
Journal of Software Engineering and Applications, 2013, 6, 36-46
http://dx.doi.org/10.4236/jsea.2013.610A005 Published Online October 2013 (http://www.scirp.org/journal/jsea)

Traceability in Acceptance Testing

Jean-Pierre Corriveau1, Wei Shi2

1School of Computer Science, Carleton University, Ottawa, Canada; 2Business and Information Technology, University of Ontario
Institute of Technology, Oshawa, Canada.
Email: jeanpier@scs.carleton.ca, wei.shi@uoit.ca

Received August 30th, 2013; revised September 28th, 2013; accepted October 6th, 2013

Copyright © 2013 Jean-Pierre Corriveau, Wei Shi. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ABSTRACT

Regardless of which (model-centric or code-centric) development process is adopted, industrial software production
ultimately and necessarily requires the delivery of an executable implementation. It is generally accepted that the qual-
ity of such an implementation is of utmost importance. Yet current verification techniques, including software testing,
remain problematic. In this paper, we focus on acceptance testing, that is, on the validation of the actual behavior of the
implementation under test against the requirements of stakeholder(s). This task must be as objective and automated as
possible. Our first goal is to review existing code-based and model-based tools for testing in light of what such an ob-
jective and automated approach to acceptance testing entails. Our contention is that the difficulties we identify originate
mainly in a lack of traceability between a testable model of the requirements of the stakeholder(s) and the test cases
used to validate these requirements. We then investigate whether such traceability is addressed in other relevant speci-
fication-based approaches.

Keywords: Validation; Acceptance Testing; Model-Based Testing; Traceability; Scenario Models

1. Introduction

The use and role of models in the production of software
systems vary considerably across industry. Whereas some
development processes rely extensively on a diversity of
semantic-rich UML models [1], proponents of Agile
methods instead minimize [2], if not essentially eliminate
[3] the need for models. However, regardless of which
model-centric or code-centric development process is
adopted, industrial software production ultimately and
necessarily requires the delivery of an executable imple-
mentation. Furthermore, it is generally accepted that the
quality of such an implementation is of utmost impor-
tance [4]. That is, except for the few who adopt “hit-
and-run” software production1, the importance of soft-
ware verification within the software development life-
cycle is widely acknowledged. Yet, despite recent ad-
vancements in program verification, automatic debug-
ging, assertion deduction and model-based testing (here-
after MBT), Ralph Johnson [5] and many others still
view software verification as a “catastrophic computer
science failure”. Indeed, the recent CISQ initiative [6]
proceeds from such remarks and similar ones such as:

“The current quality of IT application software exposes
businesses and government agencies to unacceptable
levels of risk and loss.” [Ibid]. In summary, software
verification remains problematic [4]. In particular, soft-
ware testing, that is evaluating software by observing its
executions on actual valued inputs [7], is “a widespread
validation approach in industry, but it is still largely ad
hoc, expensive, and unpredictably effective” [8]. Gri-
eskamp [9], the main architect of Microsoft’s MBT tool
Spec Explorer [10], indeed confirms that current testing
practices “are not only laborious and expensive but often
unsystematic, lacking an engineering methodology and
discipline and adequate tool support”.

In this paper, we focus on one specific aspect of soft-
ware testing, namely the validation [11] of the actual
behavior of an implementation under test (hereafter IUT)
against the requirements of stakeholder(s) of that system.
This task, which Bertolino refers to as “acceptance test-
ing” [8], must be as objective and automated as possible
[12]: errors originating in requirements have catastrophic
economic consequences, as demonstrated by Jones and
Bonsignour [4]. Our goal here is to survey existing tools
for testing in light of what such an “objective and auto-
mated” approach to acceptance testing entails. To do so,
we first discuss in Section 2 existing code-based and, in

1According to which one develops and releases quickly in order to grab
a market share, with little consideration for quality assurance and no
commitment to maintenance and customer satisfaction!

Copyright © 2013 SciRes. JSEA

Traceability in Acceptance Testing 37

Section 3, existing model-based approaches to accep-
tance testing. We contend that the current challenges
inherent to acceptance testing originate first and foremost
in a lack of traceability between a testable model of the
requirements of the stakeholder(s) and the test cases (i.e.,
code artifacts) used to validate the IUT against these re-
quirements. We then investigate whether such traceabil-
ity is addressed in other relevant specification-based ap-
proaches.

Jones and Bonsignour [4] suggest that the validation of
both functional and non-functional requirements can be
decomposed into two steps: requirements analysis and
requirements verification. They emphasize the impor-
tance of requirements analysis in order to obtain a speci-
fication (i.e., a model) of a system’s requirements in
which defects (e.g., incompleteness and inconsistency)
have been minimized. Then requirements verification
checks that a product, service, or system (or portion
thereof) meets a set of design requirements captured in a
specification. In this paper, we only consider functional
requirements and, following Jones and Bonsignour, pos-
tulate that requirements analysis is indeed a crucial first
step for acceptance testing (without reviewing however
the large body of literature that pertains to this task). We
start by addressing code-based approaches to acceptance
testing because they in fact reject this postulate.

2. Code-Based Acceptance Testing?

Testing constitutes one of the most expensive aspects of
software development and software is often not tested as
thoroughly as it should be [8,9,11,13]. As mentioned
earlier, one possible standpoint is to view current ap-
proaches to testing as belonging to one of two categories:
code-centric and model-centric. In this section, we brief-
ly discuss the first of these two categories.

A code-centric approach, such as Test-Driven Design
(TDD) [3] proceeds from the viewpoint that, for “true
agility”, the design must be expressed once and only
once, in code. In other words, there is no requirements
model per se (that is, a specification of the requirements
of a system captured separately from code). Conse-
quently, there is no traceability [14] between a require-
ments model and the test cases exercising the code. But,
in our opinion, such traceability is an essential facet of
acceptance testing: without traceability of a suite of test
cases “back to” an explicitly-captured requirements mo-
del, there is no objective way of measuring how much of
this requirements model is covered [11] by this test suite.
Let us consider, for illustration, the game of Yahtzee2
(involving throwing 5 dice up to three times per round,
holding some dice between each throw, to achieve the
highest possible score according to a specific poker-like

scoring algorithm). In an assignment given to more than
a hundred students over several offerings of a 4th year
undergraduate course in Software Quality Assurance at
Carleton, students were first asked to develop a simple
text-based implementation of this game using TDD. De-
spite familiarity with the game and widespread availabil-
ity of the rules, it is most telling that only a few students
had their implementation prevent the holding of all 5 dice
for the second or third roll... The point to be grasped is
that requirement analysis (which does not exist in TDD
for it would require the production of a specification)
would likely avoid this omission by checking the com-
pleteness of the requirements pertaining to holding dice.

A further difficulty with TDD and similar approaches
is that tests cases (in contrast to more abstract tests [11])
are code artifacts that are implementation-driven and
implementation-specific. For example, returning to our
Yahtzee experiment, we observed that, even for such a
small and quite simple application, the implementations
of the students shared similar designs but vastly differed
at the code level. Consequently, the test suites of students
also vastly differed in their code. For example, some
students handled the holding of dice through parameters
of the procedure responsible for a single roll, some used
a separate procedure, some created a data structure for
the value and the hold value of each die, and some
adopted much less intuitive approaches (e.g., involving
the use of complex return values...) resulting in rather
“obscure” test cases. In a follow-up assignment (before
the TDD assignment was returned and students could see
which tests they had missed), students were asked to de-
velop a suite of implementation-independent tests (writ-
ten in English) for the game. Students were told to refer
to the “official” rules of the game to verify both consis-
tency and completeness as much as they could (that is,
without developing a more formal specification that
would lend itself to a systematic method for verifying
consistency and completeness). Not surprisingly, in this
case, most test suites from students were quite similar.

Thus, in summary, the reuse potential of implementa-
tion-driven and implementation-specific test cases is
quite limited: each change to the IUT may require several
test cases to be updated. In contrast, the explicit captur-
ing of a suite of implementation-independent tests gener-
ated from a requirements model offers two significant
advantages:

1) It decouples requirements coverage [11] from the
IUT: a suite of tests is generated from a requirements
model according to some coverage criterion. Then, and
only then, are tests somehow transformed into test cases
proper (i.e., executable code artifacts specific to the IUT).
Such test cases must be kept in sync with a constantly
evolving IUT, but this can be done totally independently
of requirements coverage. For example, how many spe- 2http://en.wikipedia.org/wiki/Yahtzee

Copyright © 2013 SciRes. JSEA

Traceability in Acceptance Testing 38

cific test cases are devoted to holding dice or to scoring a
(valid or invalid) full house in Yahtzee, can be com-
pletely decided before any code is written.

2) It enables reuse of a suite of tests across several
IUTs, be they versions of a constantly evolving IUT or
competing vendor-specific IUTs having to demonstrate
compliance to some specification (e.g., in the domain of
software radios). For example, as a third assignment per-
taining to Yahtzee, students are asked to develop a
graphical user interface (GUI) version of the game and
demonstrate compliance of their implementation to the
suite of tests (not test cases) we provide. Because per-
formance and usability of the GUI are both evaluated,
implementations can still vary (despite everyone essen-
tially using the same “official” scoring sheet as the basis
for the interface). However, a common suite of tests for
compliance ensures all such submissions offer the same
functionality, regardless of how differently this function-
ality is realized in code.

Beyond such methodological issues faced by code-
based approaches to acceptance testing, because the latter
requires automation (e.g., [11,12]), we must also con-
sider tool support for such approaches.

Put simply, there is a multitude of tools for software
testing (see [15,16]), even for specific domains such as
Web quality assurance [17]. Bertolino [8] remarks, in her
seminal review of the state-of-the-art in software testing,
that most focus on functional testing, that is, check “that
the observed behavior complies with the logic of the
specifications”. From this perspective, it appears these
tools are relevant to acceptance testing. A closer look
reveals most of these tools are code-based testing tools
(e.g., Java’s JUnit [18] and AutoTest [19]) that mainly
focus on unit testing [11], that is, on testing individual
procedures of an IUT (as opposed to scenario testing
[20]). A few observations are in order:

1) There are many types of code-based verification
tools. They include a plethora of static analyzers, as well
as many other types of tools (see [21] for a short review).
For example, some tackle design-by-contract [22], some
metrics, some different forms of testing (e.g., regression
testing [11]). According to the commonly accepted defi-
nition of software testing as “the evaluation of software
by observing its executions on actual valued inputs” [7],
many such tools (in particular, static analyzers) are not
testing tools per se as they do not involve the execution
of code.

2) As stated previously, we postulate acceptance test-
ing requires an implementation-independent require-
ments model. While possibly feasible, it is unlikely this
testable requirements model (hereafter TRM) would be at
a level of details that would enable traceability between it
and unit-level tests and/or test cases. That is, typically the
tests proceeding from a TRM are system-level ones [11]

(that is, intuitively, ones that view the system as a black
box), not unit-level ones (i.e., specific to particular pro-
cedures). Let us consider once more the issue of holding
dice in the game of Yahtzee to illustrate this point. As
mentioned earlier, there are several different ways of
implementing this functionality, leading to very different
code. Tests pertaining to the holding of dice are derived
from a TRM and, intuitively, involve determining:
 how many tests are sufficient for the desired coverage

of this functionality
 what the first roll of each test would be (fixed values

or random ones)
and then for each test:
 what dice to hold after the first roll
 what the 2nd roll of each test would be (verifying

whether holding was respected or not)
 whether a third roll occurs or not, and, if it does:

a) what dice to hold after the second roll
b) what the 3rd roll is (verifying whether holding was
respected or not)

The resulting set of tests is implementation-indepen-
dent and adopts a user perspective. It is a common mis-
take however to have the creators of tests wrongfully
postulate the existence of specific procedures in an im-
plementation (e.g., a hold procedure with five Boolean
parameters). This error allows the set of tests for holding
to be expressed in terms of sequences of calls to specific
procedures, thus incorrectly linking system-level tests
with procedures (i.e., unit-level entities). In reality, au-
tomatically inferring traceability between system-level
tests and unit-level test cases is still, to the best of our
knowledge, an open problem (whereas manual traceabil-
ity is entirely feasible but impractical due to an obvious
lack of scalability, as discussed shortly). Furthermore, we
remark that the decision as to how many tests are suffi-
cient for the desired coverage of the holding functionality
must be totally independent of the implementation. (For
example, it cannot be based on assuming that there is a
hold procedure with 5 Boolean parameters and that we
merely have to “cover” a sufficient number of combina-
tions of these parameters. Such a tactic clearly omits se-
veral facets of the set of tests suggested for the hold
functionality.)

Thus, in summary, tools conceived for unit testing
cannot directly be used for acceptance testing.

3) Similarly, integration-testing tools (such as Fit/Fit-
ness, EasyMock and jMock, etc.) do not address accep-
tance testing proper. In particular, they do not capture a
TRM per se. The same conclusion holds for test automa-
tion frameworks (e.g., IBM’s Rational Robot [23]) and
test management tools (such as HP Quality Centre [24]
and Microsoft Team Foundation Server [25]).

One possible avenue to remedy the absence of a TRM
in existing code-based testing tools may consist in trying

Copyright © 2013 SciRes. JSEA

Traceability in Acceptance Testing 39

to connect such a tool with a requirements capture tool,
that is, with a tool that captures a requirements model but
does not generate tests or test cases from it. However,
our ongoing collaboration with Blueprint [26] to attempt
to link their software to code-based testing tools has re-
vealed a fundamental hurdle with such a multi-tool ap-
proach: Given there is no generation of test cases in
Blueprint, traceability from Blueprint requirements3 to
test cases (be they generated or merely captured in some
code-based testing tool) currently reduces to manual
cross-referencing. That is, there is currently no auto-
mated way of connecting requirements with test cases.
But a scalable approach to acceptance testing requires
such automated traceability. Without it, the initial manual
linking of (e.g., hundreds of) requirements to (e.g., pos-
sibly thousands of) test cases (e.g., in the case of a me-
dium-size system of a few tens of thousands lines of code)
is simply unfeasible. (From this viewpoint, whether ei-
ther or both tools at hand support change impact analysis
is irrelevant as it is the initial connecting of requirements
to test cases that is most problematic.) At this point in
time, the only observation we can add is that current ex-
perimentation with Blueprint suggests an eventual solu-
tion will require that a “semantic bridge” between this
tool and a code-based testing tool be constructed. But
this is possible only if both requirements and test cases
are captured in such a way that they enable their own
semantic analysis. That is, unless we can first have algo-
rithms and tools that can “understand” requirements and
test cases (by accessing and analyzing their underlying
representations), we cannot hope to develop a semantic
bridge between requirements and test cases. However,
such “understanding” is extremely tool specific, which
leads us to conclude that a multi-tool approach to accep-
tance testing is unlikely in the short term (especially if
one also has to “fight” a frequent unfavorable bias of
users towards multi-tool solutions, due to their over-
specificity, their cost, their learning curves, etc.).

The need for an automated approach to traceability
between requirements and test cases suggests the latter
be somehow generated from the former. And thus we
now turn to model-based approaches to acceptance test-
ing.

3. Model-Based Testing

In her review of software testing, Bertolino [8] remarks:
“A great deal of research focuses nowadays on model-
based testing. The leading idea is to use models defined
in software construction to drive the testing process, in
particular to automatically generate the test cases. The
pragmatic approach that testing research takes is that of

following what is the current trend in modeling: which-
ever be the notation used, say e.g., UML or Z, we try to
adapt to it a testing technique as effectively as possible
[.]”.

Model-Based Testing (MBT) [10,28,29] involves the
derivation of tests and/or test cases from a model that
describes at least some of the aspects of the IUT. More
precisely, an MBT method uses various algorithms and
strategies to generate tests (sometimes equivalently
called “test purposes”) and/or test cases from a behav-
ioral model of the IUT. Such a model is usually a partial
representation of the IUT’s behavior, “partial” because
the model abstracts away some of the implementation
details.

Several survey papers (e.g., [8,30,31) and special is-
sues (e.g., [29]) have addressed such model-based ap-
proaches, as well as the more specific model driven ones
(e.g., [32,33]). Some have specifically targeted MBT
tools (e.g., [28]). While some MBT methods use models
other than UML state machines (e.g., [34]), most rely on
test case generation from such state machines (see [35]
for a survey).

Here we will focus on state-based MBT tools that
generate executable test cases. Thus we will not consider
MBT contributions that instead only address the genera-
tion of tests (and thus do not tackle the difficult issue of
transforming such tests into executable IUT-specific test
cases). Nor will we consider MBT methods that are not
supported by a tool (since, tool support is absolutely re-
quired in order to demonstrate the executability of the
generated test cases).

We start by discussing Conformiq’s Tool Suite [36,37],
formerly known as Conformiq Qtronic (as referred to in
[35]). This tool requires that a system’s requirements be
captured in UML statecharts (using Conformiq’s Mod-
eler or third party tools). It “generates software tests [...]
without user intervention, complete with test plan docu-
mentation and executable test scripts in industry standard
formats like Python, TCL, TTCN-3, C, C++, Visual Ba-
sic, Java, JUnit, Perl, Excel, HTML, Word, Shell Scripts
and others” [37]. This includes the automatic generation
of test inputs (including structural data), expected test
outputs, executable test suites, test case dependency in-
formation and traceability matrix, as well as “support for
boundary value analysis, atomic condition coverage, and
other black-box test design heuristics” [Ibid.].

While such a description may give the impression ac-
ceptance testing has been successfully completely auto-
mated, extensive experimentation4 reveals some signifi-
cant hurdles:

First, Grieskamp [9], the creator of Spec Explorer [10],

3Blueprint offers user stories (which are a simple form of UML Use
Cases [11,27]), UI Mockups and free-form text to capture requirements.
The latter are by far the most popular but the hardest to semantically
process in an automated way.

4by the authors and 100+ senior undergraduate and graduate students in
the context of offerings of a 4th year undergraduate course in Quality
Assurance and a graduate course in Object Oriented Software Engi-
neering twice over the last two years.

Copyright © 2013 SciRes. JSEA

Traceability in Acceptance Testing 40

another state-based MBT tool, explains at length the
problems inherent to test case generation from state ma-
chines. In particular, he makes it clear that the state ex-
plosion problem remains a daunting challenge for all
state-based MBT tools (contrary to the impression one
may get from reading the few paragraphs devoted to it in
the 360-page User Manual from Conformiq [37]). Indeed,
even the modeling of a simple game like Yahtzee can
require a huge state space if the 13 rounds of the game
are to be modeled. Both tools (Conformiq and SpecEx-
plorer) offer a simple mechanism to constrain the state
“exploration” (or search) algorithm by setting bounds
(e.g., on the maximum number of states to consider, or
the “look ahead depth”). But then the onus is on the user
to fix such bounds through trial and error. And such con-
straining is likely to hinder the completeness of the gen-
erated tests. The use of “slicing” in Spec Explorer [10],
via the specification of a scenario (see Figures 1-3), con-
stitutes a much better solution to the problem of state
explosion because it emphasizes the importance of equi-
valence partitioning [11] and rightfully places on the
user the onus of determining which scenarios are equiva-
lent (a task that, as Binder explains [Ibid.], is unlikely to
be fully automatable). (Figure 3 also conveys how tedi-
ous (and non-scalable) the task of verifying the generated
state machine can be even for a very simple scenario...)

Second, in Conformiq, requirements coverage5 is only
possible if states and transitions are manually associated

// verify handling scoring “three of a kind” works
// correctly: it must return the total of the dice if 3 or
// more are identical.
// compute score for 36 end states with 3, 3, 3 as last dice
// (ie only 2 first dice are random)
// then compute score for the sole end state
// corresponding to roll 2, 2, 1, 1, 3.
// In that case, all dice are fixed and the game must
// score 0 if that roll is scored as a three-of-a-kind
machine ScoreThreeOfAKind() : RollConstraint
{ (NewGame;
 (RollAll(_, _, 3, 3, 3);
 Score(ScoreType.ThreeOfAKind)
 | RollAll(2, 2, 1, 1, 3);
 Score(ScoreType.ThreeOfAKind)))
 || (construct model program from RollConstraint)
// This last line is the one carrying out the slicing by
// limiting a totally random roll of five dice to the
// sequence of two rolls (and scoring) specified above it.
}

Figure 1. A Spec Explorer scenario for exploring scoring of
three-of-a-kind rolls.

// Sample hold test: we fix completely the first roll,
// then hold its first 3 dice and roll again only 4th and 5th
// dice.
// This test case gives 36 possible end states
machine hold1() : RollConstraint
{ (NewGame; RollAll(1,1,1,1,1);
 hold(1); hold(2); hold(3); RollAll)
 || (construct model program from RollConstraint)
}

Figure 2. A Spec Explorer scenario for holding the first
three dice.

with requirements (which are thus merely annotations
superimposed on a state machine)! Clearly, such a task
lacks automation and scalability. Also, it points to an
even more fundamental problem: requirements traceabil-
ity, that is, the ability to link requirements to test cases.
Shafique and Labiche [35, Table 4(b)] equate “require-
ments traceability” with “integration with a requirements
engineering tool”. Consequently, they consider that both
Spec Explorer and Conformiq offer only “partial” sup-
port for this problem. For example, in Conformiq, the
abovementioned requirements annotations can be manu-
ally connected to requirements captured in a tool such as
IBM RequisitePro or IBM Rational DOORS [37, Chapter
7]. However, we believe this operational view of re-
quirements traceability downplays a more fundamental
semantic problem identified by Grieskamp [9]: a sys-
tem’s stakeholders are much more inclined to associate
requirements to scenarios [20] (such as UML use cases
[27]) than to elements of a state machine... From this
viewpoint:

1) Spec Explorer implicitly supports the notion of sce-
narios via the use of “sliced machines”, as previously
illustrated. But slicing is a sophisticated technique draw-
ing on semantically complex operators [10]. Thus, the
state space generated by a sliced machine often may not
correspond to the expectations of the user. This makes it
all the more difficult to conceptually and then manually
link the requirements of stakeholder’s to such scenarios.
For example, in the case of Yahtzee, a sliced machine
can be obtained quite easily for each of the 13 scoring
categories of the game (see Figures 1 and 3). Traceabil-
ity from these machines to the requirements of the game
is quite straightforward (albeit not automated). Con-
versely, other aspects of the game (such as holding dice,
ensuring no more than 3 rolls are allowed in a single
round, ensuring that no category is used more than once
per game, ensuring that exactly 13 rounds are played, etc.)
require several machines in order to obtain sufficient
coverage. In particular, the machine of Figure 2 is not
sufficient to test holding dice. Clearly, in such cases,
traceability is not an isomorphism between sliced ma-
chines and requirements. Finally, there are aspects of

5Not to be confused with state machine coverage, nor with test suite
coverage, both of these being directly and quite adequately addressed
by Conformiq and Spec Explorer [35, Tables 2 and 3].

Copyright © 2013 SciRes. JSEA

Traceability in Acceptance Testing

Copyright © 2013 SciRes. JSEA

41

Figure 3. A part of the generated sliced state machine for scoring of three-of-a-kind rolls.

Yahtzee that are hard to address with state machines
and/or scenarios. For example, a Yahtzee occurs when all
five dice have the same value at the end of a round.
Yahtzee is the most difficult combination to throw in a
game and has the highest score of 50 points. Without
going into details, if a player obtains more than one Yaht-
zee during a same game, these additional Yahtzees can
be used as wild cards (i.e., score full points in other ca-
tegories). For example, a second Yahtzee could be used
as a long straight! Such behavior (wild cards at any point
in time) drastically complicates models (leading most
who attempt to address this feature to later abandon it...).
In fact, the resulting models are so much more complex
that:
 getting slicing to work correctly is very challenging

(read time-consuming, in terms of modeling and veri-
fication of the generated machines), especially given
insufficient slicing will lead to state exploration fail-
ing upon reaching some upper bound (making it even
more difficult to decide if the partially generated ma-
chine is correct or not). Such a situation typically
leads to oversimplifications in the model and/or the
slicing scenarios...

 traceability between such machines and the game
requirements is not obvious. That is, even someone
who is an expert with the game and with Spec Ex-
plorer will not necessarily readily know what a par-
ticular sliced machine is exactly testing. (This is par-
ticularly true when using some of the more powerful
slicing operators whose behavior must be thoroughly
understood in order to decide if the behavior they
generate corresponds or not to what the tester in-
tends.)

2) Conformiq does support use cases, which can be
linked to requirements and can play a role in test case
generation [37, p. 58]. Thus, instead of having the user
manually connect requirements to elements of a state
machine, a scenario-based approach to requirements

traceability could be envisioned. Intuitively this approach
would associated a) requirements with use cases and b)
paths of use cases with series of test cases. But, unfortu-
nately, this would require a totally different algorithm for
test case generation than the one Conformiq uses. Such
an algorithm would not be rooted in state machines but in
path sensitization using scenarios [11] and this would
lead to a totally different tool.

Third, test case executability may not be as readily
available as what the user of an MBT tool expects. Con-
sider for example, the notion of a “scripting backend” in
Conformiq Designer. For example [37, p. 131]: “The
TTCN-3 scripting backend publishes tests generated by
Conformiq Designer automatically in TTCN-3 and saves
them in TTCN-3 files. TTCN-3 test cases are executed
against a real system under test with a TTCN-3 runtime
environment and necessary adapters.” The point to be
grasped is (what is often referred to as) “glue code” is
required to connect the generated tests to an actual IUT.
Though less obvious from the documentation, the same
observation holds for the other formats (e.g., C++, Perl,
etc.) for which Conformiq offers such backends. For
example, we first read [37, p. 136]: “With Perl script
backend, Perl test cases can be derived automatically
from a functional design model and be executed against a
real system.” And then find out on the next page that this
in fact requires “the location of the Perl test harness
module, i.e., the Perl module which contains the imple-
mentation of the routines that the scripting backend gen-
erates.” In other words, Conformiq does provide not only
test cases but also offers a (possibly 3rd party) test har-
ness [Ibid.] that enables their execution against an IUT.
But its user is left to create glue code to bridge between
these test cases and the IUT. This manual task is not only
time-consuming but potentially error-prone [11]. Also,
this glue code is implementation-specific and thus, both
its reusability across IUTs and its maintainability are
problematic.

Traceability in Acceptance Testing 42

In Spec Explorer [10], each test case corresponds to a
specific path through a generated ‘sliced’ state machine.
One alternative is to have each test case connected to the
IUT by having the rules of the specification (which are
used to control state exploration, as illustrated shortly)
explicitly refer to procedures of the IUT. Alternatively,
an adapter (i.e., glue code) can be written to link these
test cases with the IUT. That is, once again, traceability
to the IUT is a manual task. Furthermore, in this tool, test
case execution (which is completely integrated into Vis-
ual Studio) relies on the IUT inputting test case specific
data (captured as parameter values of a transition of the
generated state machine) and outputting the expected
results (captured in the model as return values of these
transitions). As often emphasized in the associated tuto-
rial videos (especially, Session 3 Part 2), the state vari-
ables used in the Spec Explorer rules are only relevant to
state machine exploration, not to test case execution.
Thus any probing into the state of the IUT must be ex-
plicitly addressed through the use of such parameters and
return values. The challenge of such an approach can be
illustrated by returning to our Yahtzee example. Consider
the rule (Figure 4) called RollAll (used in Figures 1 and
2) to capture the state change corresponding to a roll of
the dice.

In the rule RollAll, numRolls, numRounds, numHeld,
diHeld and diVal are all state variables. Without going in
details, this rule enables all valid rolls (with respect to the
number of rounds, the number of rolls and which dice are
to be held) to be potential next states. So, if before firing
this rules the values for diVal were {1, 2, 3, 4, 5} and
those of the diHeld were {true, true, true, true, false},
then only rolls that have the first 4 dice (which are held)
as {1, 2, 3, 4} are valid as next rolls. The problem is that
{1, 2, 3, 4, 5} is valid as a next roll. But, when testing
against an IUT, this rule makes it impossible to verify
whether the last dice was held by mistake or actually
rerolled and still gave 5. The solution attempted by stu-
dents given this exercise generally consists in adding 5
more Boolean parameters to RollAll: each Boolean indi-
cating if a die is held or not. The problem with such a
solution is that it leads to state explosion.

More specifically:
1) the rule RollAll(int d1, int d2, int d3, int d4, int d5)

has 65 = 7776 possible next states but
2) the rule RollAll(int d1, int d2, int d3, int d4, int d5,

boolean d1Held, boolean d2Held, boolean d3Held, boo-
lean d4Held, boolean d5Held) has 65 * 25 = 248,832
possible next states.

A round for a player may consist of up to 3 rolls, each
one using RollAll to compute its possible next states. In
the first version of this rule, if no constraints are used,
each of the 7776 possible next states of the first roll has
itself 7776 possible next states. That amounts to more

 [Rule]
 static void RollAll(int d1, int d2, int d3, int d4, int d5)
{
// We can roll if we haven’t rolled 3 times already for this
// round and if we still have a round to play and score
 Condition.IsTrue(numRolls < 3);
 Condition.IsTrue(numRounds < 13);
// if this is the first roll for this round,
// then make sure no die is held
 if (numRolls == 0)
 { Condition.IsTrue(numHeld == 0); }
 else
 {
// the state variables diVal hold the values of the dice
// from the previous roll
// if a dice is held then the new value di of dice i,
// which is a parameter to this rule must be the same as
// the previous value of this die.
 Condition.IsTrue(!d1Held || d1 == d1Val);
 Condition.IsTrue(!d2Held || d2 == d2Val);
 Condition.IsTrue(!d3Held || d3 == d3Val);
 Condition.IsTrue(!d4Held || d4 == d4Val);
 Condition.IsTrue(!d5Held || d5 == d5Val);
/* store values from this roll in the state variables*/
 d1Val = d1; d2Val = d2; d3Val = d3;
 d4Val = d4; d5Val = d5;
 } // of else clause
// increment the state variable that keeps track
// of the number of rolls for this round.
 numRolls += 1;
}

Figure 4. Rule RollAll.

than 60 million states and we have yet to deal with a pos-
sible third roll. The explosion of states is obviously even
worse with the second version of the RollAll rule: after
two rolls there are 61 billion possible states... State ex-
ploration will quickly reach the specified maximum for
the number of generated states, despite the sophisticated
state-clustering algorithm of SpecExplorer. Furthermore,
unfortunately, an alternative design for modeling the
holding of dice is anything but intuitive as it requires
using the return value of this rule to indicate, for each die,
if it was held or not...

The key point to be grasped from this example is that,
beyond issues of scalability and traceability, one funda-
mental reality of all MBT tools is that their semantic in-
tricacies can significantly impact on what acceptance
testing can and cannot address. For example, in Yahtzee,
given a game consists of 13 rounds to be each scored
once into one of the 13 categories of the scoring sheet, a
tester would ideally want to see this scoring sheet after
each roll in order to ensure not only that the most recent
roll has been scored correctly but also that previous

Copyright © 2013 SciRes. JSEA

Traceability in Acceptance Testing 43

scores are still correctly recorded. But achieving this is
notoriously challenging in SpecExplorer (unless it is ex-
plicitly programmed into the glue code that connects the
test cases to the IUT; an approach that is less than ideal
in the context of automated testing).

We discuss further the issue of semantics in the con-
text of traceability for acceptance testing in the next sec-
tion.

4. On Semantics for Acceptance Testing

There exists a large body of work on “specifications” for
testing, as discussed at length in [38]. Not surprisingly,
most frequently such work is rooted in state-based se-
mantics6. For example, recently, Zhao and Rammig [40]
discuss the use of a Büschi automaton for a state-oriented
form online model checking. In the same vein, COMA
[41], JavaMOP [42] and TOPL [43] offer implemented
approaches to runtime verification. The latter differs
from acceptance testing inasmuch as it is not concerned
with the generation of tests but rather with the analysis of
an execution in order to detect the violation of certain
properties. Runtime verification specifications are typi-
cally expressed in trace predicate formalisms, such as
finite state machines, regular expressions, context-free
patterns, linear temporal logics, etc. (JavaMOP stands
out for its ability to support several of these formalisms.)
While “scenarios” are sometimes mentioned in such me-
thods (e.g., [44]), they are often quite restricted semanti-
cally. For example, Li et al. [45] use UML sequence dia-
grams with no alternatives or loops. Ciraci et al. [46]
explains that the intent is to have such “simplified” sce-
narios generate a graph of all possible sequences of exe-
cutions. The difficulty with such strategy is that it gener-
ally does not scale up, as demonstrated at length by Bri-
and and Labiche [47]7. Similarly, in MBT, Cucumber is a
tool rooted in BDD [48], a user-friendly language for
expressing scenarios. But these scenarios are extremely
simple (nay simplistic) compared to the ones expressible
using slicing in SpecExplorer [10].

It must be emphasized that not all approaches to
run-time verification that use scenario-based specifica-
tions depend on simplified semantics. In particular, Krü-
ger, Meisinger and Menarini [49] rely on the rich seman-
tics of Message Sequence Charts [50], which they extend!
But, like many similar approaches, they limit themselves
to monitoring sequences of procedures (without parame-
ters). Also, they apply their state machine synthesis algo-

rithm to obtain state machines representing the full
communication behavior of individual components of the
system. Such synthesized state machines are at the centre
of their monitoring approach but are not easy to trace
back to the requirements of a system’s stakeholders.

Furthermore, all the approaches to runtime verification
we have studied rely on specifications that are imple-
mentation (and often programming language) specific.
For example, valid sequences are to be expressed using
the actual names of the procedures of an implementation,
or transitions of a state machine are to be triggered by
events that belong to a set of method names. Thus, in
summary, it appears most of this research bypasses the
problem of traceability between an implementation-in-
dependent specification and implementation-specific ex-
ecutable tests, which is central to the task of acceptance
testing. Requirements coverage may also be an issue de-
pending on how many (or how few) execution traces are
considered. Furthermore, as is the case for most MBT
methods and tools, complex temporal scenario inter-re-
lationships [20] are often ignored in runtime verification
approaches (i.e., temporal considerations are limited to
the sequencing of procedures with little attention given to
temporal scenario inter-relationships).

At this point of the discussion, we observe that trace-
ability between implementation-independent specifica-
tions and executable IUT-specific test cases remains pro-
blematic in existing work on MBT and, more generally,
in specifications for testing. Hierons [38], amongst others,
comes to the same conclusion. Therefore, it may be use-
ful to consider modeling approaches not specifically tar-
geted towards acceptance testing but that appear to ad-
dress traceability.

First, consider the work of Cristia et al. [51] on a lan-
guage for test refinements rooted in (a subset of) the Z
notation (which has been investigated considerably for
MBT [Ibid.]). A refinement requires:
 “Identifying the SUT’s [System Under Test] state

variables and input parameters that correspond to the
specification variables

 Initializing the implementation variables as specified
in each abstract test case

 Initializing implementation variables used by the SUT
but not considered in the specification

 Performing a sound refinement of the values of the
abstract test cases into values for the implementation
variables.”

A quick look at the refinement rule found in Figure 3
of [51] demonstrates eloquently how implementation-
specific such a rule is. Thus, our traceability problem
remains.

In the same vein, Microsoft’s FORMULA (Formal
Modeling Using Logic Programming and Analysis) [52]
is:

6Non state-based approaches do exist but are quite remote from accep-
tance testing. For example, Stoller et al. [39] rely on Hidden Markov
Models to propose a particular type of runtime verification rooted in
computing the probability of satisfying an aspect of a specification.
7Imposing severe semantic restrictions on scenarios serves the purpose
of trying to limit this graph of all possible sequences of execution. But
if loops, alternatives and interleaving are tackled, then the number of
possible sequences explodes.

Copyright © 2013 SciRes. JSEA

Traceability in Acceptance Testing 44

“A modern formal specification language targeting
model-based development (MBD). It is based on alge-
braic data types (ADTs) and strongly-typed constraint
logic programming (CLP), which support concise speci-
fications of abstractions and model transformations.
Around this core is a set of composition operators for
composing specifications in the style of MBD.” [Ibid.]

The problem is that the traceability of such specifica-
tions to a) a requirements model understandable by
stakeholders and b) to an IUT remains a hurdle.

In contrast, the philosophy of model-driven design
(MDD) [53] that “the model is the code” seems to elimi-
nate the traceability issue between models and code:
code can be easily regenerated every time the model
changes8. And since, in MDD tools (e.g., [54]), code gen-
eration is based on state machines, there appears to be an
opportunity to reuse these state machines not just for
code generation but also for test case generation. This is
indeed feasible with Conformiq Designer [36], which
allows the reuse of state machines from third party tools.
But there is a major stumbling block: while both code
and test cases can be generated (albeit by different tools)
from the same state machines, they are totally independ-
ent. In other words, the existence of a full code generator
does not readily help with the problem of traceability
from requirements to test cases. In fact, because the code
is generated, it is extremely difficult to reuse it for the
construction of the scriptends that would allow Confor-
miq’s user to connect test cases to this generated IUT.
Moreover, such a strategy defeats the purpose of full
code generation in MDD, which is to have the users of an
MDD tool never have to deal with code directly (except
for defining the actions of transitions in state machines).

One possible avenue of solution would be to develop a
new integrated generator that would use state machines
to generate code and test cases for this code. But trace-
ability of such test cases back to a requirements models
(especially a scenario-driven one, as advocated by Gri-
eskamp [9]), still remains unaddressed. Thus, at this
point in time, the traceability offered in MDD tools by
virtue of full code generation does not appear to help
with the issue of traceability between requirements and
test cases for acceptance testing. Furthermore, one must
also acknowledge Selic’s [53] concerns about the rela-
tively low level of adoption of MDD tools in industry.

In the end, despite the dominant trend in MBT of
adopting state-based test and test case generation, it may
be necessary to consider some sort of scenario-driven
generation of test cases from requirements for acceptance
testing. This seems eventually feasible given the follow-

ing concluding observations:
1) There is already work on generating tests out of use

cases [55] and use case maps [56,57], and generating test
cases out of sequence diagrams [58,59]. Path sensitiza-
tion [11,12] is the key technique typically used in these
proposals. There are still open problems with path sensi-
tization [Ibid.]. In particular, automating the identifica-
tion of the variables to be used for path selection is chal-
lenging. As is the issue of path coverage [Ibid.] (in light
of a potential explosion of the number of possible paths
in a scenario model). In other words, the fundamental
problem of equivalence partitioning [11] remains an im-
pediment and an automated solution for it appears to be
quite unlikely. However, despite these observations, we
remark simple implementations of this technique already
exist (e.g., [56] for Use Case Maps).

2) Partial, if not ideally fully automated, traceability
between use cases, use case maps and sequence diagrams
can certainly be envisioned given their semantic close-
ness, each one in fact refining the previous one.

3) Traceability between sequence diagrams (such as
Message Sequence Charts [50]) and an IUT appears quite
straightforward given the low-level of abstraction of such
models.

4) Within the semantic context of path sensitization,
tests can be thought of as paths (i.e., sequences) of ob-
servable responsibilities (i.e., small testable functional
requirements [57]). Thus, because tests from use cases,
use case maps and sequence diagrams are all essentially
paths of responsibilities, and because responsibilities ulti-
mately map onto procedures of the IUT, automated trace-
ability (e.g., via type inference as proposed in [60]) be-
tween tests and test cases and between test cases and IUT
seems realizable.

5. Acknowledgements

Support from the Natural Sciences and Engineering Re-
search Council of Canada is gratefully acknowledged.

REFERENCES
[1] P. Kruchten, “The Rational Unified Process,” Addison-

Wesley, Reading, 2003.

[2] D. Rosemberg and M. Stephens, “Use Case Driven Ob-
ject Modeling with UML,” Apress, New York, 2007.

[3] K. Beck, “Test-Driven Development: By Example,” Ad-
dison-Wesley Professional, Reading, 2002.

[4] C. Jones and O. Bonsignour, “The Economics of Soft-
ware Quality,” Addison-Wesley Professional, Reading,
2011.

8As one of the original creators of the ObjecTime toolset, which has
evolved in Rational Rose Technical Developer [54], the first author of
this paper is well aware of the semantic and scalability issues facing
existing MDD tools. But solutions to these issues are not as relevant to
acceptance testing as the problem of traceability.

[5] R. Johnson, “Avoiding the Classic Catastrophic Com-
puter Science Failure Mode,” Proceedings of the 18th
ACM SIGSOFT International Symposium on Foundations
of Software Engineering, Santa Fe, 7-11 November 2010,

Copyright © 2013 SciRes. JSEA

Traceability in Acceptance Testing 45

[6] M. Surhone, M. Tennoe and S. Henssonow, “Cisq,” Be-
tascript Publishing, New York, 2010.

[7] P. Ammann and J. Offutt, “Introduction to Software Test-
ing,” Cambridge University Press, Cambridge, 2008.
http://dx.doi.org/10.1017/CBO9780511809163

[8] A. Bertolino, “Software Testing Research: Achievements,
Challenges and Dreams,” Proceedings of Future of Soft-
ware Engineering (FOSE 07), Minneapolis, 23-25 May
2007, pp. 85-103.

[9] W. Grieskamp, “Multi-Paradigmatic Model-Based Test-
ing,” Technical Report, Microsoft Research, Seattle, 2006,
pp. 1-20.

[10] Microsoft, “Spec Explorer Visual Studio Power Tool,”
2013.
http://visualstudiogallery.msdn.microsoft.com/271d0904-
f178-4ce9-956b-d9bfa4902745

[11] R. Binder, “Testing Object-Oriented Systems,” Addison-
Wesley Professional, Reading, 2000.

[12] J.-P. Corriveau, “Testable Requirements for Offshore Out-
sourcing,” Proceedings of Software Engineering Ap-
proaches for Offshore and Outsourced Development
(SEAFOOD), Springer, Berlin, 2007, pp. 27-43.
http://dx.doi.org/10.1007/978-3-540-75542-5_3

[13] B. Meyer, “The Unspoken Revolution in Software Engi-
neering,” IEEE Computer, Vol. 39, No. 1, 2006, pp. 121-
123.

[14] J.-P. Corriveau, “Traceability Process for Large OO Pro-
jects,” IEEE Computer, Vol. 29, No. 9, 1996, pp. 63-68.
http://dx.doi.org/10.1109/2.536785

[15] “List of Testing Tools,” 2013.
http://www.softwaretestingclass.com/software-testing-too
ls-list

[16] Wikipedia, “Second List of Testing Tools,” 2013.
http://en.wikipedia.org/wiki/Category:Software_testing_t
ools

[17] “Testing Tools for Web QA,” 2013.
http://www.aptest.com/webresources.html

[18] “JUnit,” 2013. http://www.junit.org

[19] B. Meyer, et al., “Programs that Test Themselves,” IEEE
Computer, Vol. 42, No. 9, 2009, pp. 46-55.
http://dx.doi.org/10.1109/MC.2009.296

[20] J. Ryser and M. Glinz, “SCENT: A Method Employing
Scenarios to Systematically Derive Test Cases for System
Test,” Technical Report, University of Zurich, Zurich,
2003.

[21] D. Arnold, J.-P. Corriveau and W. Shi, “Validation aga-
inst Actual Behavior: Still a Challenge for Testing Tools,”
Proceedings of Software Engineering Research and Prac-
tice (SERP), Las Vegas, 12-15 July 2010.

[22] B. Meyer, “Design by Contract,” IEEE Computer, Vol.
25, No. 10, 1992, pp. 40-51.
http://dx.doi.org/10.1109/2.161279

[23] “IBM Rational Robot,” 2013.
http://www-01.ibm.com/software/awdtools/tester/robot

[24] “HP Quality Centre,” 2013.

http://www8.hp.com/ca/en/software-solutions/software.ht
ml?compURI=1172141#.UkDyk79AiHk

[25] “Team Foudation Server,” 2013.
http://msdn.microsoft.com/en-us/vstudio/ff637362.aspx

[26] “Blueprint,” 2013.
https://documentation.blueprintcloud.com/Blueprint5.1/Defa
ult.htm#Help/Project%20Administration/Tasks/Managing
%20ALM%20targets/Creating%20ALM%20targets.htm

[27] Object Management Group (OMG), “UML Superstruc-
ture Specification v2.3,” 2013.
http://www.omg.org/spec/UML/2.3

[28] M. Utting and B. Legeard, “Practical Model-Based Test-
ing: A Tools Approach,” Morgan Kauffmann, New York,
2007.

[29] “Special Issue on Model-Based Testing,” Testing Ex-
perience, Vol. 17, 2012.

[30] M. Prasanna, et al., “A Survey on Automatic Test Case
Generation,” Academic Open Internet Journal, Vol. 15,
No. 6, 2005.

[31] A. Neto, R. Subramanyan, M. Vieira and G. H. Travassos,
“A Survey of Model-Based Testing Approaches,” Pro-
ceedings of the 1st ACM International Workshop on Em-
pirical Assessment of Software Engineering Languages
and Technologies (WEASELTech 07), Atlanta, 5 Novem-
ber 2007, pp. 31-36.

[32] P. Baker, Z. R. Dai, J. Grabowski, I. Schieferdecker and
C. Williams, “Model-Driven Testing: Using the UML Pro-
file,” Springer, New York, 2007.

[33] S. Bukhari and T. Waheed, “Model Driven Transforma-
tion between Design Models to System Test Models Us-
ing UML: A Survey,” Proceedings of the 2010 National
S/w Engineering Conference, Rawalpindi, 4-5 October
2010, Article 08.

[34] “Seppmed,” 2013.
http://wiki.eclipse.org/EclipseTestingDay2010_Talk_Sep
pmed

[35] M. Shafique and Y. Labiche, “A Systematic Review of
Model Based Testing Tool Support,” Technical Report
SCE-10-04, Carleton University, Ottawa, 2010.

[36] “Conformiq Tool Suite,” 2013.
http://www.verifysoft.com/en_conformiq_automatic_test
_generation.html

[37] “Conformiq Manual,” 2013.
http://www.verifysoft.com/ConformiqManual.pdf

[38] R. Hierons, et al., “Using Formal Specifications to Sup-
port Testing,” ACM Computing Surveys, Vol. 41, No. 2,
2009, pp. 1-76.
http://dx.doi.org/10.1145/1459352.1459354

[39] S. D. Stoller, et al., “Runtime Verification with State Esti-
mation,” Proceedings of 11th International Workshop on
Runtime Verification (RV'11), Springer, Berlin, 2011, pp.
193-207.

[40] Y. Zhao and F. Rammig, “Online Model Checking for
Dependable Real-Time Systems,” Proceedings of the IEEE
15th International Symposium on Object/Component/Ser-
vice-Oriented Real-Time Distributed Computing, Shenzhen,
11-13 April 2012, pp. 154-161.

Copyright © 2013 SciRes. JSEA

Traceability in Acceptance Testing

Copyright © 2013 SciRes. JSEA

46

[41] P. Arcaini, A. Gargantini and E. Riccobene, “CoMA:
Conformance Monitoring of Java Programs by Abstract
State Machines,” Proceedings of 11th International Work-
shop on Runtime Verification (RV'11), Springer, Berlin,
2011, pp. 223-238.

[42] D. Jin, P. Meredith, C. Lee and G. Rosu, “JavaMOP:
Efficient Parametric Runtime Monitoring Framework,”
Proceedings of the 34th International Conference on Soft-
ware Engineering (ICSE), Zurich, 2-9 June 2012, pp. 1427-
1430.

[43] R. Grigor, et al., “Runtime Verification Based on Regis-
ter Automata,” Proceedings of the 19th International
Conference on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), Springer, Berlin, 2013,
pp. 260-276.

[44] Z. Zhou, et al., “Jasmine: A Tool for Model-Driven Run-
time Verification with UML Behavioral Models,” Pro-
ceedings of the 11th IEEE High Assurance Systems Engi-
neering Symposium (HASE), Nanjing, 3-5 December 2008,
pp. 487-490.

[45] X. Li, et al., “UML Interaction Model-Driven Runtime
Verification of Java Programs,” Software, IET, Vol. 5, No.
2, 2011, pp. 142-156.

[46] S. Ciraci, S. Malakuti, S. Katz, and M. Aksit, “Checking
the Correspondence between UML Models and Imple-
mentation,” Proceedings of 10th International Workshop
on Runtime Verification (RV'10), Springer, Berlin, 2011,
pp. 198-213.

[47] L. Briand and Y. Labiche, “A UML-Based Approach to
System Testing,” Software and Systems Modeling, Vol. 1,
No. 1, 2002, pp. 10-42.
http://dx.doi.org/10.1007/s10270-002-0004-8

[48] D. Chelimsky, et al. “The RSpec Book: Behaviour Driven
Development with Rspec, Cucumber and Friends,” Prag-
matic Bookshelf, New York, 2010.

[49] I. H. Krüger, M. Meisinger and M. Menarini: “Runtime
Verification of Interactions: From MSCs to Aspects,”
Proceedings of 7th International Workshop on Runtime
Verification (RV'07), Springer, Berlin, 2007, pp. 63-74.

[50] International Telecommunication Union (ITU), “Message
Sequence Charts, ITU Z.120,” 2013.
http://www.itu.int/rec/T-REC-Z.120

[51] M. Cristiá, P. Rodríguez Monetti, and P. Albertengo,
“The Fastest 1.3.6 User’s Guide,” 2013.
http://www.flowgate.net/pdf/userGuide.pdf

[52] Microsoft, “FORMULA,” 2013.
http://research.microsoft.com/en-us/projects/formula/

[53] B. Selic, “Filling in the Whitespace,”
http://lmo08.iro.umontreal.ca/Bran%20Selic.pdf

[54] “Rational Technical Developer,”
http://www-01.ibm.com/software/awdtools/developer/tec
hnical

[55] C. Nebut, et al., “Automatic Test Generation: A Use Case
Driven Approach,” IEEE Transactions on Software Engi-
neering, Vol. 32, No. 3, 2006, pp. 140-155.
http://dx.doi.org/10.1109/TSE.2006.22

[56] A. Miga, “Applications of Use Case Maps to System
Design with Tool Support,” Master’s Thesis, Carleton
University, Ottawa, 1998.

[57] D. Amyot and G. Mussbacher, “User Requirements Nota-
tion: The First Ten Years”, Journal of Software, Vol. 6,
No. 5, 2011, pp. 747-768.

[58] J. Zander, et al., “From U2TP Models to Executable Tests
with TTCN-3—An Approach to Model Driven Testing,”
Proceedings of the 17th International Conference on Test-
ing Communicating Systems, Montreal, 31 May-2 June
2005, pp. 289-303.
http://dx.doi.org/10.1007/11430230_20

[59] P. Baker and C. Jervis, “Testing UML 2.0 Models using
TTCN-3 and the UML 2.0 Testing Profile,” Springer,
Berlin, 2007, pp. 86-100.

[60] D. Arnold, J.-P. Corriveau and W. Shi, “Modeling and
Validating Requirements Using Executable Contracts and
Scenarios,” Proceedings of Software Engineering Resear-
ch, Management & Applications (SERA 2010), Montreal,
24-26 May 2010, pp. 311-320.

