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ABSTRACT 
In 1953, Rènyi introduced his pioneering work (known as α-entropies) to generalize the traditional notion of 
entropy. The functionalities of α-entropies share the major properties of Shannon’s entropy. Moreover, these 
entropies can be easily estimated using a kernel estimate. This makes their use by many researchers in computer 
vision community greatly appealing. In this paper, an efficient and fast entropic method for noisy cell image 
segmentation is presented. The method utilizes generalized α-entropy to measure the maximum structural infor- 
mation of image and to locate the optimal threshold desired by segmentation. To speed up the proposed method, 
computations are carried out on 1D histograms of image. Experimental results show that the proposed method is 
efficient and much more tolerant to noise than other state-of-the-art segmentation techniques. 
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1. Introduction 
Instinctively, image segmentation is the process of divi- 
ding an image into different regions such that each re- 
gion is homogeneous while not the union of any two ad- 
jacent regions. An additional requirement would be that 
these regions have a correspondence to real homogene- 
ous regions belonging to objects in the scene [1]. Image 
segmentation is an elementary and significant component 
in many applications such as image analysis, pattern re- 
cognition, medical diagnosis and currently in robotic vi- 
sion. However, it is one of the most difficult and challen- 
ging tasks in image processing, and it determines the qua- 
lity of the final results of the image analysis. The recent 
developments in Digital Mammography (DM), Magnetic 
Resonance Imaging (MRI), Computed Tomography (CT), 
and other diagnostic imaging techniques provide physi- 
cians with high resolution images which have significant- 
ly assisted the clinical diagnosis. These up-to-date tech- 
nologies not only have a recognizably increased knowle- 
dge of normal and diseased anatomy for medical research 
but also become a significant part in diagnosis and treat- 
ment planning [2]. 

Due to the increasing number of medical images, tak- 
ing advantage of computers to facilitate the processing 
and analyzing of this huge number of images has become 
indispensable. Especially, algorithms for the delineation 
of anatomical structures and other regions of interest are 
a key component in assisting and automating specific ra- 
diological tasks. These algorithms, named image seg- 
mentation algorithms, play a fundamental role in many 
medical imaging applications such as the quantification 
of tissue volumes [3,4], diagnosis [5], localization of pa- 
thology [6,7], study of anatomical structure [8,9], treat- 
ment planning [10], partial volume correction of functio- 
nal imaging data [11], and computer integrated surgery 
[12-14]. Techniques for carrying out segmentations vary 
broadly depending on some factors such as specific ap- 
plication, imaging modality, etc. For instance, the seg- 
mentation of brain tissue has different requirements from 
the segmentation of the liver [15]. General imaging arti- 
facts such as noise, partial volume effects, and motion can 
also have significant consequences on the performance of 
segmentation algorithms. Additionally, each imaging mo- 
dality has its own idiosyncrasies with which to contend.  
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There is currently no single segmentation technique that 
gives satisfactory results for each medical image. 

Since the pioneering work by Shannon [16,17] in 1948, 
entropy appears as an attention-grabbing tool in many 
areas of data processing. In 1953, Rènyi [8] introduced a 
wider class of entropies known as α -entropies. The func- 
tionalities of α -entropies share the major properties of 
Shannon’s entropy. Moreover, the α -entropies can be 
easily estimated using a kernel estimate. This makes their 
use attractive in many areas of image processing [18-20]. 
In this paper, we propose an efficient entropic technique 
for segmenting cell images which utilizes generalized 
Rènyi entropy. Our work for cell image segmentation has 
a relatively good performance in comparison to other re- 
lated state-of-the-art techniques [21,22]. 

The outline of this paper is as follows. The next sec- 
tion discusses the generalized form of α-entropies espe- 
cially generalized Rényi entropy. The proposed entropic 
segmentation method is explained in Section 3. Section 4 
is to present the experimental results that validate the use 
of the proposed method. Advantages of our method and 
concluding remarks are outlined in Section 5. 

2. Entropy of Generalized Distributions 
Entropy has first appeared in thermodynamics as an in- 
formation theoretical concept which is intimately related 
to the internal energy of the system. Then it has applied 
across physics, information theory, mathematics and other 
branches of science and engineering [9]. When given a 
system whose exact description is not precisely known, 
the entropy is defined as the expected amount of infor- 
mation needed to exactly specify the state of the system, 
given what we know about the system. 

Suppose { }1 2, , , nP p p p=   be a finite discrete pro- 
bability distribution that satisfies these conditions  

0, 1, 2, ,kp k n≥ =   and 1 1n
kk p

=
=∑ . The amount of 

uncertainty of the distribution P , is called the entropy 
of the distribution, P. The Shannon entropy of the distri- 
bution, P, a measure of uncertainty and denoted by 
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It should be noted that the Shannon entropy given by 
Equation (1) is additive, i.e. it satisfies the following re- 
lation: 

( ) ( ) ( )H A B H A H B+ = +          (2) 

for any two distributions A  and B . Equation (2) states 
one of the most important properties of entropy, namely, 
its additivity: the entropy of a combined experiment con- 
sisting of the performance of two independent experi- 

ments is equal to the sum of the entropies of these two 
experiments. The formalism defined by Equation (1) has 
been shown to be restricted to the Boltzmann-Gibbs- 
Shannon (BGS) statistics. However, for nonextensive sys- 
tems, some kind of extension appears to become neces- 
sary. Rènyi entropy, which is useful for describing the non- 
extensive systems, is defined as 
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where 0α ≥  and 1α ≠ . The real number α  is called 
an entropic order that characterizes the degree of non- 
extensivity. This expression reduces to Shannon entropy 
in the limit 1α → . We shall see that in order to get the 
fine characterization of Rànyi entropy, it is advantageous 
to extend the notion of a probability distribution, and 
define entropy for the generalized distributions. The cha- 
racterization of measures of entropy (and information) 
becomes much simpler if we consider these quantities as 
defined on the set of generalized probability distribu- 
tions. 

Suppose [ ], PΩ  be a probability space that is, Ω  an 
arbitrary nonempty set, called the set of elementary 
events, and P a probability measure, that is, a non-ne- 
gative and additive set function for which ( )P Ω . Let us 
call a function ( )ξ ξ ω=  which is defined for 1ω∈Ω , 
where 1Ω ⊂ Ω . If ( )1 1P Ω =  we call ξ  an ordinary 
(or complete) random variable, while if  

( )10 < 1P Ω ≤  we call ξ  an incomplete random vari- 
able. Evidently, an incomplete random variable can be 
interpreted as a quantity describing the result of an ex- 
periment depending on chance which is not always ob- 
servable, only with probability ( )1 < 1P Ω . The distribu- 
tion of a generalized random variable is called a genera- 
lized probability distribution. Thus a finite discrete gene- 
ralized probability distribution is simply a sequence 
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where ( )Pϖ  is the weight of the distribution and 
( )0 < 1Pϖ ≤ . A distribution that has a weight less than 

1 will be called an incomplete distribution. Now, using 
Equation (3) and Equation (4), the Rànyi entropy for the 
generalized distribution can be written as 
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Note that Rànyi entropy has a nonextensive property 
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for statistical independent systems, defined by the fol- 
lowing pseudo additivity entropic formula 

( ) ( ) ( )
( ) ( ) ( )1

H A B H A H B

H A H B
α α α

α αα

+ = +

+ − ⋅ ⋅
     (6) 

3. Suggested Methodology 
Image segmentation problem is considered to be one of 
the most holy grail challenges of computer vision field 
especially when done for noisy images. Consequently it 
has received considerable attention by many researchers 
in computer vision community. There are many approach 
for image segmentation, however, these approach are still 
inadequate. In this work, we propose an entropic method 
that achieves the task of segmentation in a novel way. 
This method not only overcomes image noise, but also 
utilizes time and memory optimally. This wisely happens 
by the advantage of using the Rànyi entropy of genera- 
lized distributions to measure the structural information 
of image and then locate the optimal threshold depending 
on the postulation that the optimal threshold corresponds 
to the segmentation with maximum structure (i.e., max- 
imum information content of the distribution). The im- 
plementation steps of the proposed segmentation method 
are shown in the block diagram of Figure 1. The follow- 
ing sections outline in detail the process behind each 
step. 
 

 
Figure 1. Block diagram of the proposed segmentation me- 
thod. 

3.1. Preprocessing 

Preprocessing ultimately aims at improving the image in 
ways that increase the opportunity for success of the 
other ulterior processes [17,23]. In this step, we apply a 
Gaussian filter to the input image prior to any process in 
order to reduce the amount of noise in an image.  

3.2. Entropies Calculation 

Suppose { } 1

n
i i

p
=

 be the probability distribution for the 
image. At the threshold, t  this distribution is divided 
into two sub distributions; one for the foreground (class f) 
and the other for the background (class b) given by 

{ } 1

tf
i i

P p
=

=  and { } 1

nb
i i t

P p
= +

=  respectively. Thus, the 
generalized Rànyi entropies for the two distributions as 
functions of t  are given as 
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3.3. Image Thresholding 

Thresholding is the most often used technique to dis- 
tinguish objects from background. In this step an input 
image is converted by threshed into a binary image so 
that the objects in the input image can be easily separated 
from the background. To get the desired optimum thre- 
shold value t*, we have to maximize the total entropy, 

( )f bH tα
+ . When the function ( )f bH tα

+  is maximized, 
the value of parameter t  that maximizes the function is 
believed to be the optimum threshold value [24]. Mathe- 
matically, the problem can be formulated as  

( )
( ) ( ) ( ) ( ) ( )
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arg max 1

f b

f b f b

t H t

H t H t H t H t

α

α α α αα

∗ + =  
 = + + − ⋅ ⋅ 

 

(9) 

3.4. Morphology-Based Operations 
In image processing, dilation, erosion, closing and open- 
ing are all well-known as morphological operations. In 
this step we aim at improving the results of the previous 
thresholding step. Due to the inconsistency within the 
color of objects, the resulting binary image perhaps in- 
cludes some holes inside. By applying the closing mor- 
phological operation, we can get rid of the holes form the 
binary image. Furthermore Opening operation with small 
structure element can be used to separate some objects 
that are still connected in small number of pixels [25,26]. 
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3.5. Overlapping Cancelation 
In this step we attempt to remove the overlapping be- 
tween objects that perhaps happened through extensively 
applying the previous morphological operations. To per- 
form this, we first get the Euclidean Distance Transform 
(EDT) of the binary image. Then we apply the well- 
known watershed algorithm [27,28] on the resulting EDT 
image. The EDT ultimately converts the binary image 
into one where each pixel has a value equal to its dis- 
tance to the nearest foreground pixel. The distances are 
measured in Euclidean distance metric. The peaks of the 
distance transform are assumed to be in the centers of the 
objects. Then the overlapping objects can be yet easily 
separated.  

3.6. Non-Objects Removal 
This step helps in removing incorrect objects according 
to the object size. Sizes of objects are measured in com- 
parison to the total size of image. Each tiny noise object 
of size less than a predefined minimum threshold can be 
discarded. Also each object whose size is greater than the 
maximum threshold size can be removed as well. Note 
that thresholds of size used herein are often dependent on 
the application, and so they are considered as user-de- 
fined data.  

4. Experimental Results 
In this section, the results of the proposed approach are 
presented. First to investigate the proposed approach for 
image segmentation we began by different image histo- 
grams. Each of these histograms describes the “objects” 
and the “background”. Additionally, to verify the benefit 
of using the generalized Rènyi entropy, we have tried us- 
ing another formula of entropy (e.g. Tsallis entropy) which 
is given by 

11
1

n
kk p

H
α

α α
=

−
=

−
∑                 (10) 

The results of segmentation have testified to the higher 
efficiency of our entropic segmentation approach espe- 
cially when generalized Rènyi entropy is used. 

In Figure 2, an image of a mammogram showing 
breast cancer with a bright region (tumefaction) sur- 
rounded by a noisy region. The histogram roughly exem- 
plifies an unimodal distribution of the graylevel values. 
The proposed entropic method will look for regions with 
uniform distribution in order to find the maximum en- 
tropy. This will regularly take place at the peak limit. It is 
well-known that segmenting this type of images is typi- 
cally a challenging task. However the proposed method 
could performed well when applied on this type of im- 
ages. Additionally, segmentation results in the figure show 
that using generalized Rènyi entropy is better than using 
Tsallis entropy. 

Figure 3 shows another example of our segmentation 
method. We present an image of a medical domain with a 
spatial background scattering noise; a stained brain cell 
that shows branching of cell dendrites-fibers that receive 
input from other brain cells. Several values of α  are 
experimented. But the superior segmentation results has 
been obtained at 0.9α = . 

In Figure 4, we show the segmentation results of the 
proposed method on a sample of color medical images. 
In this example the images are segmented with α  equal 
to 0.8. 

5. Conclusion 
In this paper, we introduced a new method for cell image 
segmentation based on generalized α -entropy. The pro- 
posed method has achieved the task of segmentation in a 
novel way. This method has been shown to provide good 
results in most cases and perform well when applied to 
noisy cell images. The experimental results show that us- 
ing generalized Rènyi formalism of entropy is more vi- 
able than using Tsallis counterpart in segmentating cell 
image. The chief advantages of the method are its high 

 

 
Figure 2. Entropic segmentation for noisy mammography image. 
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Figure 3. Entropic segmentation for a brain cell image with a spatial noise around. 

 

 
Figure 4. Results of the proposed segmentation method for a sample of test images. 

 
rapidity and its tolerance to image noise. 
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