they were design to respond too. 
The benefit in this, is that queries are much simpler and faster, and by using a cube it is even quicker to detect 
patterns, find trends and navigate around the data while “slicing and dicing” with it [23] [25]. 

Again considering the Academic Management System example, the following query represents an MDX se-
lect statement. The SELECT clause sets the query axes as the name and the gender of the Student dimension and 
the year 2015 of the Date dimension. The FROM clause indicates the data source, here being the Students cube, 
and the WHERE clause defines the slicer axis as the “Computer Science” value of the Academic Program di-
mension. This query returns the students (by names and gender) that have enrolled in Computer Science in the 
year 2015. 
 

SELECT  
    { [Student].[Name], 
      [Student].[Gender]} ON COLUMNS 
    { [Date].[Academic Year] &[2015] } ON ROWS 
FROM [Students Cube]  
WHERE ([Academic Program].[Name] &[Computer Science]) 

3.3. Big Data Technologies 
Big Data Analytics consists in the process of discovering and extracting potentially useful information hidden in 
huge amounts of data (e.g. discover unknown patterns and correlations). Big Data Analytics can be separated in 
the following categories: (1) Batch-oriented processing; (2) Stream processing; (3) OLTP and; (4) Interactive 
ad-hoc queries and analysis. 

Batch-oriented processing is a paradigm where a large volume of data is firstly stored and only then ana-
lyzed, as opposed to Stream processing. This paradigm is very common to perform large-scale recurring tasks in 
parallel like parsing, sorting or counting. The most popular batch-oriented processing model is MapReduce [5], 
and more specifically its open-source implementation in Hadoop1. MapReduce is based on the divide and con-
quer (D&C) paradigm to break down complex Big Data problems into small sub-problems and process them in 
parallel. MapReduce, as its name hints, comprises two major functions: Map and Reduce. First, data is divided 
into small chunks and distributed over a network of nodes. Then, the Map function, which performs operations 
like filtering or sorting, is applied simultaneously to each chunk of data generating intermediate results. After 
that, those intermediate results are aggregated through the Reduce function in order to compute the final result. 
Figure 8 illustrates an example of the application of MapReduce in order to calculate the number of students 
enrolled in a given academic program by year. This model schedules computation resources close to data loca-
tion, which avoids the communication overhead of data transmission. It is simple and widely applied in bioin-
formatics, web mining and machine learning. Also related to Hadoop’s environment, Pig2 and Hive3 are two 
frameworks used to express tasks for Big Data sets analysis in MapReduce programs. Pig is suitable for data 
flow tasks and can produce sequences of MapReduce programs, whereas Hive is more suitable for data summa-
rization, queries and analysis. Both of them use their own SQL-like languages, Pig Latin and Hive QL, respec-
tively [33]. These languages use both CRUD and ETL operations. 

Streaming processing is a paradigm where data is continuously arriving in a stream, at real-time, and is ana-
lyzed as soon as possible in order to derive approximate results. It relies in the assumption that the potential 
value of data depends on its freshness. Due to its volume, only a portion of the stream is stored in memory [33]. 
Streaming processing paradigm is used in online applications that need real-time precision (e.g. dashboards of 
production lines in a factory, calculation of costs depending on usage and available resources). It is supported by 
Data Stream Management Systems (DSMS) that allow performing SQL-like queries (e.g. select, join, group, 
count) within a given window of data. This window establishes the period of time (based on time) or number of 
events (based on length) [34]. Storm and S4 are two examples of such systems. 

 

 

1https://hadoop.apache.org 
2https://pig.apache.org 
3https://hive.apache.org 

https://hadoop.apache.org/
https://pig.apache.org/
https://hive.apache.org/


A. Ribeiro et al. 
 

 
628 

 
Figure 8. Example of Map Reduce applied to the Academic Management System.                                      
 

OLTP, as we have seen before, is mainly used in the traditional RDBMS. However, these systems cannot as-
sure an acceptable performance when the volume of data and requests is huge, like in Facebook or Twitter. 
Therefore, it was necessary to adopt NoSQL databases that allow achieving very high performances in systems 
with such large loads. Systems like Cassandra4, HBase5 or MongoDB6 are effective solutions currently used. All 
of them provide their own query languages with equivalent CRUD operations to the ones provided by SQL. For 
example, in Cassandra is possible to create Column Families using CQL, in HBase is possible to delete a col-
umn using Java, and in MongoDB insert a document into a collection using JavaScript. Below there is a query in 
JavaScript for a MongoDB database equivalent to the SQL-DML query presented previously. 
 
db.students.find({ country: [“Canada”, “France”, “Germany”, “Italy”, “Japan”, “Russia”, “UK”, “USA”] }, { name: 1, country: 1 }). 
sort({ country: 1 }) 
 

At last, Interactive ad-hoc queries and analysis consists in a paradigm that allows querying different large- 
scale data sources and query interfaces with a very low latency. This type of systems argue that queries should 
not need more then few seconds to execute even in a Big Data scale, so that users are able to react to changes if 
needed. The most popular of these systems is Drill7. Drill works as a query layer that transforms a query written 
in a human-readable syntax (e.g. SQL) into a logical plan (query written in a platform-independent way). Then, 
the logical plan is transformed into a physical plan (query written in a platform-specific way) that is executed in 
the desired data sources (e.g. Cassandra, HBase or MongoDB) [35]. 

4. Discussion 
In this section we compare and discuss the approaches presented in the previous sections in terms of the two 
perspectives that guide this survey: Data Modeling and Data Analytics. Each perspective defines a set of fea-
tures used to compare Operational Databases, DWs and Big Data approaches among themselves. 

Regarding the Data Modeling Perspective, Table 2 considers the following features of analysis: (1) the data 
model; (2) the abstraction level in which the data model resides, according to the abstraction levels (Conceptual, 
Logical and Physical) of the database design process; (3) the concepts or constructs that compose the data model;  

 

 

4http://cassandra.apache.org 
5https://hbase.apache.org 
6https://www.mongodb.org 
7https://drill.apache.org 

http://cassandra.apache.org/
https://hbase.apache.org/
https://www.mongodb.org/
https://drill.apache.org/


A. Ribeiro et al. 
 

 
629 

Table 2. Comparison of the approaches from the Data Modeling Perspective.                                          

Approaches 
Features Data Model Abstraction 

Level Concepts Concrete 
Languages 

Modeling 
Tools 

DB Tools 
Support 

Operational 

Entity- 
Relationship  

Model 

Conceptual, 
Logical 

Entity 
Relationship 

Attribute 
Primary Key 
Foreign Key 

Chen’s, Crow’s 
foot, Bachman’s, 

Barker’s, IDEF1X 

Sparx Enterprise 
Architect, 

Visual Paradigm, 
Oracle Designer, 

MySQL Workbench, 
ER/Studio 

 

Relational 
Model 

Logical, 
Physical 

Table 
Row 

Attribute 
Primary Key 
Foreign Key, 

View, 
Index 

SQL-DDL, UML 
Data Profile 

Sparx Enterprise 
Architect, 

Visual Paradigm, 
Oracle Designer, 

MySQL Workbench, 
ER/Studio 

Microsoft SQL Server, 
Oracle, MySQL, 

PostgreSQL, 
IBM DB2 

Decision Support 

OLAP 
Cube 

Conceptual, 
Logical 

Dimensions, Levels, 
Cube faces, Time 

dimension, 
Local dimension 

Common 
Warehouse 
Metamodel 

Essbase Studio Tool, 
Enterprise Architect, 

Visual Paradigm 

Oracle Warehouse 
Builder, Essbase 

Studio Tool, 
Microsoft Analysis 

Services 

Star 
Schema 

Logical, 
Physical 

Fact table, 
Attributes table, 

Dimensions, 
Foreign Key 

SQL-DDL, DML, 
UML Data Model 

Profile, UML 
Profile for 

Modeling Data 
Warehouse Usage 

Enterprise Architect, 
Visual Paradigm, 
Oracle SQL Data 

Modeler 

Microsoft SQL Server, 
Oracle, MySQL, 

PostgreSQL, 
IBM DB2 

Big Data 

Key-Value Logical, 
Physical 

Key, 
Value 

SQL-DDL, 
Dynamo Query 

Language 
 Dynamo, 

Voldemort 

Document Logical, 
Physical 

Document, 
Primary Key 

SQL-DDL, 
Javascript  MongoDB, 

CounchDB 

Wide-Column Logical, 
Physical 

Keyspace, Table, 
Column, 

Column Family, 
Super Column, 
Primary Key, 

Index 

CQL, Groovy  Cassandra, 
HBase 

Graph Logical, 
Physical 

Node, 
Edge, 

Property 

Cypher Query 
Language, 
SPARQL 

 Neo4j, 
AllegroGraph 

 
(4) the concrete languages used to produce the data models and that apply the previous concepts; (5) the model-
ing tools that allow specifying diagrams using those languages and; (6) the database tools that support the data 
model. Table 2 presents the values of each feature for each approach. It is possible to verify that the majority of 
the data models are at a logical and physical level, with the exception of the ER model and the OLAP cube 
model, which are more abstract and defined at conceptual and logical levels. It is also possible to verify that Big 
Data has more data models than the other approaches, what can explain the work and proposals that have been 
conducted over the last years, as well as the absence of a de facto data model. In terms of concepts, again Big 
Data-related data models have a more variety of concepts than the other approaches, ranging from key-value 
pairs or documents to nodes and edges. Concerning concrete languages, it is concluded that every data model 
presented in this survey is supported by a SQL-DDL-like language. However, we found that only the operational 
databases and DWs have concrete languages to express their data models in a graphical way, like Chen’s nota-
tion for ER model, UML Data Profile for Relational model or CWM [36] for multidimensional DW models. 
Also, related to that point, there are none modeling tools to express Big Data models. Thus, defining such a 
modeling language and respective supporting tool for Big Data models constitute an interesting research direc-
tion that fills this lack. At last, all approaches have database tools that support the development based on their 



A. Ribeiro et al. 
 

 
630 

data models, with the exception of the ER model that is not directly used by DBMSs. 
On the other hand, in terms of the Data Analytics Perspective, Table 3 considers six features of analysis: (1) 

the class of application domains, which characterizes the approach suitability; (2) the common operations used 
in the approach, which can be reads and/or writes; (3) the operations types most typically used in the approach; 
(4) the concrete languages used to specify those operations; (5) the abstraction level of these concrete languages 
(Conceptual, Logical and Physical); and (6) the technology support of these languages and operations. 

Table 3 shows that Big Data is used in more classes of application domains than the operational databases 
and DWs, which are used for OLTP and OLAP domains, respectively. It is also possible to observe that opera-
tional databases are commonly used for reads and writes of small operations (using transactions), because they 
need to handle fresh and critical data in a daily basis. On the other hand, DWs are mostly suited for read opera-
tions, since they perform analysis and data mining mostly with historical data. Big Data performs both reads and 
writes, but in a different way and at a different scale from the other approaches. Big Data applications are built 
to perform a huge amount of reads, and if a huge amount of writes is needed, like for OLTP, they sacrifice con-
sistency (using “eventually consistency”) in order to achieve great availability and horizontal scalability. Opera-
tional databases support their data manipulation operations (e.g. select, insert or delete) using SQL-ML, which 
has slight variations according to the technology used. DWs also use SQL-ML through the select statement, be-
cause their operations (e.g. slice, dice or drill down/up) are mostly reads. DWs also use SQL-based languages, 
like MDX and XMLA (XML for Analysis) [37], for specifying their operations. On the other hand, regarding 
Big Data technologies, there is a great variety of languages to manipulate data according to the different class 
application domains. All of these languages provide equivalent operations to the ones offered by SQL-ML and 
add new constructs for supporting both ETL, data stream processing (e.g. create stream, window) [34] and Ma-
pReduce operations. It is important to note that concrete languages used in the different approaches reside at 
logical and physical levels, because they are directly used by the supporting software tools. 

5. Related Work 
As mentioned in Section 1, the main goal of this paper is to present and discuss the concepts surrounding data 
 
Table 3. Comparison of the approaches from the Data Analytics perspective.                                             

Approaches 
Features 

Class of  
Application 

Domains 

Common 
Operations Operations Concrete 

Languages Abstraction Level Technology 
Support 

Operational OLTP Read/Write 
Select, Insert, Update, 
Delete, Join, OrderBy, 

GroupBy 
SQL-DML Logical, Physical 

Microsoft SQL Server, 
Oracle, MySQL, 

PostgreSQL, 
IBM DB2 

Decision Support OLAP Read Slice, Dice, Drill 
down, Drill up, Pivot 

SQL-DML, 
MDX, XMLA Logical, Physical 

Microsoft SQL Server, 
Oracle, MySQL, 

PostgreSQL, 
IBM DB2, 

Microsoft OLAP  
Provider, 

Microsoft Analysis  
Services 

Big Data 

Batch-oriented 
processing Read/Write 

Map-Reduce, Select, 
Insert, Update, Delete, 
Load, Import, Export, 

OrderBy, GroupBy 

Hive QL,  
Pig Latin Logical, Physical Hadoop, Hive Pig 

Stream 
processing Read/Write Aggregate, Partition, 

Merge, Join, SQL stream Logical, Physical Storm, S4, Spark 

OLTP Read/Write 
Select, Insert, Update, 

Delete, Batch, Get, 
OrderBy, GroupBy 

CQL, Java,  
JavaScript Logical, Physical Cassandra, HBase 

Interactive 
ad-hoc queries 
and analysis 

Read 
Select, Insert, Update, 

Delete, OrderBy, 
GroupBy 

SQL-DML Logical, Physical Drill 



A. Ribeiro et al. 
 

 
631 

modeling and data analytics, and their evolution for three representative approaches: operational databases, de-
cision support databases and Big Data technologies. In our survey we have researched related works that also 
explore and compare these approaches from the data modeling or data analytics point of view. 

J.H. ter Bekke provides a comparative study between the Relational, Semantic, ER and Binary data models 
based on an examination session results [38]. In that session participants had to create a model of a case study, 
similar to the Academic Management System used in this paper. The purpose was to discover relationships be-
tween the modeling approach in use and the resulting quality. Therefore, this study just addresses the data mod-
eling topic, and more specifically only considers data models associated to the database design process. 

Several works focus on highlighting the differences between operational databases and data warehouses. For 
example, R. Hou provides an analysis between operational databases and data warehouses distinguishing them 
according to their related theory and technologies, and also establishing common points where combining both 
systems can bring benefits [39]. C. Thomsen and T.B. Pedersen compare open source ETL tools, OLAP clients 
and servers, and DBMSs, in order to build a Business Intelligence (BI) solution [40]. 

P. Vassiliadis and T. Sellis conducted a survey that focuses only on OLAP databases and compare various 
proposals for the logical models behind them. They group the various proposals in just two categories: commer-
cial tools and academic efforts, which in turn are subcategorized in relational model extensions and cube- 
oriented approaches [41]. However, unlike our survey they do not cover the subject of Big Data technologies. 

Several papers discuss the state of the art of the types of data stores, technologies and data analytics used in 
Big Data scenarios [29] [30] [33] [42], however they do not compare them with other approaches. Recently, P. 
Chandarana and M. Vijayalakshmi focus on Big Data analytics frameworks and provide a comparative study 
according to their suitability [35]. 

Summarizing, none of the following mentioned work provides such a broad analysis like we did in this paper, 
namely, as far as we know, we did not find any paper that compares simultaneously operational databases, deci-
sion support databases and Big Data technologies. Instead, they focused on describing more thoroughly one or 
two of these approaches  

6. Conclusions 
In recent years, the term Big Data has appeared to classify the huge datasets that are continuously being pro-
duced from various sources and that are represented in a variety of structures. Handling this kind of data 
represents new challenges, because the traditional RDBMSs and DWs reveal serious limitations in terms of per-
formance and scalability when dealing with such a volume and variety of data. Therefore, it is needed to rein-
vent the ways in which data is represented and analyzed, in order to be able to extract value from it. 

This paper presents a survey focused on both these two perspectives: data modeling and data analytics, which 
are reviewed in terms of the three representative approaches nowadays: operational databases, decision support 
databases and Big Data technologies. First, concerning data modeling, this paper discusses the most common 
data models, namely: relational model and ER model for operational databases; star schema model and OLAP 
cube model for decision support databases; and key-value store, document-oriented database, wide-column store 
and graph database for Big Data-based technologies. Second, regarding data analytics, this paper discusses the 
common operations used for each approach. Namely, it observes that operational databases are more suitable for 
OLTP applications, decision support databases are more suited for OLAP applications, and Big Data technolo-
gies are more appropriate for scenarios like batch-oriented processing, stream processing, OLTP and interactive 
ad-hoc queries and analysis. 

Third, it compares these approaches in terms of the two perspectives and based on some features of analysis. 
From the data modeling perspective, there are considered features like the data model, its abstraction level, its 
concepts, the concrete languages used to described, as well as the modeling and database tools that support it. 
On the other hand, from the data analytics perspective, there are taken into account features like the class of ap-
plication domains, the most common operations and the concrete languages used to specify those operations. 
From this analysis, it is possible to verify that there are several data models for Big Data, but none of them is 
represented by any modeling language, neither supported by a respective modeling tool. This issue constitutes 
an open research area that can improve the development process of Big Data targeted applications, namely ap-
plying a Model-Driven Engineering approach [12]-[14]. Finally, this paper also presents some related work on 
the data modeling and data analytics areas. 



A. Ribeiro et al. 
 

 
632 

As future work, we consider that this survey may be extended to capture additional aspects and comparison 
features that are not included in our analysis. It will be also interesting to survey concrete scenarios where Big 
Data technologies prove to be an asset [43]. Furthermore, this survey constitutes a starting point for our ongoing 
research goals in the context of the Data Storm and MDD Lingo initiatives. Specifically, we intend to extend 
existing domain-specific modeling languages, like XIS [44] and XIS-Mobile [45] [46], and their MDE-based 
framework to support both the data modeling and data analytics of data-intensive applications, such as those re-
searched in the scope of the Data Storm initiative [47]-[50]. 

Acknowledgements 
This work was partially supported by national funds through FCT—Fundação para a Ciência e a Tecnologia, 
under the projects POSC/EIA/57642/2004, CMUP-EPB/TIC/0053/2013, UID/CEC/50021/2013 and Data Storm 
Research Line of Excellency funding (EXCL/EEI-ESS/0257/2012). 

References 
[1] Mayer-Schönberger, V. and Cukier, K. (2014) Big Data: A Revolution That Will Transform How We Live, Work, and 

Think. Houghton Mifflin Harcourt, New York. 
[2] Noyes, D. (2015) The Top 20 Valuable Facebook Statistics. https://zephoria.com/top-15-valuable-facebook-statistics 
[3] Shvachko, K., Hairong Kuang, K., Radia, S. and Chansler, R. (2010) The Hadoop Distributed File System. 26th Sym-

posium on Mass Storage Systems and Technologies (MSST), Incline Village, 3-7 May 2010, 1-10. 
http://dx.doi.org/10.1109/msst.2010.5496972 

[4] White, T. (2012) Hadoop: The Definitive Guide. 3rd Edition, O'Reilly Media, Inc., Sebastopol. 
[5] Dean, J. and Ghemawat, S. (2008) MapReduce: Simplified Data Processing on Large Clusters. Communications, 51, 

107-113. http://dx.doi.org/10.1145/1327452.1327492 
[6] Hurwitz, J., Nugent, A., Halper, F. and Kaufman, M. (2013) Big Data for Dummies. John Wiley & Sons, Hoboken. 
[7] Beyer, M.A. and Laney, D. (2012) The Importance of “Big Data”: A Definition. Gartner.  

https://www.gartner.com/doc/2057415 
[8] Duncan, A.D. (2014) Focus on the “Three Vs” of Big Data Analytics: Variability, Veracity and Value. Gartner. 

https://www.gartner.com/doc/2921417/focus-vs-big-data-analytics 
[9] Agrawal, D., Das, S. and El Abbadi, A. (2011) Big Data and Cloud Computing: Current State and Future Opportunities. 

Proceedings of the 14th International Conference on Extending Database Technology, Uppsala, 21-24 March, 530-533.  
http://dx.doi.org/10.1145/1951365.1951432 

[10] McAfee, A. and Brynjolfsson, E. (2012) Big Data: The Management Revolution. Harvard Business Review. 

[11] DataStorm Project Website. http://dmir.inesc-id.pt/project/DataStorm. 
[12] Stahl, T., Voelter, M. and Czarnecki, K. (2006) Model-Driven Software Development: Technology, Engineering, 

Management. John Wiley & Sons, Inc., New York. 
[13] Schmidt, D.C. (2006) Guest Editor’s Introduction: Model-Driven Engineering. IEEE Computer, 39, 25-31. 

http://dx.doi.org/10.1109/MC.2006.58 
[14] Silva, A.R. (2015) Model-Driven Engineering: A Survey Supported by the Unified Conceptual Model. Computer 

Languages, Systems & Structures, 43, 139-155. 
[15] Ramakrishnan, R. and Gehrke, J. (2012) Database Management Systems. 3rd Edition, McGraw-Hill, Inc., New York. 
[16] Connolly, T.M. and Begg, C.E. (2005) Database Systems: A Practical Approach to Design, Implementation, and Man-

agement. 4th Edition, Pearson Education, Harlow. 
[17] Codd, E.F. (1970) A Relational Model of Data for Large Shared Data Banks. Communications of the ACM, 13, 377- 

387. http://dx.doi.org/10.1145/362384.362685 
[18] Bachman, C.W. (1969) Data Structure Diagrams. ACM SIGMIS Database, 1, 4-10. 

http://dx.doi.org/10.1145/1017466.1017467 
[19] Chamberlin, D.D. and Boyce, R.F. (1974) SEQUEL: A Structured English Query Language. In: Proceedings of the 

1974 ACM SIGFIDET (Now SIGMOD) Workshop on Data Description, Access and Control (SIGFIDET’ 74), ACM 
Press, Ann Harbor, 249-264. 

[20] Chen, P.P.S. (1976) The Entity-Relationship Model—Toward a Unified View of Data. ACM Transactions on Database 
Systems, 1, 9-36. http://dx.doi.org/10.1145/320434.320440 

https://zephoria.com/top-15-valuable-facebook-statistics
http://dx.doi.org/10.1109/msst.2010.5496972
http://dx.doi.org/10.1145/1327452.1327492
https://www.gartner.com/doc/2057415
https://www.gartner.com/doc/2921417/focus-vs-big-data-analytics
http://dx.doi.org/10.1145/1951365.1951432
http://dmir.inesc-id.pt/project/DataStorm
http://dx.doi.org/10.1109/MC.2006.58
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.1145/1017466.1017467
http://dx.doi.org/10.1145/320434.320440


A. Ribeiro et al. 
 

 
633 

[21] Tanaka, A.K., Navathe, S.B., Chakravarthy, S. and Karlapalem, K. (1991) ER-R, an Enhanced ER Model with Situa-
tion-Action Rules to Capture Application Semantics. Proceedings of the 10th International Conference on Entity- 
Relationship Approach, San Mateo, 23-25 October 1991, 59-75. 

[22] Merson, P. (2009) Data Model as an Architectural View. Technical Note CMU/SEI-2009-TN-024, Software Engineer-
ing Institute, Carnegie Mellon. 

[23] Kimball, R. and Ross, M. (2013) The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling. 3rd 
Edition, John Wiley & Sons, Inc., Indianapolis. 

[24] Zhang, D., Zhai, C., Han, J., Srivastava, A. and Oza, N. (2009) Topic Modeling for OLAP on Multidimensional Text 
Databases: Topic Cube and Its Applications. Statistical Analysis and Data Mininig, 2, 378-395. 
http://dx.doi.org/10.1002/sam.10059 

[25] Gray, J., et al. (1997) Data Cube: A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub- 
Totals. Data Mining and Knowledge Discovery, 1, 29-53. http://dx.doi.org/10.1023/A:1009726021843 

[26] Cattell, R. (2011) Scalable SQL and NoSQL Data Stores. ACM SIGMOD Record, 39, 12-27. 
http://dx.doi.org/10.1145/1978915.1978919 

[27] Gilbert, S. and Lynch, N. (2002) Brewer’s Conjecture and the Feasibility of Consistent, Available, Partition-Tolerant 
Web Services. ACM SIGACT News, 33, 51-59. 

[28] Vogels, W. (2009) Eventually Consistent. Communications of the ACM, 52, 40-44. 
http://dx.doi.org/10.1145/1435417.1435432 

[29] Grolinger, K., Higashino, W.A., Tiwari, A. and Capretz, M.A.M. (2013) Data Management in Cloud Environments: 
NoSQL and NewSQL Data Stores. Journal of Cloud Computing: Advances, Systems and Applications, 2, 22. 
http://dx.doi.org/10.1186/2192-113x-2-22 

[30] Moniruzzaman, A.B.M. and Hossain, S.A. (2013) NoSQL Database: New Era of Databases for Big data Analytics- 
Classification, Characteristics and Comparison. International Journal of Database Theory and Application, 6, 1-14. 

[31] Chang, F., et al. (2006) Bigtable: A Distributed Storage System for Structured Data. Proceedings of the 7th Symposium 
on Operating Systems Design and Implementation (OSDI’ 06), Seattle, 6-8 November 2006, 205-218. 

[32] Spofford, G., Harinath, S., Webb, C. and Civardi, F. (2005) MDX Solutions: With Microsoft SQL Server Analysis 
Services 2005 and Hyperion Essbase. John Wiley & Sons, Inc., Indianapolis. 

[33] Hu, H., Wen, Y., Chua, T.S. and Li, X. (2014) Toward Scalable Systems for Big Data Analytics: A Technology Tu-
torial. IEEE Access, 2, 652-687. http://dx.doi.org/10.1109/ACCESS.2014.2332453 

[34] Golab, L. and Özsu, M.T. (2003) Issues in Data Stream Management. ACM SIGMOD Record, 32, 5-14. 
http://dx.doi.org/10.1145/776985.776986 

[35] Chandarana, P. and Vijayalakshmi, M. (2014) Big Data Analytics Frameworks. Proceedings of the International Con-
ference on Circuits, Systems, Communication and Information Technology Applications (CSCITA), Mumbai, 4-5 April 
2014, 430-434. http://dx.doi.org/10.1109/cscita.2014.6839299 

[36] Poole, J., Chang, D., Tolbert, D. and Mellor, D. (2002) Common Warehouse Metamodel. John Wiley & Sons, Inc., 
New York. 

[37] XML for Analysis (XMLA) Specification. https://msdn.microsoft.com/en-us/library/ms977626.aspx. 
[38] ter Bekke, J.H. (1997) Comparative Study of Four Data Modeling Approaches. Proceedings of the 2nd EMMSAD 

Workshop, Barcelona, 16-17 June 1997, 1-12. 
[39] Hou, R. (2011) Analysis and Research on the Difference between Data Warehouse and Database. Proceedings of the 

International Conference on Computer Science and Network Technology (ICCSNT), Harbin, 24-26 December 2011, 
2636-2639. 

[40] Thomsen, C. and Pedersen, T.B. (2005) A Survey of Open Source Tools for Business Intelligence. Proceedings of the 
7th International Conference on Data Warehousing and Knowledge Discovery (DaWaK’05), Copenhagen, 22-26 Au-
gust 2005, 74-84. http://dx.doi.org/10.1007/11546849_8 

[41] Vassiliadis, P. and Sellis, T. (1999) A Survey of Logical Models for OLAP Databases. ACM SIGMOD Record, 28, 64- 
69. http://dx.doi.org/10.1145/344816.344869 

[42] Chen, M., Mao, S. and Liu, Y. (2014) Big Data: A Survey. Mobile Networks and Applications, 19, 171-209. 
http://dx.doi.org/10.1007/978-3-319-06245-7 

[43] Chen, H., Hsinchun, R., Chiang, R.H.L. and Storey, V.C. (2012) Business Intelligence and Analytics: From Big Data 
to Big Impact. MIS Quarterly, 36, 1165-1188. 

[44] Silva, A.R., Saraiva, J., Silva, R. and Martins, C. (2007) XIS-UML Profile for Extreme Modeling Interactive Systems. 
Proceedings of the 4th International Workshop on Model-Based Methodologies for Pervasive and Embedded Software 

http://dx.doi.org/10.1002/sam.10059
http://dx.doi.org/10.1023/A:1009726021843
http://dx.doi.org/10.1145/1978915.1978919
http://dx.doi.org/10.1145/1435417.1435432
http://dx.doi.org/10.1186/2192-113x-2-22
http://dx.doi.org/10.1109/ACCESS.2014.2332453
http://dx.doi.org/10.1145/776985.776986
http://dx.doi.org/10.1109/cscita.2014.6839299
https://msdn.microsoft.com/en-us/library/ms977626.aspx
http://dx.doi.org/10.1007/11546849_8
http://dx.doi.org/10.1145/344816.344869
http://dx.doi.org/10.1007/978-3-319-06245-7


A. Ribeiro et al. 
 

 
634 

(MOMPES’07), Braga, 31-31 March 2007, 55-66. http://dx.doi.org/10.1109/MOMPES.2007.19 
[45] Ribeiro, A. and Silva, A.R. (2014) XIS-Mobile: A DSL for Mobile Applications. Proceedings of the 29th Symposium 

on Applied Computing (SAC 2014), Gyeongju, 24-28 March 2014, 1316-1323.  
http://dx.doi.org/10.1145/2554850.2554926 

[46] Ribeiro, A. and Silva, A.R. (2014) Evaluation of XIS-Mobile, a Domain Specific Language for Mobile Application 
Development. Journal of Software Engineering and Applications, 7, 906-919.  
http://dx.doi.org/10.4236/jsea.2014.711081 

[47] Silva, M.J., Rijo, P. and Francisco, A. (2014). Evaluating the Impact of Anonymization on Large Interaction Network 
Datasets. In: Proceedings of the 1st International Workshop on Privacy and Security of Big Data, ACM Press, New 
York, 3-10. http://dx.doi.org/10.1145/2663715.2669610 

[48] Anjos, D., Carreira, P. and Francisco, A.P. (2014) Real-Time Integration of Building Energy Data. Proceedings of the 
IEEE International Congress on Big Data, Anchorage, 27 June-2 July 2014, 250-257. 
http://dx.doi.org/10.1109/BigData.Congress.2014.44 

[49] Machado, C.M., Rebholz-Schuhmann, D., Freitas, A.T. and Couto, F.M. (2015) The Semantic Web in Translational 
Medicine: Current Applications and Future Directions. Briefings in Bioinformatics, 16, 89-103. 
http://dx.doi.org/10.1093/bib/bbt079 

[50] Henriques, R. and Madeira, S.C. (2015) Towards Robust Performance Guarantees for Models Learned from High- 
Dimensional Data. In: Hassanien, A.E., Azar, A.T., Snasael, V., Kacprzyk, J. and Abawajy, J.H., Eds., Big Data in 
Complex Systems, Springer, Berlin, 71-104. http://dx.doi.org/10.1007/978-3-319-11056-1_3 

http://dx.doi.org/10.1109/MOMPES.2007.19
http://dx.doi.org/10.1145/2554850.2554926
http://dx.doi.org/10.4236/jsea.2014.711081
http://dx.doi.org/10.1145/2663715.2669610
http://dx.doi.org/10.1109/BigData.Congress.2014.44
http://dx.doi.org/10.1093/bib/bbt079
http://dx.doi.org/10.1007/978-3-319-11056-1_3

	Data Modeling and Data Analytics: A Survey from a Big Data Perspective
	Abstract
	Keywords
	1. Introduction
	2. Data Modeling
	2.1. Operational Databases
	2.2. Decision Support Databases
	2.3. Big Data Technologies

	3. Data Analytics
	3.1. Operational Databases
	3.2. Decision Support Databases
	3.3. Big Data Technologies

	4. Discussion
	5. Related Work
	6. Conclusions
	Acknowledgements
	References

